首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In flowering plants, the somatic-to-reproductive cell fate transition is marked by the specification of spore mother cells (SMCs) in floral organs of the adult plant. The female SMC (megaspore mother cell, MMC) differentiates in the ovule primordium and undergoes meiosis. The selected haploid megaspore then undergoes mitosis to form the multicellular female gametophyte, which will give rise to the gametes, the egg cell and central cell, together with accessory cells. The limited accessibility of the MMC, meiocyte and female gametophyte inside the ovule is technically challenging for cytological and cytogenetic analyses at single cell level. Particularly, direct or indirect immunodetection of cellular or nuclear epitopes is impaired by poor penetration of the reagents inside the plant cell and single-cell imaging is demised by the lack of optical clarity in whole-mount tissues.Thus, we developed an efficient method to analyze the nuclear organization and chromatin modification at high resolution of single cell in whole-mount embedded Arabidopsis ovules. It is based on dissection and embedding of fixed ovules in a thin layer of acrylamide gel on a microscopic slide. The embedded ovules are subjected to chemical and enzymatic treatments aiming at improving tissue clarity and permeability to the immunostaining reagents. Those treatments preserve cellular and chromatin organization, DNA and protein epitopes. The samples can be used for different downstream cytological analyses, including chromatin immunostaining, fluorescence in situ hybridization (FISH), and DNA staining for heterochromatin analysis. Confocal laser scanning microscopy (CLSM) imaging, with high resolution, followed by 3D reconstruction allows for quantitative measurements at single-cell resolution.  相似文献   

2.
3.
In higher plants the gametophyte consists of a gamete in association with a small number of haploid cells, specialized for sexual reproduction. The female gametophyte or embryo sac, is contained within the ovule and develops from a single cell, the megaspore which is formed by meiosis of the megaspore mother cell. The dyad mutant of Arabidopsis, described herein, represents a novel class among female sterile mutants in plants. dyad ovules contain two large cells in place of an embryo sac. The two cells represent the products of a single division of the megaspore mother cell followed by an arrest in further development of the megaspore. We addressed the question of whether the division of the megaspore mother cell in the mutant was meiotic or mitotic by examining the expression of two markers that are normally expressed in the megaspore mother cell during meiosis. Our observations indicate that in dyad, the megaspore mother cell enters but fails to complete meiosis, arresting at the end of meiosis 1 in the majority of ovules. This was corroborated by a direct observation of chromosome segregation during division of the megaspore mother cell, showing that the division is a reductional and not an equational one. In a minority of dyad ovules, the megaspore mother cell does not divide. Pollen development and male fertility in the mutant is normal, as is the rest of the ovule that surrounds the female gametophyte. The embryo sac is also shown to have an influence on the nucellus in wild type. The dyad mutation therefore specifically affects a function that is required in the female germ cell precursor for meiosis. The identification and analysis of mutants specifically affecting female meiosis is an initial step in understanding the molecular mechanisms underlying early events in the pathway of female reproductive development.  相似文献   

4.
The life cycle of higher plants alternates between the diploid sporophytic and the haploid gametophytic phases. In angiosperms, male and female gametophytes develop within the sporophyte. During female gametophyte (FG) development, a single archesporial cell enlarges and differentiates into a megaspore mother cell, which then undergoes meiosis to give rise to four megaspores. In most species of higher plants, including Arabidopsis thaliana, the megaspore closest to the chalaza develops into the functional megaspore (FM), and the remaining three megaspores degenerate. Here, we examined the role of cytokinin signaling in FG development. We characterized the FG phenotype in three triple mutants harboring non‐overlapping T–DNA insertions in cytokinin AHK receptors. We demonstrate that even the strongest mutant is not a complete null for the cytokinin receptors. Only the strongest mutant displayed a near fully penetrant disruption of FG development, and the weakest triple ahk mutant had only a modest FG phenotype. This suggests that cytokinin signaling is essential for FG development, but that only a low threshold of signaling activity is required for this function. Furthermore, we demonstrate that there is elevated cytokinin signaling localized in the chalaza of the ovule, which is enhanced by the asymmetric localization of cytokinin biosynthetic machinery and receptors. We show that an FM‐specific marker is absent in the multiple ahk ovules, suggesting that disruption of cytokinin signaling elements in Arabidopsis blocks the FM specification. Together, this study reveals a chalazal‐localized sporophytic cytokinin signal that plays an important role in FM specification in FG development.  相似文献   

