首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initiation of immune responses in brain is promoted by local dendritic cells   总被引:15,自引:0,他引:15  
The contribution of dendritic cells (DCs) to initiating T cell-mediated immune response in and T cell homing into the CNS has not yet been clarified. In this study we show by confocal microscopy and flow cytometry that cells expressing CD11c, CD205, and MHC class II molecules and containing fluorescently labeled, processed Ag accumulate at the site of intracerebral Ag injection. These cells follow a specific pattern upon migrating out of the brain. To track their pathway out of the CNS, we differentiated DCs from bone marrow of GFP-transgenic mice and injected them directly into brains of naive C57BL/6 mice. We demonstrate that DCs migrate from brain to cervical lymph nodes, a process that can be blocked by fixation or pertussis toxin treatment of the DCs. Injection of OVA-loaded DCs into brain initiates a SIINFEKL (a dominant OVA epitope)-specific T cell response in lymph nodes and spleen, as measured by specific tetramer and LFA-1 activation marker staining. Additionally, a fraction of activated SIINFEKL-specific T cells home to the CNS. Specific T cell homing to the CNS, however, cannot be induced by i.v. injection of OVA-loaded DCs alone. These data suggest that brain-emigrant DCs are sufficient to support activated T cells to home to the tissue of DC origination. Thus, initiation of immune reactivity against CNS Ags involves the migration of APCs from nervous tissue to peripheral lymphoid tissues, similarly to that in other organs.  相似文献   

2.
Immunization with myelin antigens leads to the development of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. The disease can also be induced by the transfer of encephalitogenic CD4+ T helper (T(H)) lymphocytes into naive mice. These T cells need to re-encounter their cognate antigen in the context of major histocompatibility complex (MHC) class II-bearing antigen-presenting cells (APCs) in order to recognize their target. The cell type and location of the APC mediating T-cell entry into the central nervous system (CNS) remain unknown. Here, we show that APCs of the lymphoreticular system and of the CNS parenchyma are dispensable for the immune invasion of the CNS. We also describe that a discrete population of vessel-associated dendritic cells (DCs) is present in human brain tissue. In mice, CD11c+ DCs alone are sufficient to present antigen in vivo to primed myelin-reactive T cells in order to mediate CNS inflammation and clinical disease development.  相似文献   

3.
T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice were generated and infected intracerebrally with noncytolytic lymphocytic choriomeningitis virus. Because these chemokine receptors are mostly expressed by overlapping subsets of activated CD8+ T cells, it was expected that absence of both receptors would synergistically impair effector T cell invasion and therefore protect mice against the otherwise fatal CD8+ T cell-mediated immune attack. Contrary to expectations, the accumulation of mononuclear cells in cerebrospinal fluid was only slightly delayed compared with mice with normal expression of both receptors. Even more surprising, CXCR3/CCR5 double-deficient mice were more susceptible to intracerebral infection than CXCR3-deficient mice. Analysis of effector T cell generation revealed an accelerated antiviral CD8+ T cell response in CXCR3/CCR5 double-deficient mice. Furthermore, while the accumulation of CD8+ T cells in the neural parenchyma was significantly delayed in both CXCR3- and CXCR3/CCR5-deficient mice, more CD8+ T cells were found in the parenchyma of double-deficient mice when these were analyzed around the time when the difference in clinical outcome becomes manifest. Taken together, these results indicate that while CXCR3 plays an important role in controlling CNS inflammation, other receptors but not CCR5 also contribute significantly. Additionally, our results suggest that CCR5 primarily functions as a negative regulator of the antiviral CD8+ T cell response.  相似文献   

