首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause, characterized by the selective and progressive death of both upper and lower motoneurons, leading to a progressive paralysis. Experimental animal models of the disease may provide knowledge of the pathophysiological mechanisms and allow the design and testing of therapeutic strategies, provided that they mimic as close as possible the symptoms and temporal progression of the human disease. The principal hypotheses proposed to explain the mechanisms of motoneuron degeneration have been studied mostly in models in vitro, such as primary cultures of fetal motoneurons, organotypic cultures of spinal cord sections from postnatal rodents and the motoneuron-like hybridoma cell line NSC-34. However, these models are flawed in the sense that they do not allow a direct correlation between motoneuron death and its physical consequences like paralysis. In vivo, the most widely used model is the transgenic mouse that bears a human mutant superoxide dismutase 1, the only known cause of ALS. The major disadvantage of this model is that it represents about 2%–3% of human ALS. In addition, there is a growing concern on the accuracy of these transgenic models and the extrapolations of the findings made in these animals to the clinics. Models of spontaneous motoneuron disease, like the wobbler and pmn mice, have been used aiming to understand the basic cellular mechanisms of motoneuron diseases, but these abnormalities are probably different from those occurring in ALS. Therefore, the design and testing of in vivo models of sporadic ALS, which accounts for >90% of the disease, is necessary. The main models of this type are based on the excitotoxic death of spinal motoneurons and might be useful even when there is no definitive demonstration that excitotoxicity is a cause of human ALS. Despite their difficulties, these models offer the best possibility to establish valid correlations between cellular alterations and motor behavior, although improvements are still necessary in order to produce a reliable and integrative model that accurately reproduces the cellular mechanisms of motoneuron degeneration in ALS.  相似文献   

2.
Recent studies have suggested that variants of CYP46A1, encoding cholesterol 24-hydroxylase (CYP46), confer risk for Alzheimers disease (AD), a prospect substantiated by evidence of genetic association from several quantitative traits related to AD pathology, including cerebrospinal fluid (CSF) levels of the 42 amino-acid cleavage product of -amyloid (A42) and the tau protein. In the present study, these claims have been explored by the genotyping of previously associated markers in CYP46A1 in three independent northern European case-control series encompassing 1323 individuals and including approximately 400 patients with measurements of CSF A42 and phospho-tau protein levels. Tests of association in case-control models revealed limited evidence that CYP46A1 variants contributed to AD risk across these samples. However, models testing for potential effects upon CSF measures suggested a possible interaction of an intronic marker (rs754203) with age and APOE genotype. In stratified analyses, significant effects were evident that were restricted to elderly APOE 4 carriers for both CSF A42 (P=0.0009) and phospho-tau (P=0.046). Computational analyses indicate that the rs754203 marker probably does not impact the binding of regulatory factors, suggesting that other polymorphic sites underlie the observed associations. Our results provide an important independent replication of previous findings, supporting the existence of CYP46A1 sequence variants that contribute to variability in -amyloid metabolism.  相似文献   

3.
Cerebrospinal fluid (CSF) biomarkers T-Tau and Aβ(42) are linked with Alzheimer's disease (AD), yet little is known about the relationship between CSF biomarkers and structural brain alteration in healthy adults. In this study we examined the extent to which AD biomarkers measured in CSF predict brain microstructure indexed by diffusion tensor imaging (DTI) and volume indexed by T1-weighted imaging. Forty-three middle-aged adults with parental family history of AD received baseline lumbar puncture and MRI approximately 3.5 years later. Voxel-wise image analysis methods were used to test whether baseline CSF Aβ(42), total tau (T-Tau), phosphorylated tau (P-Tau) and neurofilament light protein predicted brain microstructure as indexed by DTI and gray matter volume indexed by T1-weighted imaging. T-Tau and T-Tau/Aβ(42) were widely correlated with indices of brain microstructure (mean, axial, and radial diffusivity), notably in white matter regions adjacent to gray matter structures affected in the earliest stages of AD. None of the CSF biomarkers were related to gray matter volume. Elevated P-Tau and P-Tau/Aβ(42) levels were associated with lower recognition performance on the Rey Auditory Verbal Learning Test. Overall, the results suggest that CSF biomarkers are related to brain microstructure in healthy adults with elevated risk of developing AD. Furthermore, the results clearly suggest that early pathological changes in AD can be detected with DTI and occur not only in cortex, but also in white matter.  相似文献   