5.
6.
In flowering plants, the formation of gametes depends on the differentiation of cellular precursors that divide meiotically before giving rise to a multicellular gametophyte. The establishment of this gametophytic phase presents an opportunity for natural selection to act on the haploid plant genome by means of epigenetic mechanisms that ensure a tight regulation of plant reproductive development. Despite this early acting selective pressure, there are numerous examples of naturally occurring developmental alternatives that suggest a flexible regulatory control of cell specification and subsequent gamete formation in flowering plants. In this review, we discuss recent findings indicating that epigenetic mechanisms related to the activity of small RNA pathways prevailing during ovule formation play an essential role in cell specification and genome integrity. We also compare these findings to small RNA pathways acting during gametogenesis in animals and discuss their implications for the understanding of the mechanisms that control the establishment of the female gametophytic lineage during both sexual reproduction and apomixis.  相似文献   

7.
Female gamete development in Arabidopsis ovules comprises two phases. During megasporogenesis, a somatic ovule cell differentiates into a megaspore mother cell and undergoes meiosis to produce four haploid megaspores, three of which degrade. The surviving functional megaspore participates in megagametogenesis, undergoing syncytial mitosis and cellular differentiation to produce a multicellular female gametophyte containing the egg and central cell, progenitors of the embryo and endosperm of the seed. The transition between megasporogenesis and megagametogenesis is poorly characterised, partly owing to the inaccessibility of reproductive cells within the ovule. Here, laser capture microdissection was used to identify genes expressed in and/or around developing megaspores during the transition to megagametogenesis. ARGONAUTE5 (AGO5), a putative effector of small RNA (sRNA) silencing pathways, was found to be expressed around reproductive cells during megasporogenesis, and a novel semi-dominant ago5-4 insertion allele showed defects in the initiation of megagametogenesis. Expression of a viral RNAi suppressor, P1/Hc-Pro, driven by the WUSCHEL and AGO5 promoters in somatic cells flanking the megaspores resulted in a similar phenotype. This indicates that sRNA-dependent pathways acting in somatic ovule tissues promote the initiation of megagametogenesis in the functional megaspore. Notably, these pathways are independent of AGO9, which functions in somatic epidermal ovule cells to inhibit the formation of multiple megaspore-like cells. Therefore, one somatic sRNA pathway involving AGO9 restricts reproductive development to the functional megaspore and a second pathway, inhibited by ago5-4 and P1/Hc-Pro, promotes megagametogenesis.  相似文献   

8.
In plants, gametes, along with accessory cells, are formed by the haploid gametophytes through a series of mitotic divisions, cell specification and differentiation events. How the cells in the female gametophyte of flowering plants differentiate into gametes (the egg and central cell) and accessory cells remains largely unknown. In a screen for mutations that affect egg cell differentiation in Arabidopsis, we identified the wyrd (wyr) mutant, which produces additional egg cells at the expense of the accessory synergids. WYR not only restricts gametic fate in the egg apparatus, but is also necessary for central cell differentiation. In addition, wyr mutants impair mitotic divisions in the male gametophyte and endosperm, and have a parental effect on embryo cytokinesis, consistent with a function of WYR in cell cycle regulation. WYR is upregulated in gametic cells and encodes a putative plant ortholog of the inner centromere protein (INCENP), which is implicated in the control of chromosome segregation and cytokinesis in yeast and animals. Our data reveal a novel developmental function of the conserved cell cycle-associated INCENP protein in plant reproduction, in particular in the regulation of egg and central cell fate and differentiation.  相似文献   

9.
大叶补血草的大、小孢子发生与雌、雄配子体的发育   总被引:1,自引:0,他引:1  
周玲玲  李伟  刘萍 《植物研究》2007,27(4):402-407
系统地报道了大叶补血草(Limonium gmelinii (Willd.) Kuntze)的大、小孢子发生和雌、雄配子体的形成发育过程。主要结果如下:(1)小孢子母细胞减数分裂过程中的胞质分裂为同时型,四分孢子多为正四面体形, 也有少数为左右对称形;(2)成熟花粉为三细胞型,具3个萌发孔;(3)花药壁由5层细胞组成,最外层为表皮,其内分别为药室内壁、中层、绒毡层,绒毡层为变形型,花药壁的发育属于基本型;(4)大叶补血草的雌蕊由5心皮合生,子房1室,基生胎座,胚珠1个,拳卷型,双珠被,厚珠心;(5)孢原细胞发生于珠心表皮下,经一次平周分裂,形成造孢细胞,由造孢细胞直接发育成大孢子母细胞,大孢子母细胞减数分裂形成4个大孢子呈直线排列,合点端大孢子具功能,属于典型的蓼型胚囊发育。  相似文献   