4.
Although dendritic cells (DCs) regulate immune responses, they exhibit functional heterogeneity depending on their anatomical location. We examined the functional properties of intestinal DCs after oral administration of cholera toxin (CT), the most potent mucosal adjuvant. Two CD11c+ DC subsets were identified both in Peyer's patches and mesenteric lymph nodes (MLN) based on the expression of CD8alpha (CD8+ and CD8- DCs, respectively). A third subset of CD11c+CD8int was found exclusively in MLN. Feeding mice with CT induced a rapid and transient mobilization of a new CD11c+CD8- DC subset near the intestinal epithelium. This recruitment was associated with an increased production of the chemokine CCL20 in the small intestine and was followed by a massive accumulation of CD8int DCs in MLN. MLN DCs from CT-treated mice were more potent activators of naive T cells than DCs from control mice and induced a Th2 response. This increase in immunostimulating properties was accounted for by CD8int and CD8- DCs, whereas CD8+ DCs remained insensitive to CT treatment. Consistently, the CD8int and CD8- subsets expressed higher levels of costimulatory molecules than CD8+ and corresponding control DCs. Adoptive transfer experiments showed that these two DC subsets, unlike CD8+ DCs, were able to present Ags orally coadministered with CT in an immunostimulating manner. The ability of CT to mobilize immature DCs in the intestinal epithelium and to promote their emigration and differentiation in draining lymph nodes may explain the exceptional adjuvant properties of this toxin on mucosal immune responses.  相似文献   

5.
APC dysfunction has been postulated to mediate some of the parasite-specific T cell unresponsiveness seen in patent filarial infection. We have shown that live microfilariae of Brugia malayi induce caspase-dependent apoptosis in human monocyte-derived dendritic cells (DCs) in vitro. This study addresses whether apoptosis observed in vitro extends to patent filarial infections in humans and is reflected in the number of circulating myeloid DCs (mDCs; CD11c(-)CD123(lo)) in peripheral blood of infected microfilaremic individuals. Utilizing flow cytometry to identify DC subpopulations (mDCs and plasmacytoid DCs [pDCs]) based on expression of CD11c and CD123, we found a significant increase in numbers of circulating mDCs (CD11c(+)CD123(lo)) in filaria-infected individuals compared with uninfected controls from the same filaria-endemic region of Mali. Total numbers of pDCs, monocytes, and lymphocytes did not differ between the two groups. To investigate potential causes of differences in mDC numbers between the two groups, we assessed chemokine receptor expression on mDCs. Our data indicate that filaria-infected individuals had a lower percentage of circulating CCR1(+) mDCs and a higher percentage of circulating CCR5(+) mDCs and pDCs. Finally, live microfilariae of B. malayi were able to downregulate cell-surface expression of CCR1 on monocyte-derived DCs and diminish their calcium flux in response to stimulation by a CCR1 ligand. These findings suggest that microfilaria are capable of altering mDC migration through downregulation of expression of some chemokine receptors and their signaling functions. These observations have major implications for regulation of immune responses to these long-lived parasites.  相似文献   

6.
Dendritic cells (DCs) play a key role in activating and orientating immune responses. Little is currently known about DC recruitment during Cryptosporidium parvum infection. In the intestine, epithelial cells act as sensors, providing the first signals in response to infection by enteric pathogens. We analyzed the contribution of these cells to the recruitment of DCs during cryptosporidiosis. We found that intestinal epithelial cells produced a broad range of DC-attracting chemokines in vitro in response to C. parvum infection. The supernatant of the infected cells induced the migration of both bone marrow-derived DCs (BMDC) and the SRDC lymphoid dendritic cell line. Chemokine neutralization abolished DC migration in these assays. We next analyzed chemokine mRNA expression in the mucosa of C. parvum-infected neonatal mice and recruitment of the various subsets of DCs. Myeloid (CD11c+ CD11b+) and double-negative DCs (CD11c+ CD11b- CD8alpha-) were the main subsets recruited in the ileum during C. parvum infection, via a mechanism involving IFNgamma. DCs were also recruited and activated in the draining lymph nodes during C. parvum infection, as shown by the upregulation of expression of MHC II and of the costimulation molecules CD40 and CD86.  相似文献   

