共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of nutrient availability in regulating root architecture 总被引:30,自引:0,他引:30
The ability of plants to respond appropriately to nutrient availability is of fundamental importance for their adaptation to the environment. Nutrients such as nitrate, phosphate, sulfate and iron act as signals that can be perceived. These signals trigger molecular mechanisms that modify cell division and cell differentiation processes within the root and have a profound impact on root system architecture. Important developmental processes, such as root-hair formation, primary root growth and lateral root formation, are particularly sensitive to changes in the internal and external concentration of nutrients. The responses of root architecture to nutrients can be modified by plant growth regulators, such as auxins, cytokinins and ethylene, suggesting that the nutritional control of root development may be mediated by changes in hormone synthesis, transport or sensitivity. Recent information points to the existence of nutrient-specific signal transduction pathways that interpret the external and internal concentrations of nutrients to modify root development. Progress in this field has led to the cloning of regulatory genes that play pivotal roles in nutrient-induced changes to root development. 相似文献
2.
3.
4.
《Biophysical journal》2022,121(20):3774-3784
Genome architecture mapping (GAM) is a recently developed methodology that offers the cosegregation probability of two genomic segments from an ensemble of thinly sliced nuclear profiles, enabling us to probe and decipher three-dimensional chromatin organization. The cosegregation probability from GAM binned at 1 Mb, which thus probes the length scale associated with the genomic separation greater than 1 Mb, is, however, not identical to the contact probability obtained from Hi-C, and its correlation with interlocus distance measured with fluorescence in situ hybridization is not so good as the contact probability. In this study, by using a polymer-based model of chromatins, we derive a theoretical expression of the cosegregation probability as well as that of the contact probability and carry out quantitative analyses of how they differ from each other. The results from our study, validated with in silico GAM analysis on three-dimensional genome structures from fluorescence in situ hybridization, suggest that to attain strong correlation with the interlocus distance, a properly normalized version of cosegregation probability needs to be calculated based on a large number of nuclear slices (). 相似文献
5.
How a host fights infection depends on an ordered sequence of steps, beginning with attempts to prevent a pathogen from establishing an infection, through to steps that mitigate a pathogen's control of host resources or minimize the damage caused during infection. Yet empirically characterizing the genetic basis of these steps remains challenging. Although each step is likely to have a unique genetic and environmental signature, and may therefore respond to selection in different ways, events that occur earlier in the infection process can mask or overwhelm the contributions of subsequent steps. In this study, we dissect the genetic architecture of a stepwise infection process using a quantitative trait locus (QTL) mapping approach. We control for variation at the first line of defence against a bacterial pathogen and expose downstream genetic variability related to the host's ability to mitigate the damage pathogens cause. In our model, the water‐flea Daphnia magna, we found a single major effect QTL, explaining 64% of the variance, that is linked to the host's ability to completely block pathogen entry by preventing their attachment to the host oesophagus; this is consistent with the detection of this locus in previous studies. In susceptible hosts allowing attachment, however, a further 23 QTLs, explaining between 5% and 16% of the variance, were mapped to traits related to the expression of disease. The general lack of pleiotropy and epistasis for traits related to the different stages of the infection process, together with the wide distribution of QTLs across the genome, highlights the modular nature of a host's defence portfolio, and the potential for each different step to evolve independently. We discuss how isolating the genetic basis of individual steps can help to resolve discussion over the genetic architecture of host resistance. 相似文献
6.
7.
BELEN MARQUEZ‐GARCIA MARIA NJO TOM BEECKMAN SOFIE GOORMACHTIG CHRISTINE H. FOYER 《Plant, cell & environment》2014,37(2):488-498
Reduced glutathione (GSH) is required for root development, but its functions are not characterized. The effects of GSH depletion on root development were therefore studied in relation to auxin and strigolactone (SL) signalling using a combination of molecular genetic approaches and pharmacological techniques. Lateral root (LR) density was significantly decreased in GSH synthesis mutants (cad2‐1, pad2‐, rax1‐), but not by the GSH synthesis inhibitor, buthionine sulfoximine (BSO). BSO‐induced GSH depletion therefore did not influence root architecture in the same way as genetic impairment. Root glutathione contents were similar in the wild‐type seedlings and max3‐9 and max4‐1 mutants that are deficient in SL synthesis and in the SL‐signalling mutant, max2‐1. BSO‐dependent inhibition of GSH synthesis depleted the tissue GSH pool to a similar extent in the wild‐type and SL synthesis mutants, with no effect on LR density. The application of the SL analogue GR24 increased root glutathione in the wild‐type, max3‐9 and max4‐1 seedlings, but this increase was absent from max2‐1. Taken together, these data establish a link between SLs and the GSH pool that occurs in a MAX2‐dependent manner. 相似文献
8.