10.
矮沙冬青雌配子体及胚胎发育研究   总被引:5,自引:0,他引:5  
周江菊  唐源江  廖景平   《广西植物》2006,26(5):561-564
矮沙冬青子房单心皮1室,边缘胎座,弯生胚珠,胚珠具双珠被、厚珠心。大孢子孢原细胞发生于珠心表皮下,大孢子母细胞减数分裂形成直线排列的四分体,合点端大孢子具功能,并按蓼型胚囊发育,雌配子体成熟于4月中旬。双受精后,胚乳发育为核型。在矮沙冬青大孢子发生、雌配子体和胚胎发育过程中未发现异常现象,因此认为矮沙冬青濒危不存在雌性生殖结构与发育过程异常的内在因素。  相似文献   

11.
12.
Ingouff M  Jullien PE  Berger F 《The Plant cell》2006,18(12):3491-3501
Double fertilization of the female gametophyte produces the endosperm and the embryo enclosed in the maternal seed coat. Proper seed communication necessitates exchanges of signals between the zygotic and maternal components of the seed. However, the nature of these interactions remains largely unknown. We show that double fertilization of the Arabidopsis thaliana female gametophyte rapidly triggers sustained cell proliferation in the seed coat. Cell proliferation and differentiation of the seed coat occur in autonomous seeds produced in the absence of fertilization of the multicopy suppressor of ira1 (msi1) mutant. As msi1 autonomous seeds mostly contain autonomous endosperm, our results indicate that the developing endosperm is sufficient to enhance cell proliferation and differentiation in the seed coat. We analyze the effect of autonomous proliferation in the retinoblastoma-related1 (rbr1) female gametophyte on seed coat development. In contrast with msi1, supernumerary nuclei in rbr1 female gametophytes originate mainly from the endosperm precursor lineage but do not express an endosperm fate marker. In addition, defects of the rbr1 female gametophyte also reduce cell proliferation in the ovule integuments before fertilization and prevent further differentiation of the seed coat. Our data suggest that coordinated development of the seed components relies on interactions before fertilization between the female gametophyte and the surrounding maternal ovule integuments and after fertilization between the endosperm and the seed coat.  相似文献   

13.
为弄清罗汉果(Siraitia grosvenorii)大孢子发生、雌配子体发育过程与花部形态特征、胚珠的关系,运用石蜡切片法对罗汉果子房进行了显微观察。结果表明,罗汉果的胚珠倒生,双珠被,厚珠心,大孢子四分体呈线型排列,合点端一个大孢子分化为功能大孢子,成熟胚囊为蓼型。花蕾形态、胚珠变化与大孢子发生、雌配子体的发育时期具有一定相关性,当子房长度为7.0 mm≤L<9.0 mm,珠心呈椭圆形时,约有45.83%的大孢子母细胞处于减数分裂时期。因此,依据罗汉果花部形态可有效确定大孢子发生与雌配子体发育的时期。  相似文献   

14.
The switch from the vegetative to the reproductive pathway of development in flowering plants requires the commitment of the subepidermal cells of the ovules and anthers to enter the meiotic pathway. These cells, the hypodermal cells, either directly or indirectly form the archesporial cells that, in turn, differentiate into the megasporocytes and microsporocytes. We have isolated a recessive pleiotropic mutation that we have termed multiple archesporial cells1 (mac1) and located it to the short arm of chromosome 10. Its cytological phenotype suggests that this locus plays an important role in the switch of the hypodermal cells from the vegetative to the meiotic (sporogenous) pathway in maize ovules. During normal ovule development in maize, only a single hypodermal cell develops into an archesporial cell and this differentiates into the single megasporocyte. In mac1 mutant ovules several hypodermal cells develop into archesporial cells, and the resulting megasporocytes undergo a normal meiosis. More than one megaspore survives in the tetrad and more than one embryo sac is formed in each ovule. Ears on mutant plants show partial sterility resulting from abnormalities in megaspore differentiation and embryo sac formation. The sporophytic expression of this gene is therefore also important for normal female gametophyte development.  相似文献   

15.
The life cycle of higher plants alternates between the haploid gametophyte and diploid sporophyte. The female gametophyte (FG), surrounded by the sporophyte, develops within the ovule and orients along the chalazal/micropylar axis. This polarity is important in cell specification and development for both the ovule and FG. Previously, cytokinin was shown to act in the sporophytic tissue to regulate FG development.1,2 In the highlighted study,3 we further showed that enriched cytokinin signaling in chalaza, the central domain of the ovule, is required for the specification of the functional megaspore, which usually occurs in the chalazal-most megaspore after meiosis. The restricted cytokinin signaling in the chalaza is achieved by localized cytokinin biosynthesis and perception. Here, we discuss the implications of this and other studies for the understanding of the role of two-component signaling in FG development and the genetic and cellular interactions between gametophytic and sporophytic cells. Further, we show that cytokinin-deficient mutants display distorted cell morphology in the inner integument and elevated mitotic activity in the maternal sporophyte. These results suggest that cytokinin negatively regulates cell proliferation in the sporophytic tissues surrounding the developing FG, consistent with previous results indicating that cytokinin deficiency causes an increase in the number of cells in the embryos and consequently an enlarged seed size.  相似文献   

