首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cloned cDNA genes for endothelin receptors ETA and ETB were expressed in COS cells, and the binding characteristics of the two receptors with three isopeptide ligands (ET-1, ET-2, and ET-3) were examined in detail. The results indicated that the stability of receptor-ET-1 complexes formed with ETA and ETB were significantly different from each other, while their affinities to ET-1 were similar. The preformed ETA-ET-1 complex readily dissociated upon SDS-PAGE, as did many of the other receptors so far studied, while the ETB-ET-1 complex survived SDS-PAGE when it was run at low temperature (approximately 4 degrees C). Clear differences in stability were also shown in comparative studies of acid treatment of the two types of complexes. Only the ETB-ET-1 complex was resistant to acid treatment (0.2 M acetic acid, 0.5 M NaCl), and its 50 kDa monomeric receptor-ligand complex remained intact. The ETB-ET-1 complex (50 kDa) formed at 4 degrees C on the surface of COS cells, however, was susceptible to limited proteolysis at 37 degrees C that reduced the molecular size of the complex to a distinct 35 kDa. No such size reduction was observed with the preformed ETA-ET-1 complex. The overall structure of two endothelin receptors, as deduced from the sequence of cloned cDNAs, is similar in many respects. However, the present findings demonstrate distinct differences in the biochemical nature of the two receptors, which suggest their distinct biological functions.  相似文献   

2.
Three rabbit vessels, the carotid and pulmonary arteries and the jugular vein were investigated to identify vascular monoreceptor systems (either ETA or ETB) to be used in structure-activity studies on endothelins and their antagonists. The RbCA has been found to behave as a monoreceptor ETA preparation, since it shows much greater sensitivity to ET-1 than to ET-3 and is insensitive to IRL 1620. The contractile response of the RbCA to ET-1 is reduced in the presence of BQ-123 but is not influenced by BQ-788. The RbPA behaves as a pure ETB system when stimulated with the ETB selective agonist IRL 1620. The contractile effect of IRL 1620 is reduced in the presence of BQ-788 but is not influenced by BQ-123. The RbJV responds to ETA and to IRL 1620 with contractions that are reduced by both BQ-123 and BQ-788, respectively. The RbJV appears to be a mixed ETA and ETB system in which the two functional sites play an equivalent role in the stimulatory contractile response.Thus, contractile ETA and ETB receptors have been found in arterial and venous vessels of the rabbit and some of these vessels provide sensitive and selective (either ETA or ETB) preparations that appear to be adequate for pharmacological studies on ET receptor agonists or antagonists.  相似文献   

3.
The net contribution of endothelin type A (ET(A)) and type B (ET(B)) receptors in blood pressure regulation in humans and experimental animals, including the conscious mouse, remains undefined. Thus we assessed the role of ET(A) and ET(B) receptors in the control of basal blood pressure and also the role of ET(A) receptors in maintaining the hypertensive effects of systemic ET(B) blockade in telemetry-instrumented mice. Mean arterial pressure (MAP) and heart rate were recorded continuously from the carotid artery and daily (24 h) values determined. At baseline, MAP ranged from 99 +/- 1 to 101 +/- 1 mmHg and heart rate ranged between 547 +/- 15 and 567 +/- 19 beats/min (n = 6). Daily oral administration of the ET(B) selective antagonist A-192621 [10 mg/kg twice daily] increased MAP to 108 +/- 1 and 112 +/- 2 mmHg on days 1 and 5, respectively. Subsequent coadministration of the ET(A) selective antagonist atrasentan (5 mg/kg twice daily) in conjunction with A-192621 (10 mg/kg twice daily) decreased MAP to baseline values on day 6 (99 +/- 2 mmHg) and to below baseline on day 8 (89 +/- 3 mmHg). In a separate group of mice (n = 6) in which the treatment was reversed, systemic blockade of ET(B) receptors produced no hypertension in animals pretreated with atrasentan, underscoring the importance of ET(A) receptors to maintain the hypertension produced by ET(B) blockade. In a third group of mice (n = 10), ET(A) blockade alone (atrasentan; 5 mg/kg twice daily) produced an immediate and sustained decrease in MAP to values below baseline (baseline values = 101 +/- 2 to 103 +/- 2 mmHg; atrasentan decreased pressure to 95 +/- 2 mmHg). Thus these data suggest that ET(A) and ET(B) receptors play a physiologically relevant role in the regulation of basal blood pressure in normal, conscious mice. Furthermore, systemic ET(B) receptor blockade produces sustained hypertension in conscious telemetry-instrumented mice that is absent in mice pretreated with an ET(A) antagonist, suggesting that ET(A) receptors maintain the hypertension produced by ET(B) blockade.  相似文献   

