共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: Use of microsatellite PCR to monitor populations of Saccharomyces cerevisiae strains during fermentation of grape juice. METHOD AND RESULTS: Six commercial wine strains of S. cerevisiae were screened for polymorphism at the SC8132X locus using a modified rapid PCR identification technique. The strains formed four distinct polymorphic groups that could be readily distinguished from one another. Fermentations inoculated with mixtures of three strains polymorphic at the SC8132X locus were monitored until sugar utilization was complete, and all exhibited a changing population structure throughout the fermentation. CONCLUSIONS: Rapid population quantification demonstrated that wine fermentations are dynamic and do not necessarily reflect the initial yeast population structure. One or more yeast strains were found to dominate at different stages of the fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The population structure of S. cerevisiae during mixed culture wine fermentation is dynamic and could modify the chemical composition and flavour profile of wine. 相似文献
2.
3.
Genetic determinants of volatile-thiol release by Saccharomyces cerevisiae during wine fermentation 总被引:2,自引:0,他引:2
Howell KS Klein M Swiegers JH Hayasaka Y Elsey GM Fleet GH Høj PB Pretorius IS de Barros Lopes MA 《Applied and environmental microbiology》2005,71(9):5420-5426
Volatile thiols, particularly 4-mercapto-4-methylpentan-2-one (4MMP), make an important contribution to the aroma of wine. During wine fermentation, Saccharomyces cerevisiae mediates the cleavage of a nonvolatile cysteinylated precursor in grape juice (Cys-4MMP) to release the volatile thiol 4MMP. Carbon-sulfur lyases are anticipated to be involved in this reaction. To establish the mechanism of 4MMP release and to develop strains that modulate its release, the effect of deleting genes encoding putative yeast carbon-sulfur lyases on the cleavage of Cys-4MMP was tested. The results led to the identification of four genes that influence the release of the volatile thiol 4MMP in a laboratory strain, indicating that the mechanism of release involves multiple genes. Deletion of the same genes from a homozygous derivative of the commercial wine yeast VL3 confirmed the importance of these genes in affecting 4MMP release. A strain deleted in a putative carbon-sulfur lyase gene, YAL012W, produced a second sulfur compound at significantly higher concentrations than those produced by the wild-type strain. Using mass spectrometry, this compound was identified as 2-methyltetrathiophen-3-one (MTHT), which was previously shown to contribute to wine aroma but was of unknown biosynthetic origin. The formation of MTHT in YAL012W deletion strains indicates a yeast biosynthetic origin of MTHT. The results demonstrate that the mechanism of synthesis of yeast-derived wine aroma components, even those present in small concentrations, can be investigated using genetic screens. 相似文献
4.
Puig S Querol A Barrio E Pérez-Ortín JE 《Applied and environmental microbiology》2000,66(5):2057-2061
Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3 homozygotes were detected at a rate of 1 x 10(-5) to 3 x 10(-5) per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker and determined that sporulation was not involved in this process. Thus, we propose a hypothesis for the genome changes in wine yeasts during vinification. This putative mechanism involves mitotic recombination between homologous sequences and does not necessarily imply meiosis. 相似文献
5.
The wine yeast Saccharomyces cerevisiae is central in the production of aroma compounds during fermentation. Some of the most important yeast-derived aroma compounds produced are esters. The esters ethyl acetate and isoamyl acetate are formed from alcohols and acetyl-CoA in a reaction catalysed by alcohol acetyltransferases. The pool of acetyl-CoA available in yeast cells could play a key role in the development of ester aromas. Carnitine acetyltransferases catalyse the reversible reaction between carnitine and acetyl-CoA to form acetylcarnitine and free CoA. This reaction is important in transferring activated acetyl groups to the mitochondria and in regulating the acetyl-CoA/CoA pools within the cell. We investigated the effect of overexpressing CAT2, which encodes the major mitochondrial and peroxisomal carnitine acetyltransferase, on the formation of esters and other flavour compounds during fermentation. We also overexpressed a modified CAT2 that results in a protein that localizes to the cytosol. In general, the overexpression of both forms of CAT2 resulted in a reduction in ester concentrations, especially in ethyl acetate and isoamyl acetate. We hypothesize that overproduction of Cat2p favours the formation of acetylcarnitine and CoA and therefore limits the precursor for ester production. Carnitine acetyltransferase expression could potentially to be used successfully in order to modulate wine flavour. 相似文献
6.