16.
Grain production in cereal crops depends on the stable formation of male and female gametes in the flower.In most angiosperms, the female gamete is produced from a germline located deep within the ovary, protected by several layers of maternal tissue, including the ovary wall,ovule integuments and nucellus. In the field, germline formation and floret fertility are major determinants of yield potential, contributing to traits such as seed number,weight and size. As such, stimuli affecting the timing and duration of reproductive phases, as well as the viability,size and number of cells within reproductive organs can significantly impact yield. One key stimulant is the phytohormone auxin, which influences growth and morphogenesis of female tissues during gynoecium development, gametophyte formation, and endosperm cellularization. In this review we consider the role of the auxin signaling pathway during ovule and seed development, first in the context of Arabidopsis and then in the cereals. We summarize the gene families involved and highlight distinct expression patterns that suggest a range of roles in reproductive cell specification and fate. This is discussed in terms of seed production and how targeted modification of different tissues might facilitate improvements.  相似文献   

17.
18.
甘阳英  徐凤霞 《广西植物》2017,37(4):517-523
荔枝科是被子植物的基部类群之一,依兰属是番荔枝科较为原始的类群,其有性生殖过程,特别是胚胎发生与发育的研究结果,可以补充被子植物胚胎学原始特征的相关基础资料。该研究利用常规石蜡切片技术,对依兰胚珠、大孢子和雌配子体的发生发育过程进行了观察。结果表明:依兰的胚珠为倒生胚珠、厚珠心、三层珠被,第三层珠被(中间珠被)发生在大孢子母细胞时期,于外珠被与内珠被之间、胚珠合点端两侧发生并隆起;雌配子体为蓼型。此外,依兰的个别胚珠中存在双雌配子体现象,且两个雌配子体均由大孢子母细胞发育而来,大小、形状相近,呈线形排列。该研究结果对于揭示原始被子植物胚胎发育特征具有重要意义。  相似文献   

19.
The differentiation and development of ovules in orchid flowers are pollination dependent. To define the developmental signals and timing of critical events associated with ovule differentiation, we have examined factors that regulate the initial events in megasporogenesis and female gametophyte development and characterized its progression toward maturity and fertilization. Two days after pollination, ovary wall epidermal cells begin to elongate and form hair cells; this is the earliest visible morphological change, and it occurs at least 3 days prior to pollen germination, indicating that signals associated with pollination itself trigger these early events. The effects of inhibitors of ethylene biosynthesis on early morphological changes indicated that ethylene, in the presence of auxin, is required to initiate ovary development and, indirectly, subsequent ovule differentiation. Surprisingly, pollen germination and growth were also strongly inhibited by inhibitors of ethylene biosynthesis, indicating that male gametophyte development is also regulated by ethylene. Detailed characterization of the development of both the female and male gametophyte in pollinated orchid flowers indicated that pollen tubes entered the ovary and grew along the ovary wall for 10 to 35 days, at which time growth was arrested. Approximately 40 days after pollination, coincident with ovule differentiation as indicated by the presence of a single archesporial cell, the direction of pollen tube growth became redirected toward the ovule, suggesting a chemical signaling between the developing ovule and male gametophyte. Taken together, these results indicate that both auxin and ethylene contribute to the regulation of both ovary and ovule development and to the coordination of development of male and female gametophytes.  相似文献   

20.
Until recently, identification of gene regulatory networks controlling the development of the angiosperm female gametophyte has presented a significant challenge to the plant biology community. The angiosperm female gametophyte is fairly inaccessible because it is a highly reduced structure relative to the sporophyte and is embedded within multiple layers of the sporophytic tissue of the ovule. Moreover, although mutations affecting the female gametophyte can be readily isolated, their analysis can be difficult because most affect genes involved in basic cellular processes that are also required in the diploid sporophyte. In recent years, expression-based approaches in multiple species have begun to uncover gene sets expressed in specific female gametophyte cells as a means of identifying regulatory networks controlling cell differentiation in the female gametophyte. Here, recent efforts to identify and analyse gene expression programmes in the Arabidopsis female gametophyte are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号