4.
Endothelial cells are a major source of endothelin (ET)-1, but the possibility that vascular adventitial fibroblasts generate ET-1 has not been explored. We hypothesized that aortic adventitial fibroblasts have the ability to produce ET-1, which may contribute to extracellular matrix synthesis. Vascular adventitial fibroblasts were isolated from mouse aorta and incubated with various concentrations of angiotensin II (ANG II). mRNA levels of preproET-1 and type I procollagen were detected with relative RT-PCR. ET-1 levels in culture medium were measured with ELISA. Protein levels of procollagen were detected with Western blotting. ANG II (10 and 100 nM, 1 microM) induced a time- and concentration-dependent increase in preproET-1 mRNA levels (P < 0.05). Induction of preproET-1 mRNA was accompanied by release of immunoreactive peptide ET-1 (P < 0.05). ANG II-evoked increases in preproET-1 mRNA expression and ET-1 release were blocked by losartan (100 microM), an AT1 receptor antagonist, but not PD-123319 (100 microM), an AT2 receptor antagonist. To further confirm our findings, we cloned and then sequenced vascular fibroblast preproET-1 bidirectionally with T7 and M13 reverse sequencing primers. Their nucleotide sequences were identical to preproET-1 cDNA from mouse vascular endothelial cells (accession no. AB081657). Moreover, ANG II-induced type I procollagen mRNA and protein expression were inhibited by BQ-123 (10 microM), an ET(A) receptor inhibitor, but not BQ-788 (10 microM), an ET(B) receptor inhibitor, suggesting a significant role of adventitial ET-1 in regulation of extracellular matrix synthesis. The results demonstrate that vascular adventitial fibroblasts are able to synthesize and release ET-1 in response to ANG II.  相似文献   

5.
The endothelins (ET) have been implicated in vasopressin (AVP) release in vivo and in vitro. The effects of ET in this system are complex, and the net AVP secretory response likely depends on a unique combination of ET isoform, ET receptor subtype, and neural locus. The purpose of these studies was to examine the role of ET receptor subtypes at hypothalamic vs. neurohypophysial sites on somatodendritic and neurohypophysial AVP secretion. Experiments were done in cultured explants of the hypothalamo-neurohypophysial system of Long Evans rats. Either the whole explant (standard) or only the hypothalamus or posterior pituitary (compartmentalized) was exposed to log dose increases (0.01-10 nM) of the agonists ET-1 (ET(A) selective), ET-3 (nonselective), or IRL-1620 (ET(B) selective) with or without selective ET(A) (BQ-123, 2-200 nM) or ET(B) (IRL-1038, 6-600 nM) receptor antagonism. In standard explants, ET-1 and ET-3 dose-dependently increased, whereas IRL-1620 decreased net AVP release. Hypothalamic ET(B) receptor activation increased both somatodendritic and neurohypophysial AVP release. At least one intervening synapse was involved, as tetrodotoxin blocked the response. Activation of ET(A) receptors at the hypothalamic level inhibited, whereas ET(A) receptor activation at the posterior pituitary stimulated, neurohypophysial AVP secretion. Antagonism of hypothalamic ET(A) receptors potentiated the stimulatory effect of ET-1 and ET-3 on neurohypophysial secretion, an effect not observed with ET(B) receptor-induced somatodendritic release of AVP. Thus the response of whole explants reflects the net result of both stimulatory and inhibitory inputs. The integration of these excitatory and inhibitory inputs endows the vasopressinergic system with greater plasticity in its response to physiological and pathophysiological states.  相似文献   