4.
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by extracellular neuritic plaques and intracellular neurofibrillary tangles in brain parenchyma. Alpha-1-antichymotrypsin (ACT) is a component of plaque cores, can bind to Abeta, and has been proposed as a possible candidate gene for AD susceptibility. The genetic association between the ACT codon -17*A allele of the signal peptide polymorphism and AD has been shown in some, but not in all studies. One hypothesis is that the ACT codon -17*A allele is in linkage disequilibrium with unknown functional mutation(s) in the ACT gene. This study was undertaken to identify new mutation(s) in the ACT gene by PCR-SSCP-sequencing and, in conjunction with known mutations, to assess their role in affecting the risk of AD. A total of seven new point mutations were observed: 5'UTR(A-->G), Asp128Asn(G-->A), Ser250Ser(C-->T), Leu301Pro(T-->C), Thr324Thr(A-->G), G-->A in intron 4, and 3'UTR C-->A. Of these, mutations at codon 250, codon 324, intron 4 and 3'UTR showed a frequency of 1% or more. Of the known mutations, Thr-17Ala(A-->G), Lys76Lys(A-->G) and Leu241Leu(G-->A) occur at a polymorphic level. The ACT codon -17*A allele was associated with increased risk of AD (OR for AA vs TT: 1.71; 95% CI: 1.16-2.53; P=0.007), especially in the presence of the APOE*4 allele (OR for AA vs TT: 2.35; 95% CI: 1.13-4.85; P=0.02). The codon 241*A allele and the codon 250*T allele were associated with protective effects against AD (OR: 0.36; 95% CI: 0.13-0.86; P=0.02) (OR:0.39; 95% CI: 0.18-0.85; P=0.02). irrespective of the APOE*4 status. The codon 324*G allele was associated with a marginal protective effect (OR:0.57; 95% CI: 0.26-1.26; P=0.17). While the codon 241*A allele was in linkage disequilibrium with the codon -17*A allele, the codon 250*T and codon 324*G alleles were non-randomly associated with the codon -17*T allele. In contrast, the codon 76*G (OR:1.34; 95% CI: 0.92-1.95; P=0.13), codon 227*G (OR:3.96; 95% CI: 0.83-18.8; P=0.08) and intron 4*G (OR:1.47; 95% CI: 0.88-2.29; P=0.15) alleles were associated with a modest risk of AD, and all were in linkage disequilibrium with the codon -17*A allele. EH-based haplotype analysis showed that certain haplotypes are associated with either higher or lower risk of AD. Our data indicate that the ACT gene harbors several potentially important variable sites, which are associated with either an increased or decreased risk of AD. The non-random combination of risk and protective alleles may explain, in part, why the association studies regarding the ACT codon -17*A have been inconsistent, especially if the frequency of other ACT mutations varies between populations.  相似文献   

5.
Oligomeric forms of Aβ peptides are implicated in Alzheimer's disease (AD) and disrupt membrane integrity, leading to cytosolic calcium (Ca(2+)) elevation. Proposed mechanisms by which Aβ mediates its effects include lipid destabilization, activation of native membrane channels, and aggregation of Aβ into Ca(2+)-permeable pores. We distinguished between these using total internal reflection fluorescence (TIRF) microscopy to image Ca(2+) influx in Xenopus laevis oocytes. Aβ1-42 oligomers evoked single-channel Ca(2+) fluorescence transients (SCCaFTs), which resembled those from classical ion channels but which were not attributable to endogenous oocyte channels. SCCaFTs displayed widely variable open probabilities (P(o)) and stepwise transitions among multiple amplitude levels reminiscent of subconductance levels of ion channels. The proportion of high P(o), large amplitude SCCaFTs grew with time, suggesting that continued oligomer aggregation results in the formation of highly toxic pores. We conclude that formation of intrinsic Ca(2+)-permeable membrane pores is a major pathological mechanism in AD and introduce TIRF imaging for massively parallel single-channel studies of the incorporation, assembly, and properties of amyloidogenic oligomers.  相似文献   