7.
For immune responses to take place, naive T cells have to encounter, adhere to, and be stimulated by dendritic cells (DCs). In murine lymph nodes, T cells move randomly and scan the surface of multiple DCs. The factors controlling this motility as well as its consequences remain unclear. We have monitored by video-imaging the earliest steps of the interaction between human DCs and autologous naive CD4+ T cells in the absence of exogenous Ags. Mature, but not immature, DCs were able to elicit small calcium responses in naive T cells along with cell polarization and random motility, resulting in an efficient scanning of DC surfaces by T cells. We identified CCL19 as a key factor enabling all these early T cell responses, including the occurrence of calcium transients. Because this chemokine did not influence the strength of naive T cell adhesion to DCs, enhanced LFA-1 affinity for ICAM-1 was not the main mechanism by which CCL19 increased Ag-independent calcium transients. However, concomitantly to T cell motility, CCL19 augmented the frequency of T cell responses to rare anti-CD3/CD28-coated beads, used as surrogate APCs. We thus propose a new role for CCL19 in humans: by conditioning T cells into a motile DC-scanning state, this chemokine promotes Ag-independent responses and increases the probability of cognate MHC-peptide encounter.  相似文献   

8.
The central nervous system (CNS) is generally regarded as a site of immune privilege, whether the antigen presenting cells (APCs) are involved in the immune homeostasis of the CNS is largely unknown. Microglia and DCs are major APCs in physiological and pathological conditions, respectively. In this work, primary microglia and microglia-like cells obtained by co-culturing mature dendritic cells with CNS endothelial cells in vitro were functional evaluated. We found that microglia not only cannot prime CD4 T cells but also inhibit mature DCs (maDCs) initiated CD4 T cells proliferation. More importantly, endothelia from the CNS can differentiate maDCs into microglia-like cells (MLCs), which possess similar phenotype and immune inhibitory function as microglia. Soluble factors including NO lie behind the suppression of CD4 T cell proliferation induced by both microglia and MLCs. All the data indicate that under physiological conditions, microglia play important roles in maintaining immune homeostasis of the CNS, whereas in a pathological situation, the infiltrated DCs can be educated by the local microenvironment and differentiate into MLCs with inhibitory function.  相似文献   

9.
Dendritic cells (DCs) have a unique ability to stimulate naive T cells. Recent evidence suggests that distinct DC subsets direct different classes of immune responses in vitro and in vivo. In humans, the monocyte-derived CD11c+ DCs induce T cells to produce Th1 cytokines in vitro, whereas the CD11c- plasmacytoid T cell-derived DCs elicit the production of Th2 cytokines. In this paper we report that administration of either Flt3-ligand (FL) or G-CSF to healthy human volunteers dramatically increases distinct DC subsets, or DC precursors, in the blood. FL increases both the CD11c+ DC subset (48-fold) and the CD11c- IL-3R+ DC precursors (13-fold). In contrast, G-CSF only increases the CD11c- precursors (>7-fold). Freshly sorted CD11c+ but not CD11c- cells stimulate CD4+ T cells in an allogeneic MLR, whereas only the CD11c- cells can be induced to secrete high levels of IFN-alpha, in response to influenza virus. CD11c+ and CD11c- cells can mature in vitro with GM-CSF + TNF-alpha or with IL-3 + CD40 ligand, respectively. These two subsets up-regulate MHC class II costimulatory molecules as well as the DC maturation marker DC-lysosome-associated membrane protein, and they stimulate naive, allogeneic CD4+ T cells efficiently. These two DC subsets elicit distinct cytokine profiles in CD4+ T cells, with the CD11c- subset inducing higher levels of the Th2 cytokine IL-10. The differential mobilization of distinct DC subsets or DC precursors by in vivo administration of FL and G-CSF offers a novel strategy to manipulate immune responses in humans.  相似文献   

10.
Although the concept that dendritic cells (DCs) recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R). Here we report that C57BL/6.B2R-/- mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.]) in B2R-/- heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i.) showed high and comparable frequencies of IFN-gamma-producing CD4+ and CD8+ T cells in the spleen of B2R-/- and wild-type mice. However, production of IFN-gamma by effector T cells isolated from B2R-/- heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-gamma-producing (CD4+CD44+ and CD8+CD44+) T cells both in the spleen and heart while B2R-/- mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R-/- mice was linked to upregulated secretion of IL-17 and TNF-alpha by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86) is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R-/- mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously) into B2R-/- mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired resistance to T. cruzi infection.  相似文献   