The developmental response of the Arabidopsis root system to low phosphorus (P) availability involves the reduction in primary root elongation accompanied by the formation of numerous lateral roots. We studied the roles of selected redox metabolites, namely, radical oxygen species (ROS) and ascorbic acid (ASC) in the regulation of root system architecture by different P availability. Rapidly growing roots of plants grown on P-sufficient medium synthesize ROS in root elongation zone and quiescent centre. We have demonstrated that the arrest of root elongation at low P medium coincides with the disappearance of ROS from the elongation zone. P-starvation resulted in a decrease in ascorbic acid level in roots. This correlated with a decrease in cell division activity. On the other hand, feeding P-deficient plants with ASC, stimulated mitotic activity in the primary root meristem and partly reversed the inhibition of root growth imposed by low P conditions. In this paper, we discuss the idea of the involvement of redox agents in the regulation of root system architecture under low P availability.Key words: ascorbic acid, phosphate deficiency, primary root, radical oxygen species, root growth, root system architecture 相似文献
9.
Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system 总被引:31,自引:0,他引:31 下载免费PDF全文
López-Bucio J Hernández-Abreu E Sánchez-Calderón L Nieto-Jacobo MF Simpson J Herrera-Estrella L 《Plant physiology》2002,129(1):244-256
The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (<50 microM), the Arabidopsis root system undergoes major architectural changes in terms of lateral root number, lateral root density, and primary root length. Treatment with auxins and auxin antagonists indicate that these changes are related to an increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability. 相似文献
10.
11.
植物根系发育是一个重要的农艺性状。由于根系具有结构和生长模式简单、信号感受灵敏等,有可能成为研究植物发育可塑性的良好材料。通过分析脱落酸在主根、侧根和根毛的发生和生长中及根构型形成中的可能信号转导过程中的作用,提出未来研究应关注的科学问题。对ABA调控根系发育分子机制的探讨不仅有利于阐明如何调控根发育可塑性这一复杂和困难的生物学问题,而且对农业生产也极为重要。 相似文献
12.
《Cell cycle (Georgetown, Tex.)》2013,12(19):2978-2982
The 3-phosphoinositide-dependent protein kinase-1 (PDK1) mediates the cellular effect of insulin and growth factors by activating a group of kinases including PKB/Akt, S6K, RSK, SGK and PKC isoforms. PDK1 possesses two regulatory domains namely a Pleckstrin Homology (PH) domain that binds to the phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] second messenger, and a substrate binding site termed the PIF-pocket. Employing a combination of biochemical, structural and mouse knock-in approaches we have been able to define the roles that the regulatory domains on PDK1 play. We have established that binding of PDK1 to PtdIns(3,4,5)P3 is essential for efficient activation of PKB isoforms as well as for maintaining normal cell size and insulin sensitivity. In contrast, the PIF-substrate binding pocket of PDK1 is not required for PKB activation, but is necessary for PDK1 to activate all of its other substrates. 相似文献
13.
14.
Jessica M. Guseman Kevin Webb Chinnathambi Srinivasan Chris Dardick 《The Plant journal : for cell and molecular biology》2017,89(6):1093-1105
Roots provide essential uptake of water and nutrients from the soil, as well as anchorage and stability for the whole plant. Root orientation, or angle, is an important component of the overall architecture and depth of the root system; however, little is known about the genetic control of this trait. Recent reports in Oryza sativa (rice) identified a role for DEEPER ROOTING 1 (DRO1) in influencing the orientation of the root system, leading to positive changes in grain yields under water‐limited conditions. Here we found that DRO1 and DRO1‐related genes are present across diverse plant phyla, and fall within the IGT gene family. The IGT family also includes TAC1 and LAZY1, which are known to affect the orientation of lateral shoots. Consistent with a potential role in root development, DRO1 homologs in Arabidopsis and peach showed root‐specific expression. Promoter–reporter constructs revealed that AtDRO1 is predominantly expressed in both the root vasculature and root tips, in a distinct developmental pattern. Mutation of AtDRO1 led to more horizontal lateral root angles. Overexpression of AtDRO1 under a constitutive promoter resulted in steeper lateral root angles, as well as shoot phenotypes including upward leaf curling, shortened siliques and narrow lateral branch angles. A conserved C‐terminal EAR‐like motif found in IGT genes was required for these ectopic phenotypes. Overexpression of PpeDRO1 in Prunus domestica (plum) led to deeper‐rooting phenotypes. Collectively, these data indicate a potential application for DRO1‐related genes to alter root architecture for drought avoidance and improved resource use. 相似文献
15.
Manuel Serrano 《Cell cycle (Georgetown, Tex.)》2012,11(12):2231-2232
Comment on: Kolesnichenko M, et al. Cell Cycle 2012; 11:2391-401. and Pospelova TV, et al. Cell Cycle 2012; 11:2402-407. 相似文献
16.