The effect of killer strains of Saccharomyces cerevisiae on the growth of sensitive strains during must fermentation was studied by using a new method to monitor yeast populations. The capability of killer yeast strains to eliminate sensitive strains depends on the initial proportion of killer yeasts, the susceptibility of sensitive strains, and the treatment of the must. In sterile filtered must, an initial proportion of 2-6% of killer yeasts was responsible for protracted fermentation and suppression of isogenic sensitive strains. A more variable initial proportion was needed to get the same effect with non-isogenic strains. The suspended solids that remain in the must after cold-settling decreased killer toxin effect. The addition of bentonite to the must avoided protracted fermentation and the suppression of sensitive strains; however, the addition of yeast dietary nutrients with yeast cell walls did not, although it decreased fermentation lag. 相似文献
7.
Berthels NJ Cordero Otero RR Bauer FF Thevelein JM Pretorius IS 《FEMS yeast research》2004,4(7):683-689
While unfermented grape must contains approximately equal amounts of the two hexoses glucose and fructose, wine producers worldwide often have to contend with high residual fructose levels (>2 gl(-1)) that may account for undesirable sweetness in finished dry wine. Here, we investigate the fermentation kinetics of glucose and fructose and the influence of certain environmental parameters on hexose utilisation by wine yeast. Seventeen Saccharomyces cerevisiae strains, including commercial wine yeast strains, were evaluated in laboratory-scale wine fermentations using natural Colombard grape must that contained similar amounts of glucose and fructose (approximately 110 gl(-1) each). All strains showed preference for glucose, but to varying degrees. The discrepancy between glucose and fructose utilisation increased during the course of fermentation in a strain-dependent manner. We ranked the S. cerevisiae strains according to their rate of increase in GF discrepancy and we showed that this rate of increase is not correlated with the fermentation capacity of the strains. We also investigated the effect of ethanol and nitrogen addition on hexose utilisation during wine fermentation in both natural and synthetic grape must. Addition of ethanol had a stronger inhibitory effect on fructose than on glucose utilisation. Supplementation of must with assimilable nitrogen stimulated fructose utilisation more than glucose utilisation. These results show that the discrepancy between glucose and fructose utilisation during fermentation is not a fixed parameter but is dependent on the inherent properties of the yeast strain and on the external conditions. 相似文献
8.
9.
Batt CA Caryallo S Easson DD Akedo M Sinskey AJ 《Biotechnology and bioengineering》1986,28(4):549-553
Xylose transport, xylose reductase, and xylitol dehydrogenase activities are demonstrated in Saccharomyces cerevisiae. The enzymes in the xylose catabolic pathway necessary for the conversion of xylose to xylulose are present, although S. cerevisiae cannot grow on xylose as a sole carbon source. Xylose transport is less efficient than glucose transport, and its rate is dependent upon aeration. Xylose reductase appears to be a xylose inducible enzyme and xylitol dehydrogenase activity is constitutive, although both are repressed by glucose. Both xylose reductase and xylitol dehydrogenase activities are five- to tenfold lower in S. cerevisiae as compared to Candida utilis. In vivo conversion of (14)C-xylose in S. cerevisiae is demonstrated and xylitol is detected, although no significant levels of any other (14)C-labeled metabolites (e. g., ethanol) are observed. 相似文献
10.
11.
12.
Aim: The aim of this study was to analyse the relevance of the general amino acid permease gene ( GAP1 ) of the wine yeast Saccharomyces cerevisiae on nitrogen metabolism and fermentation performance.
Methods and Results: We constructed a gap1 mutant in a wine strain. We compared fermentation rate, biomass production and nitrogen consumption between the gap1 mutant and its parental strain during fermentations with different nitrogen concentrations. The fermentation capacity of the gap1 mutant strain was impaired in the nitrogen-limited and -excessive conditions. The nitrogen consumption rate between the wild strain and the mutant was different for some amino acids, especially those affected by nitrogen catabolite repression (NCR). The deletion of GAP1 gene also modified the gene expression of other permeases.
Conclusions: The Gap1 permease seems to be important during wine fermentations with low and high nitrogen content, not only because of its amino acid transporter role but also because of its function as an amino acid sensor.