11.
Consistent with their seminal role in detecting infection, both mouse bone marrow-derived and splenic CD11c+ dendritic cells (DCs) exhibited higher levels of uptake of Plasmodium chabaudi-parasitized RBCs (pRBCs) than of noninfected RBCs (nRBCs) as determined by our newly developed flow cytometric technique using the dye CFSE to label RBCs before coculture with DCs. To confirm that expression of CFSE by CD11c+ cells following coculture with CFSE-labeled pRBCs represents internalization of pRBC by DCs, we showed colocalization of CFSE-labeled pRBCs and PE-labeled CD11c+ DCs by confocal fluorescence microscopy. Treatment of DCs with cytochalasin D significantly inhibited the uptake of pRBCs, demonstrating that uptake is an actin-dependent phagocytic process. The uptake of pRBCs by splenic CD11c+ DCs was significantly enhanced after infection in vivo and was associated with the induction of DC maturation, IL-12 production, and stimulation of CD4+ T cell proliferation and IFN-gamma production. These results suggest that DCs selectively phagocytose pRBCs and present pRBC-derived Ags to CD4+ T cells, thereby promoting development of protective Th1-dependent immune responses to blood-stage malaria infection.  相似文献   

12.
Dendritic cells (DC) represent the most potent antigen presenting cells and induce efficient cytotoxic T lymphocyte (CTL) responses against viral infections. Targeting antigens (Ag) to receptors on DCs is a promising strategy to enhance antitumor and antiviral immune responses induced by DCs. Here, we investigated the potential of CD11c-specific single-chain fragments (scFv) fused to an immunodominant peptide of Friend retrovirus for induction of virus-specific T cell responses by DCs. In vitro CD11c-specific scFv selectively targeted viral antigens to DCs and thereby significantly improved the activation of virus-specific T cells. In vaccination experiments DCs loaded with viral Ag targeted to CD11c provided improved rejection of FV-derived tumors and efficiently primed virus-specific CTL responses after virus challenge. Since the induction of strong virus-specific T cell responses is critical in viral infections, CD11c targeted protein vaccines might provide means to enhance the cellular immune response to prophylactic or therapeutic levels.  相似文献   

13.
Chronic progression of two T cell-mediated central nervous system (CNS) demyelinating models of multiple sclerosis, relapsing EAE (R-EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is dependent on the activation of T cells to endogenous myelin epitopes (epitope spreading). Using transfer of carboxyfluorescein succinyl ester (CFSE)-labeled T-cell receptor (TCR)-transgenic T cells and mixed bone marrow chimeras, we show that activation of naive proteolipid protein (PLP)139-151-specific T cells in SJL mice undergoing PLP178-191-induced R-EAE or TMEV-IDD occurs directly in the CNS and not in the cervical lymph nodes or other peripheral lymphoid organs. Examination of the antigen-presentation capacity of antigen-presenting cell (APC) populations purified from the CNS of mice with PLP178-191-induced R-EAE shows that only F4/80-CD11c+CD45hi dendritic cells (DCs) efficiently present endogenous antigen to activate naive PLP139-151-specific T cells in vitro. In contrast, DCs as well as F4/80+CD45hi macrophages and F4/80+CD45lo microglia activate a PLP139-151-specific helper T cell line. The data suggest that naive T cells enter the inflamed CNS and are activated by local APCs, possibly DCs, to initiate epitope spreading.  相似文献   

14.
CD11c(+) dendritic cells (DCs) are a prominent component of CNS infiltrates in mice with experimental autoimmune encephalomyelitis. However, their role in immunopathogenesis is controversial. In this study, we report that they originate from peripheral hemopoietic cells and exhibit diverse functions that change during the course of acute disease. CNS DCs stimulate naive T cells to proliferate and polarize Th(17) responses when harvested shortly following disease onset but are relatively inefficient APC by the time of peak disability. Conversely, they can support CD4(+)CD25(+) T cell-mediated immunosuppression early during experimental autoimmune encephalomyelitis. Such paradoxical functions might reflect dual roles of CNS DCs in promoting local inflammation while setting the stage for remission.  相似文献   