6.
The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas other RNA molecules show virtually no oxidation. The iron-storage disease hemochromatosis exhibits the most prominent general increase in RNA oxidation ever observed. Oxidation of RNA primarily leads to strand breaks and to oxidative base modifications. Oxidized mRNA is recognized by the ribosomes, but the oxidation results in ribosomal stalling and dysfunction, followed by decreased levels of functional protein as well as the production of truncated proteins that do not undergo proper folding and may result in protein aggregation within the cell. Ribosomal dysfunction may also signal apoptosis by p53-independent pathways. There are very few reports on interventions that reduce RNA oxidation, one interesting observation being a reduction in RNA oxidation by ingestion of raw olive oil. High urinary excretion of 8-oxo-guanosine, a biomarker for RNA oxidation, is highly predictive of death in newly diagnosed type 2 diabetics; this demonstrates the clinical relevance of RNA oxidation. Taken collectively the available data suggest that RNA oxidation is a contributing factor in several diseases such as diabetes, hemochromatosis, heart failure, and β-cell destruction. The mechanism involves free iron and hydrogen peroxide from mitochondrial dysfunction that together lead to RNA oxidation that in turn gives rise to truncated proteins that may cause aggregation. Thus RNA oxidation may well be an important novel contributing mechanism for several diseases.  相似文献   

7.
Kim S  Chang WE  Kumar R  Klimov DK 《Biophysical journal》2011,100(8):2024-2032
Experimental and epidemiological studies have shown that the nonsteroidal antiinflammatory drug naproxen may be useful in the treatment of Alzheimer''s disease. To investigate the interactions of naproxen with Aβ dimers, which are the smallest cytotoxic aggregated Aβ peptide species, we use united atom implicit solvent model and exhaustive replica exchange molecular dynamics. We show that naproxen ligands bind to Aβ dimer and penetrate its volume interfering with the interpeptide interactions. As a result naproxen induces a destabilizing effect on Aβ dimer. By comparing the free-energy landscapes of naproxen interactions with Aβ dimers and fibrils, we conclude that this ligand has stronger antiaggregation potential against Aβ fibrils rather than against dimers. The analysis of naproxen binding energetics shows that the location of ligand binding sites in Aβ dimer is dictated by the Aβ amino acid sequence. Comparison of the in silico findings with experimental observations reveals potential limitations of naproxen as an effective therapeutic agent in the treatment of Alzheimer''s disease.  相似文献   

8.
Alzheimer's disease (AD) is a neurodegenerative disorder that results from a loss of synaptic transmission and ultimately cell death. The presenting pathology of AD includes neuritic plaques composed of beta-amyloid peptide (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau, with neuronal loss in specific brain regions. However, the mechanisms that induce neuronal cell loss remain elusive. Focal adhesion (FA) proteins assemble into intracellular complexes involved in integrin-mediated communication between the extracellular matrix and the actin cytoskeleton, regulating many cell physiological processes including the cell cycle. Interestingly, recent studies report that integrins bind to Aβ fibrils, mediating Aβ signal transmission from extracellular sites of Aβ deposits into the cell and ultimately to the nucleus. In this review, we will discuss the Aβ induced integrin/FA signaling pathways that mediate cell cycle activation and cell death.  相似文献   