Significance and Impact of the Study: A possible biotechnological advantage of a gap1 mutant is its scarce consumption of arginine, whose metabolism has been related to the production of the carcinogenic ethyl carbamate. 相似文献
Methods and Results: We constructed a gap1 mutant in a wine strain. We compared fermentation rate, biomass production and nitrogen consumption between the gap1 mutant and its parental strain during fermentations with different nitrogen concentrations. The fermentation capacity of the gap1 mutant strain was impaired in the nitrogen-limited and -excessive conditions. The nitrogen consumption rate between the wild strain and the mutant was different for some amino acids, especially those affected by nitrogen catabolite repression (NCR). The deletion of GAP1 gene also modified the gene expression of other permeases.
Conclusions: The Gap1 permease seems to be important during wine fermentations with low and high nitrogen content, not only because of its amino acid transporter role but also because of its function as an amino acid sensor.
Significance and Impact of the Study: A possible biotechnological advantage of a gap1 mutant is its scarce consumption of arginine, whose metabolism has been related to the production of the carcinogenic ethyl carbamate. 相似文献
13.
14.
AIMS: We previously reported that the aldehyde dehydrogenase encoded by ALD3 but not ALD6 was responsible, in part, for the increased acetic acid found in Icewines based on the expression profile of these genes during fermentation. We have now completed the expression profile of the remaining yeast aldehyde dehydrogenase genes ALD2, ALD4 and ALD5 during these fermentations to determine their contribution to acetic acid production. The contribution of acetaldehyde stress as a signal to stimulate ALD expression during these fermentations was investigated for all ALD genes. The expression of glycerol-3-phosphate encoded by GPD2 was also followed during these fermentations to determine its role in addition to the role we already identified for GPD1 in the elevated glycerol produced during Icewine fermentation. METHODS AND RESULTS: Icewine juice (38.5 degrees Brix, 398 +/- 5 g l(-1) sugar), diluted Icewine juice (20.8 degrees Brix, 196 +/- 4 g l(-1) sugar) and the diluted juice with sugar levels equal to the original Icewine juice (36.6 degrees Brix, 395 +/- 6 g l(-1) sugar) were fermented in duplicate using the commercial wine yeast K1-V1116. Acetic acid and glycerol production increased 8.4- and 2.7-fold in the Icewine vs the diluted juice fermentation, respectively, accompanied by a fourfold transient increase in acetaldehyde in the Icewine condition during the first week. Both mitochondrial aldehyde dehydrogenases encoded by ALD4 and ALD5 were expressed, with ALD5 expression highest at the start of all fermentations and ALD4 expression increasing during the first week of each condition. ALD2, ALD4, ALD5 and GPD2 showed no differential expression between the three fermentation conditions indicating their lack of involvement in elevating acetic acid and glycerol in Icewine. When yeast fermenting the diluted fermentation was exposed to exogenous acetaldehyde, the transient spike in acetaldehyde increased the expression of ALD3 but this response alone was not sufficient to cause an increase in acetic acid. Expression of the other aldehyde dehydrogenases was unaffected by the acetaldehyde addition. CONCLUSIONS: The aldehyde dehydrogenases encoded by ALD2, ALD4 and ALD5 do not contribute to the elevated acetic acid production during Icewine fermentation. Expression of GPD2 was not upregulated in high sugar fermentations and does not reflect the elevated levels of glycerol found in these wines. Acetaldehyde at a concentration produced during Icewine fermentation stimulates the expression of ALD3, but has no impact on the expression of ALD2, -4, -5 and -6. Upregulation of ALD3 alone in the dilute fermentation is not sufficient to increase acetic acid in wine and requires additional responses found in cells under hyperosmotic stress. SIGNIFICANCE AND IMPACT OF THE STUDY: This work confirms that increased acetic acid and glycerol production during Icewine fermentation follows upregulation of ALD3 and GPD1 respectively, but upregulation of ALD3 alone is not sufficient to increase acetic acid production. Additional responses of cells under osmotic stress are required to increase acetic acid in Icewine. 相似文献
15.