15.
Immunotherapy represents an appealing option to specifically target CNS tumors using the immune system. In this report, we tested whether adjunctive treatment with the TLR-7 agonist imiquimod could augment antitumor immune responsiveness in CNS tumor-bearing mice treated with human gp100 + tyrosine-related protein-2 melanoma-associated Ag peptide-pulsed dendritic cell (DC) vaccination. Treatment of mice with 5% imiquimod resulted in synergistic reduction in CNS tumor growth compared with melanoma-associated Ag-pulsed DC vaccination alone. Continuous imiquimod administration in CNS tumor-bearing mice, however, was associated with the appearance of robust innate immune cell infiltration and hemorrhage into the brain and the tumor. To understand the immunological mechanisms by which imiquimod augmented antitumor immunity, we tested whether imiquimod treatment enhanced DC function or the priming of tumor-specific CD8+ T cells in vivo. With bioluminescent, in vivo imaging, we determined that imiquimod dramatically enhanced both the persistence and trafficking of DCs into the draining lymph nodes after vaccination. We additionally demonstrated that imiquimod administration significantly increased the accumulation of tumor-specific CD8+ T cells in the spleen and draining lymph nodes after DC vaccination. The results suggest that imiquimod positively influences DC trafficking and the priming of tumor-specific CD8+ T cells. However, inflammatory responses induced in the brain by TLR signaling must also take into account the local microenvironment in the context of antitumor immunity to induce clinical benefit. Nevertheless, immunotherapeutic targeting of malignant CNS tumors may be enhanced by the administration of the innate immune response modifier imiquimod.  相似文献   

16.
The central role of T cells in the induction of immunological tolerance against i.v. Ags has been well documented. However, the role of dendritic cells (DCs), the most potent APCs, in this process is not clear. In the present study, we addressed this issue by examining the involvement of two different DC subsets, CD11c(+)CD11b(+) and CD11c(+)CD8(+) DCs, in the induction of i.v. tolerance. We found that mice injected i.v. with an autoantigen peptide of myelin oligodendrocyte glycoprotein (MOG) developed less severe experimental autoimmune encephalomyelitis (EAE) following immunization with MOG peptide but presented with more CD11c(+)CD11b(+) DCs in the CNS and spleen. Upon coculturing with T cells or LPS, these DCs exhibited immunoregulatory characteristics, including increased production of IL-10 and TGF-beta but reduced IL-12 and NO; they were also capable of inhibiting the proliferation of MOG-specific T cells and enhancing the generation of Th2 cells and CD4(+)CD25(+)Foxp3(+) regulatory T cells. Furthermore, these DCs significantly suppressed ongoing EAE upon adoptive transfer. These results indicate that CD11c(+)CD11b(+) DCs, which are abundant in the CNS of tolerized animals, play a crucial role in i.v. tolerance and EAE and may be a candidate cell population for immunotherapy of autoimmune diseases.  相似文献   

17.
Based on the relative expression of CD11c and CD1a, we have identified three fractions of dendritic cells (DCs) in human peripheral blood, including a direct precursor of Langerhans cells (LCs). The first two fractions were CD11c+ DCs, comprised of a major CD1a+/CD11c+ population (fraction 1), and a minor CD1a-/CD11c+ component (fraction 2). Both CD11c+ fractions displayed a monocyte-like morphology, endocytosed FITC-dextran, expressed CD45RO and myeloid markers such as CD13 and CD33, and possessed the receptor for GM-CSF. The third fraction was comprised of CD1a-/CD11c- DCs (fraction 3) and resembled plasmacytoid T cells. These did not uptake FITC-dextran, were negative for myeloid markers (CD13/CD33), and expressed CD45RA and a high level of IL-3Ralpha, but not GM-CSF receptors. After culture with IL-3, fraction 3 acquired the characteristics of mature DCs; however, the expression of CD62L (lymph node-homing molecules) remained unchanged, indicating that fraction 3 can be a precursor pool for previously described plasmacytoid T cells in lymphoid organs. Strikingly, the CD1a+/CD11c+ DCs (fraction 1) quickly acquired LC characteristics when cultured in the presence of GM-CSF + IL-4 + TGF-beta1. Thus, E-cadherin, Langerin, and Lag Ag were expressed within 1 day of culture, and typical Birbeck granules were observed. In contrast, neither CD1a-/CD11c+ (fraction 2) nor CD1a-/CD11c- (fraction 3) cells had the capacity to differentiate into LCs. Furthermore, CD14+ monocytes only expressed E-cadherin, but lacked the other LC markers after culture in these cytokines. Therefore, CD1a+/CD11c+ DCs are the direct precursors of LCs in peripheral blood.  相似文献   