Glutathione (γ-glutamylcysteinyl-glycine, GSH) has vital functions as thiol redox buffer and cofactor of antioxidant and detoxification enzymes. Plasmodium falciparum possesses a functional GSH biosynthesis pathway and contains mM concentrations of the tripeptide. It was impossible to delete in P. falciparum the genes encoding γ-glutamylcysteine synthetase (γGCS) or glutathione synthetase (GS), the two enzymes synthesizing GSH, although both gene loci were not refractory to recombination. Our data show that the parasites cannot compensate for the loss of GSH biosynthesis via GSH uptake. This suggests an important if not essential function of GSH biosynthesis pathway for the parasites. Treatment with the irreversible inhibitor of γGCS L-buthionine sulfoximine (BSO) reduced intracellular GSH levels in P. falciparum and was lethal for their intra-erythrocytic development, corroborating the suggestion that GSH biosynthesis is important for parasite survival. Episomal expression of γgcs in P. falciparum increased tolerance to BSO attributable to increased levels of γGCS. Concomitantly expression of glutathione reductase was reduced leading to an increased GSH efflux. Together these data indicate that GSH levels are tightly regulated by a functional GSH biosynthesis and the reduction of GSSG. 相似文献
17.
The increase in root growth is one of the major effects of humic substances, but the mechanisms involved in humic acid-mediated changes in root growth, morphology and architecture are poorly known. Probably, humic substances may act on plant development through an action on the hormonal balance within the plant, either directly or indirectly by affecting the root uptake of some nutrients. In this study we investigate in cucumber plants the effects of a purified sedimentary humic acid (PHA), without detectable concentrations of the main phytoregulators in its structure, on root architecture, and its relationships with the functional action of three phytoregulators, indole-acetic acid, ethylene and nitric oxide, which are also affected by the root application of this humic acid. The results obtained using inhibitors of auxin transport or action, inhibitors of ethylene biosynthesis or action, and a scavenger of nitric oxide indicate that the increase in the root concentration of these phytoregulators caused by the root application of PHA does not play an essential role in the expression of the main changes on root architecture caused by PHA in developed cucumber plants. Other factors, which could act in coordination or independently of those phytoregulators affected by PHA root application, must be involved in the whole action on this humic acid on root architecture in cucumber. 相似文献
18.
《Cell cycle (Georgetown, Tex.)》2013,12(12):2231-2232
Comment on: Kolesnichenko M, et al. Cell Cycle 2012; 11:2391-401. and Pospelova TV, et al. Cell Cycle 2012; 11:2402-407. 相似文献
19.
A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis 总被引:14,自引:0,他引:14 下载免费PDF全文
Nacry P Canivenc G Muller B Azmi A Van Onckelen H Rossignol M Doumas P 《Plant physiology》2005,138(4):2061-2074
The changes in root system architecture (RSA) triggered by phosphate (P) deprivation were studied in Arabidopsis (Arabidopsis thaliana) plants grown for 14 d on 1 mM or 3 microM P. Two different temporal phases were observed in the response of RSA to low P. First, lateral root (LR) development was promoted between days 7 and 11 after germination, but, after day 11, all root growth parameters were negatively affected, leading to a general reduction of primary root (PR) and LR lengths and of LR density. Low P availability had contrasting effects on various stages of LR development, with a marked inhibition of primordia initiation but a strong stimulation of activation of the initiated primordia. The involvement of auxin signaling in these morphological changes was investigated in wild-type plants treated with indole-3-acetic acid or 2,3,5-triiodobenzoic acid and in axr4-1, aux1-7, and eir1-1 mutants. Most effects of low P on RSA were dramatically modified in the mutants or hormone-treated wild-type plants. This shows that auxin plays a major role in the P starvation-induced changes of root development. From these data, we hypothesize that several aspects of the RSA response to low P are triggered by local modifications of auxin concentration. A model is proposed that postulates that P starvation results in (1) an overaccumulation of auxin in the apex of the PR and in young LRs, (2) an overaccumulation of auxin or a change in sensitivity to auxin in the lateral primordia, and (3) a decrease in auxin concentration in the lateral primordia initiation zone of the PR and in old laterals. Measurements of local changes in auxin concentrations induced by low P, either by direct quantification or by biosensor expression pattern (DR5::beta-glucuronidase reporter gene), are in line with these hypotheses. Furthermore, the observation that low P availability mimicked the action of auxin in promoting LR development in the alf3 mutant confirmed that P starvation stimulates primordia emergence through increased accumulation of auxin or change in sensitivity to auxin in the primordia. Both the strong effect of 2,3,5-triiodobenzoic acid and the phenotype of the auxin-transport mutants (aux1, eir1) suggest that low P availability modifies local auxin concentrations within the root system through changes in auxin transport rather than auxin synthesis. 相似文献