6.
Jin X  Fu GX  Li XD  Zhu DL  Gao PJ 《PloS one》2011,6(9):e23558
Osteopontin is known to play important roles in various diseases including vascular disorders. However, little is known about its expression and function in vascular adventitial fibroblasts. Adventitial fibroblasts have been shown to play a key role in pathological vascular remodeling associating with various vascular disorders. In this study, we measured activation of Osteopontin and its biological functions in cultured adventitial fibroblasts and injured rat carotid injury arteries induced by balloon angioplasty. Our results showed that angiotensin II and aldosterone increased Osteopontin expression in adventitial fibroblasts in a time- and concentration-dependent manner. MAPKs and AP-1 pathways were involved in Osteopontin upregulation. In addition, Adventitial fibroblast migration stimulated by Angiotensin II and aldosterone required OPN expression. Perivascular delivery of antisense oligonucleotide for Osteopontin suppressed neointimal formation post-injury. We concluded that upregulation of Osteopontin expression in adventitial fibroblasts might be important in the pathogenesis of vascular remodeling after arterial injury.  相似文献   

7.
An increase in coronary perfusion pressure leads to increased cardiac contractility, a phenomenon known as the Gregg effect. Exogenous endothelin (ET)-1 exerts a positive inotropic effect; however, the role of endogenous ET-1 in the contractile response to elevated load is unknown. We characterized here the role of ETA and ETB receptors in regulation of contractility in isolated, perfused mouse hearts subjected to increased coronary flow. Elevation of coronary flow from 2 to 5 ml/min resulted in 80 +/- 10% increase in contractile force (P < 0.001). BQ-788 (ETB receptor antagonist) augmented the load-induced contractile response by 35% (P < 0.05), whereas bosentan (ETA/B receptor antagonist) and BQ-123 (ETA receptor antagonist) attenuated it by 34% and 56%, respectively (P < 0.05). CV-11974 (ANG II type 1 receptor antagonist) did not modify the increase in contractility. These results show that endogenous ET-1 is a key mediator of the Gregg effect in mouse hearts. Moreover, ET-1 has a dual role in the regulation of cardiac contractility: ETA receptor-mediated increase in contractile force is suppressed by ETB receptors.  相似文献   

8.
Vascular repair in response to injury or stress (often referred to as remodeling) is a common complication of many cardiovascular abnormalities including pulmonary hypertension, systemic hypertension, atherosclerosis, vein graft remodeling and restenosis following balloon dilatation of the coronary artery. It is not surprising that repair and remodeling occurs frequently in the vasculature in that exposure of blood, vessels to either excessive hemodynamic stress (e.g. hypertension), noxious blood borne agents (e.g. atherogenic lipids), locally released cytokines, or unusual environmental conditions (e.g. hypoxia), requires readily available mechanisms to counteract these adverse stimuli and to preserve structure and function of the vessel wall. The responses, which were presumably evolutionarily developed to repair an injured tissue, often escape self-limiting control and can result, in the case of blood vessels, in lumen narrowing and obstruction to blood flow. Each cell type (i. e. endothelial cells, smooth muscle cells, and fibroblasts) in the vascular wall plays a specific role in the response to injury. However, while the roles of the endothelial cells and smooth muscle cells (SMC) in vascular remodeling have been extensively studied, relatively little attention has been given to the adventitial fibroblasts. Perhaps this is because the fibroblast is a relatively ill-defined cell which, at least compared to the SMC, exhibits few specific cellular markers. Importantly though, it has been well demonstrated that fibroblasts possess the capacity to express several functions such as migration, rapid proliferation, synthesis of connective tissue components, contraction and cytokine production in response to activation or stimulation. The myriad of responses exhibited by the fibroblasts, especially in response to stimulation, suggest that these cells could play a pivotal role in the repair of injury. This fact has been well documented in the setting of wound healing where a hypoxic environment has been demonstrated to be critical in the cellular responses. As such it is not surprising that fibroblasts may play an important role in the vascular response to hypoxia and/or injury. This paper is intended to provide a brief review of the changes that occur in the adventitial fibroblasts in response to vascular stress (especially hypoxia) and the role the activated fibroblasts might play in hypoxia-mediated pulmonary vascular disease.  相似文献   