18.
The activation of Ag-specific T cells locally in the CNS could potentially contribute to the development of immune-mediated brain diseases. We addressed whether Ag-specific T cells could be stimulated in the CNS in the absence of peripheral lymphoid tissues by analyzing Ag-specific T cell responses in organotypic brain slice cultures. Organotypic brain slice cultures were established 1 h after intracerebral OVA Ag microinjection. We showed that when OVA-specific CD8(+) T cells were added to Ag-containing brain slices, these cells became activated and migrated into the brain to the sites of their specific Ags. This activation of OVA-specific T cells was abrogated by the deletion of CD11c(+) cells from the brain slices of the donor mice. These data suggest that brain-resident CD11c(+) cells stimulate Ag-specific naive CD8(+) T cells locally in the CNS and may contribute to immune responses in the brain.  相似文献   

19.
Langerhans cells have been thought to play a major role as APCs for induction of specific immune responses to Leishmania major. Although their requirement for control of infection has been challenged recently, it remains unclear whether they can transport Ag to lymph nodes and promote initiation of T cell responses. Moreover, the role of dermal dendritic cells (DCs), another population of skin DCs, has so far not been addressed. We have investigated the origin and characterized the cell population responsible for initial activation of L. major-specific T cells in susceptible and resistant mice. We found that Ag presentation in draining lymph nodes peaks as early as 24 h after infection and is mainly mediated by a population of CD11c(high)CD11b(high)Gr-1-CD8-langerin- DCs residing in lymph nodes and acquiring soluble Ags possibly drained through the conduit network. In contrast, skin-derived DCs, including Langerhans cells and dermal DCs, migrated poorly to lymph nodes and played a minor role in early T cell activation. Furthermore, prevention of migration through early removal of the infection site did not affect Ag presentation by CD11c(high) CD11b(high) DCs and activation of Leishmania major-specific naive CD4+ T cells in vivo.  相似文献   

20.
Adoptive transfer of adjuvant-induced arthritis was used in this study to examine local macrophages and dendritic cells (DCs) during T cell-mediated synovial inflammation. We studied the influx of CD11b+CD11c+ putative myeloid DCs and other non-lymphoid CD45+ cells into synovium-rich tissues (SRTs) of the affected hind paws in response to a pulse of autoreactive thoracic duct cells. Cells were prepared from the SRTs using a collagenase perfusion-digestion technique, thus allowing enumeration and phenotypic analysis by flow cytometry. Numbers of CD45+ cells increased during the first 6 days, with increases in CD45+MHC (major histocompatibility complex) II+ monocyte-like cells from as early as day 3 after transfer. In contrast, typical MHC II(-) monocytes, mainly of the CD4(-) subset, did not increase until 12 to 14 days after cell transfer, coinciding with the main influx of polymorphonuclear cells. By day 14, CD45+MHC IIhi cells constituted approximately half of all CD45+ cells in SRT. Most of the MHC IIhi cells expressed CD11c and CD11b and represented putative myeloid DCs, whereas only approximately 20% were CD163+ macrophages. Less than 5% of the MHC IIhi cells in inflamed SRT were CD11b(-), setting a maximum for any influx of plasmacytoid DCs. Of the putative myeloid DCs, a third expressed CD4 and both the CD4+ and the CD4(-) subsets expressed the co-stimulatory molecule CD172a. Early accumulation of MHC IIhiCD11c+ monocyte-like cells during the early phase of T cell-mediated inflammation, relative to typical MHC II(-) blood monocytes, suggests that recruited monocytes differentiate rapidly toward the DC lineage at this stage in the disease process. However, it is possible also that the MHC IIhiCD11c+ cells originate from a specific subset of DC-like circulating mononuclear cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号