G. Suzzi P. Romano L. Vannini L. Turbanti P. Domizio 《World journal of microbiology & biotechnology》1996,12(1):25-27
Five, highly flocculeng strains of Saccharomyces cerevisiae, isolated from wine, were immobilized in calcium alginate beads to optimize primary must fermentation. Three cell-recycle batch fermentations (CRBF) of grape musts were performed with the biocatalyst and the results compared with those obtained with free cells. During the CRBF process, the entrapped strains showed some variability in the formation of secondary products of fermentation, particularly acetic acid and acetaldehyde. Recycling beads of immobilized flocculent cells is a good approach in the development and application of the CRBF system in the wine industry. 相似文献
16.
An intracellular accumulation of ethanol in Saccharomyces cerevisiae was observed during the early stages of fermentation (3 h). However, after 12 h of fermentation, the intracellular and extracellular ethanol concentrations were similar. Increasing the osmotic pressure of the medium caused an increase in the ratio of intracellular to extracellular ethanol concentrations at 3 h of fermentation. As in the previous case, the intracellular and extracellular ethanol concentrations were similar after 12 h of fermentation. Increasing the osmotic pressure also caused a decrease in yeast cell growth and fermentation activities. However, nutrient supplementation of the medium increased the extent of growth and fermentation, resulting in complete glucose utilization, even though intracellular ethanol concentrations were unaltered. These results suggest that nutrient limitation is a major factor responsible for the decreased growth and fermentation activities observed in yeast cells at higher osmotic pressures. 相似文献
17.
18.
Strains of Saccharomyces cerevisiae accumulated intracellular trehalose up to 105 mg/g cell dry wt with 90% survival. Viability could be correlated to trehalose levels during ethanol fermentation albeit the disaccharide did not seem to contribute to fermentation yields. Trehalose-6-phosphate synthase showed high activity (up to 279 mu/mg protein) even at high residual sucrose concentration (115 g/l) in the wort suggesting to be a response of yeast cells to the osmotic stress conditions. 相似文献
19.
The transport of glucose and fructose into yeast cells is a critical step in the utilization of sugars during wine fermentation. Hexose uptake can be carried out by various Hxt carriers, each possessing distinct regulatory and transport-kinetic properties capable of influencing yeast fermentation capacity. We investigated the expression pattern of the hexose transporters Hxt1 to 7 at the promoter and protein levels in Saccharomyces cerevisiae during wine fermentation. The Hxt1p carrier was expressed only at the beginning of fermentation, and had no role during stationary phase. The Hxt3p carrier was the only one to be expressed throughout fermentation, displaying maximal expression at growth arrest and slowly decreasing in abundance over the course of the stationary phase. The high-affinity carriers Hxt6p and Hxt7p displayed similar expression profiles, with expression induced at entry into stationary phase and persisting throughout the phase. The expression of these two carriers occurred despite the presence of high amounts of hexoses, and the proteins were stably expressed when the cells were starved for nitrogen. The Hxt2p transporter was only transiently expressed during lag phase, which suggests a role for the protein in growth initiation. Characterization of glucose transport kinetics indicated the presence of a shift in the low-affinity component that is consistent with a predominant expression of Hxt1p during growth phase and of Hxt3p during stationary phase. In addition, a high-affinity uptake component consistent with functional expression of Hxt6p/Hxt7p was identified during stationary phase. 相似文献
20.
Aim: To examine the growth and survival of Williopsis saturnus strains along with wine yeast Saccharomyces cerevisiae in grape must. Methods and Results: For this study, fermentations were performed in sterilized grape must at 18°C. Inoculum level was 5 × 106 cells per ml for each yeast. The results showed that W. saturnus yeasts exhibited slight growth and survival depending on the strain, but they died off by day 5. Saccharomyces cerevisiae, however, dominated the fermentation, reaching the population of about 8 log CFU ml?1. It was observed that ethanol formation was not affected. The concentrations of acetic acid, ethyl acetate and isoamyl acetate were found higher in mixed culture experiments compared to control fermentation. The results also revealed that higher alcohols production was unaffected in general. Conclusion: Fermentations did not form undesirable concentrations of flavour compounds, but production of higher levels of acetic acid in mixed culture fermentations may unfavour the usage of W. saturnus in wine making. Significance and Impact of the Study: This study provides information on the behaviour of W. saturnus together with S. cerevisiae during the alcoholic fermentation. 相似文献