9.
Endothelin (ET) causes contraction of the muscularis mucosae in the guinea pig esophagus, but its role in the human esophagus remains unknown. To investigate effects of ET in the human esophagus, we measured contraction of isolated human esophageal muscularis mucosae strips caused by ET related peptides and binding of 125I-ET-1 to cell membranes prepared from the human esophageal muscularis mucosae. Autoradiography demonstrated specific binding of 125I-ET-1 to the muscularis mucosae and muscularis propria (muscularis externa) of the human esophagus. ET-1 caused tetrodotoxin and atropine-insensitive contraction of muscularis mucosae strips. In terms of the maximal tension of contraction, ET-1 and ET-2 were equal in efficacy. The relative potencies for ET related peptides to cause contraction were ET-1=ET-2>ET-3>sarafotoxin S6c (SX6c), an ETB receptor agonist. ET-1 caused contraction was mildly inhibited by BQ-123, an ETA receptor antagonist, and not by BQ-788, an ETB receptor antagonist. It was moderately inhibited by the combination of both antagonists, indicating synergistic inhibition. Furthermore, desensitization to SX6c with SX6c pretreatment failed to abolish the contractile response to ET-1, which was completely inhibited by BQ-123. These indicate the involvement of both ETA and ETB receptors in the contraction. Binding of 125I-ET-1 to cell membranes of the muscularis mucosae was saturable and specific. Analysis of dose-inhibition curves demonstrated the presence of ETA and ETB receptors. This study demonstrates that, the muscularis mucosae of the human esophagus, similar to that of the guinea pig esophagus, possesses both ETA and ETB receptors mediating muscle contraction.  相似文献   

10.
Using the structure of ET-1 as a template, a series of photosensitive analogs were developed to investigate the binding domain of ETA and ETB receptors. Accordingly, a p-benzoyl-l-phenylalanine (Bpa) residue was introduced into the peptide chain following a pattern aiming at scanning N- to C-terminal portions of the molecule. Among the analogs, those containing a Bpa amino acid in position 7 ([L-Bpa7, Tyr(125I)13]hET-1) or 12 ([Nle7, L-Bpa12, Tyr(125I)13]hET-1) exhibited the capacity to activate both receptors, thus showing that residues Met-7 and Val-12 of ET-1 do not play a key role in the activation process. The binding capacity of the probes was also evaluated on transfected CHO cells overexpressing either ETA or ETB receptors. Subsequently, these photoprobes were used to label ETA and ETB receptors overexpressed in transfected CHO cells. Enzymatic digestions and chemical cleavages were then performed on ligand-receptor complexes and fragments produced by the lysis were analyzed to point out putative interaction areas on the receptors. Results showed that Phe147-Lys166, covering the second segment of EC I and the top part of TM III, contains a contact point for [Nle7, L-Bpa12, Tyr(125I)13]hET-1 on ETA receptors whereas Ile292-Trp319, spanning from the second half of the intracellular loop III up to the middle turns of TM VI, includes a residue that can interact with [L-Bpa7, Tyr(125I)13]hET-1. Moreover, upon binding of [Nle7, L-Bpa12, Tyr(125I)13]hET-1, it was observed that Thr263-Met266 (EC II) of the ETB receptor would come close with the ligand.  相似文献   

11.
Our previous work showed that ET-1 induced a concentration-dependent increase of cytosolic Ca2+ ([Ca]c) and nuclear Ca2+ ([Ca]n) in human aortic vascular smooth muscle cells (hVSMCs). In the present study, using hVSMCs and 3-dimensional confocal microscopy coupled to the Ca2+ fluorescent probe Fluo-3, we showed that peptidic antagonists of ETA and ETB receptors (BQ-123 (10(-6) mol/L) and BQ-788 (10(-7) mol/L), respectively) prevented, but did not reverse, ET-1-induced sustained increase of [Ca]c and [Ca]n. In contrast, nonpeptidic antagonists of ETA and ETB (respectively, BMS-182874 (10(-8)-10(-6) mol/L) and A-192621 (10(-7) mol/L)) both prevented and reversed ET-1-induced sustained increase of [Ca]c and [Ca]n. Furthermore, activation of the ETB receptor alone using the specific agonist IRL-1620 (10(-9) mol/L) induced sustained increases of [Ca]c and [Ca]n, and subsequent administration of ET-1 (10(-7) mol/L) further increased nuclear Ca2+. ET-1-induced increase of [Ca]c and [Ca]n was completely blocked by extracellular application of the Ca2+ chelator EGTA. Pretreatment with the G protein inhibitors pertussis toxin (PTX) and cholera toxin (CTX) also prevented the ET-1 response; however, strong membrane depolarization with KCl (30 mmol/L) subsequently induced sustained increase of [Ca]c and [Ca]n. Pretreatment of hVSMCs with either the PKC activator phorbol-12,13-dibutyrate or the PKC inhibitor bisindolylmaleimide did not affect ET-1-induced sustained increase of intracellular Ca2+. These results suggest that both ETA- and ETB-receptor activation contribute to ET-1-induced sustained increase of [Ca]c and [Ca]n in hVSMCs. Moreover, in contrast to the peptidic antagonists of ET-1 receptors, the nonpeptidic ETA-receptor antagonist BMS-182874 and the nonpeptidic ETB-receptor antagonist A-192621 were able to reverse the effect of ET-1. Nonpeptidic ETA- and ETB-receptor antagonists may therefore be better pharmacological tools for blocking ET-1-induced sustained increase of intracellular Ca2+ in hVSMCs. Our results also suggest that the ET-1-induced sustained increase of [Ca]c and [Ca]n is not mediated via activation of PKC, but via a PTX- and CTX-sensitive G protein calcium influx through the R-type Ca2+ channel.  相似文献   

12.
13.
Norepinephrine directly induces growth of the vascular wall, which may involve not only proliferation of smooth muscle cells (SMCs) and adventitial fibroblasts (AFBs) but also augmentation of their migration. To test this hypothesis, growth-arrested SMCs and AFBs from rat aorta were exposed to norepinephrine. Norepinephrine caused dose-dependent migration of both cell types that was dependent on chemotaxis. In contrast, platelet-derived growth factor (PDGF)-BB, used as a positive control, stimulated both chemotaxis and chemokinesis. Only alpha(1D)-adrenoceptors (AR) and alpha(2)-AR antagonists inhibited norepinephrine migration of SMCs, whereas norepinephrine migration of AFBs was only inhibited by alpha(1A)-AR and alpha(1B)-AR antagonists; beta-AR blockade was without effect. Norepinephrine and PDGF-BB were additive for AFB, but not SMC, migration. Stimulation of migration was reversed at high norepinephrine concentrations (10 microM); this inhibition was mediated by alpha(2)- and beta-ARs in AFBs but not in SMCs. Thus norepinephrine induces migration of SMCs and AFBs via different alpha-ARs. This action may participate in wall remodeling and norepinephrine potentiation of injury-induced intimal lesion growth.  相似文献   

14.
《Life sciences》1995,56(25):PL449-PL454
To elucidate the role of endothelin receptor subtypes in the abnormal proliferation of vascular smooth muscle cells (VSMC) associated with vascular injury, we have investigated the effects of a novel and potent nonselective ETA/ETB receptor antagonist (TAK-044) on the proliferation of rat VSMC in vitro and in vivo. TAK-044 dose-dependently inhibited DNA synthesis stimulated by 10−7 M ET-1 in cultured rat VSMC from the late passage with the approximate IC50 of 6 × 10−8 M. After balloon angioplasty, the neointimal lesion in the injured carotid arteries in the TAK-044-treated group (0.052 ± 0.014 mm2) was significantly (p < 0.05) decreased compared to that in control group (0.26 ± 0.045 mm2), while the medial surface area was not affected. The intima/media ratio in the TAK-044 group (31 ± 6%) also significantly (p < 0.05) decreased from that of the control group (148 ± 25%). Our data suggest that nonselective ETA/ETB receptor antagonists may be therapeutic potential for prevention against the intimai thickening associated with vascular injury.  相似文献   

15.
Distribution of endothelin receptor subtypes ETA and ETB in the rat kidney.   总被引:2,自引:0,他引:2  
The endothelin (ET) receptor system is markedly involved in the regulation of renal function under both physiological and pathophysiological conditions. The present study determined the detailed cellular localization of both ET receptor subtypes, ET(A) and ET(B), in the vascular and tubular system of the rat kidney by immunofluorescence microscopy. In the vascular system we observed both ET(A) and ET(B) receptors in the media of interlobular arteries and afferent and efferent arterioles. In interlobar and arcuate arteries, only ET(A) receptors were present on vascular smooth muscle cells. ET(B) receptor immunoreactivity was sparse on endothelial cells of renal arteries, whereas there was strong labeling of peritubular and glomerular capillaries as well as vasa recta endothelium. ET(A) receptors were evident on glomerular mesangial cells and pericytes of descending vasa recta bundles. In the renal tubular system, ET(B) receptors were located in epithelial cells of proximal tubules and inner medullary collecting ducts, whereas ET(A) receptors were found in distal tubules and cortical collecting ducts. Distribution of ET(A) and ET(B) receptors in the vascular and tubular system of the rat kidney reported in the present study supports the concept that both ET receptor subtypes cooperate in mediating renal cortical vasoconstriction but exert differential and partially antagonistic effects on renal medullary function.  相似文献   

16.
Our previous ex vivo and in vivo studies reported that expression of the recombinant endothelial nitric oxide (NO) synthase (eNOS) gene in adventitial fibroblasts recovers NO production in arteries without endothelium in response to bradykinin. The present study was designed to characterize subtypes of bradykinin receptors on adventitial fibroblasts coupled to the activation of recombinant eNOS. Endothelium-denuded segments of canine basilar arteries were transduced with beta-galactosidase (beta-Gal) gene or eNOS gene ex vivo, using a replication-defective adenoviral vector (10(10) plaque-forming units/ml) for 30 min at 37 degrees C. Twenty-four hours later, isometric force recording or cGMP measurement was carried out. B(1) bradykinin receptor agonist (des-Arg(9)-bradykinin, 10(-10)-10(-8) mol/l) did not significantly affect vascular tone in control or beta-Gal gene-transduced canine basilar arteries without endothelium. In contrast, this agonist caused concentration-dependent relaxations in recombinant eNOS gene-transduced arteries without endothelium. Relaxations to B(1) receptor agonist in the eNOS arteries were abolished by B(1) receptor antagonist (des-Arg(9)-[Leu(8)]bradykinin, 6 x 10(-9) mol/l) but not by B(2) receptor antagonist (Hoe-140, 5 x 10(-8) mol/l). Bradykinin did not significantly alter vascular tone in control or beta-gal arteries without endothelium, whereas this peptide (10(-11)-10(-8) mol/l) induced concentration-dependent relaxations, as well as an increase in cGMP formation in endothelium-denuded eNOS-transduced arteries. Stimulatory effects of bradykinin were prevented in the presence of a B(2) receptor antagonist but not in the presence of a B(1) receptor antagonist. B(1) and B(2) receptor antagonists had no effect on relaxations to substance P, confirming the selectivity of the compounds. Our results suggest that B(1) and B(2) bradykinin receptors are coupled to activation of recombinant eNOS expressed in adventitial fibroblasts.  相似文献   

17.
18.
Because of some isofunctional similarities with endothelin-1 (ET-1), it has been suggested that PTHrP(1-16) and PTHrP(1-23) could interact with osteoblast cells via ETA receptors. To document this interaction, we used the thoracic rat aorta and the guinea-pig lung parenchyma paradigms as ETA and ETB models, respectively. In addition, we also performed a series of competition experiments against [125I]ET-1, using transfected cells expressing the ETA or ETB receptor. So far, no agonistic nor antagonistic activities were observed in the ETA and ETB bioassays with the PTHrP fragments. Furthermore, both fragments were unable to displace [125I]ET-1 bound to cells expressing the ETA or ETB receptor.  相似文献   

19.
Increased levels of endothelin-1 (ET-1) in the carotid body (CB) contribute to the enhancement of chemosensory responses to acute hypoxia in cats exposed to chronic intermittent hypoxia (CIH). However, it is not known if the ET receptor types A (ETA-R) and B (ETB-R) are upregulated. Thus, we studied the expression and localization of ETA-R and ETB-R using Western blot and immunohistochemistry (IHC) in CBs from cats exposed to cyclic hypoxic episodes, repeated during 8 hr for 4 days. In addition, we determined if ET-1 is expressed in the chemoreceptor cells using double immunofluorescence for ET-1 and tyrosine hydroxylase (TH). We found that ET-1 expression was ubiquitous in the blood vessels and CB parenchyma, although double ET-1 and TH-positive chemoreceptor cells were mostly found in the parenchyma. ETAR was expressed in most chemoreceptor cells and blood vessels of the CB vascular pole. ETB-R was expressed in chemoreceptor cells, parenchymal capillaries, and blood vessels of the vascular pole. CIH upregulated ETB-R expression by approximately 2.1 (Western blot) and 1.6-fold (IHC) but did not change ETA-R expression. Present results suggest that ET-1,ETA-R, and ETB-R are involved in the enhanced CB chemosensory responses to acute hypoxia induced by CIH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号