9.
β-Amyloid (Aβ) deposits are one of the major histopathological hallmarks of Alzheimer's disease (AD). The amyloid-imaging positron emission tomography (PET) tracer [11C]PIB (N-methyl[11C]2-(4′-methylaminophenyl)-6-hydroxy-benzothiazole) is used in the assessment of Aβ deposits in the human brain. [11C]PIB-amyloid interaction and insoluble Aβ40 and Aβ42 peptide levels in the brain were quantified in postmortem tissue from nine AD patients and nine age-matched control subjects in the temporal, frontal and parietal cortices and the cerebellum. Autoradiographical studies showed significantly higher densities of specific [11C]PIB-amyloid binding in gray matter in the temporal and parietal cortex (62 fmol/mg tissue) in AD patients as compared to control subjects, whereas the density was somewhat lower in the frontal cortex (56 fmol/mg tissue). No specific binding could be detected in the AD cerebellum or in the tissues from the control subjects (≤5 fmol/mg tissue). Insoluble Aβ40 and total Aβ levels (i.e. sum of Aβ40 and Aβ42) were significantly higher in patients than in controls in all measured cortical regions as determined using ELISA, which was confirmed using immunohistochemistry. The present findings show a more regional selective distribution of [11C]PIB amyloid binding than previously reported. Moreover, it is suggested that some of the [11C]PIB binding and insoluble Aβ seen in control subjects may be amyloid in the blood vessels.  相似文献   

10.
11.
12.
Mesenchymal stem cells (MSCs) promote functional recoveries in pathological experimental models of central nervous system (CNS) and are currently being tested in clinical trials for neurological disorders, but preventive mechanisms of placenta-derived MSCs (PD-MSCs) for Alzheimer''s disease are poorly understood. Herein, we investigated the inhibitory effect of PD-MSCs on neuronal cell death and memory impairment in Aβ1–42-infused mice. After intracerebroventrical (ICV) infusion of Aβ1–42 for 14 days, the cognitive function was assessed by the Morris water maze test and passive avoidance test. Our results showed that the transplantation of PD-MSCs into Aβ1–42-infused mice significantly improved cognitive impairment, and behavioral changes attenuated the expression of APP, BACE1, and Aβ, as well as the activity of β-secretase and γ-secretase. In addition, the activation of glia cells and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were inhibited by the transplantation of PD-MSCs. Furthermore, we also found that PD-MSCs downregulated the release of inflammatory cytokines as well as prevented neuronal cell death and promoted neuronal cell differentiation from neuronal progenitor cells in Aβ1–42-infused mice. These data indicate that PD-MSC mediates neuroprotection by regulating neuronal death, neurogenesis, glia cell activation in hippocampus, and altering cytokine expression, suggesting a close link between the therapeutic effects of MSCs and the damaged CNS in Alzheimer''s disease.  相似文献   

13.
Emerging evidence suggests that neuro-inflammation begins early and drives the pathogenesis of Alzheimer's disease(AD), and anti-inflammatory therapies are under clinical development. However,several anti-inflammatory compounds failed to improve memory in clinical trials, indicating that reducing inflammation alone might not be enough. On the other hand, neuro-inflammation is implicated in a number of mental disorders which share the same therapeutic targets. Based on these observations,we screened a batch of genes related with mental disorder and neuro-inflammation in a classical olfactory conditioning in an amyloid beta(Aβ) overexpression fly model. A Smoothened(SMO) mutant was identified as a genetic modifier of Aβ toxicity in 3-min memory and downregulation of SMO rescued Aβ induced 3-min and 1-h memory deficiency. Also, Aβ activated innate inflammatory response in fly by increasing the expression of antimicrobial peptides, which were alleviated by downregulating SMO.Furthermore, pharmaceutical administration of a SMO antagonist LDE rescued Aβ-induced upregulation of SMO in astrocytes of mouse hippocampus, improved memory in Morris water maze(MWM), and reduced expression of astrocyte secreting pro-inflammatory factors IL-1 b, TNFa and the microglia marker IBA-1 in an APP/PS1 transgenic mouse model. Our study suggests that SMO is an important conserved modulator of Aβ toxicity in both fly and mouse models of AD.  相似文献   

14.
BackgroundRosmarinus officinalis, commonly known as rosemary, is a medicinal herb that presents significant biological properties such as antimicrobial, antioxidant, anti-inflammatory, anti-diabetic and anti-depressant activities. Recent findings correlate impaired adult neurogenesis, which is crucial for the maintenance of synaptic plasticity and hippocampal functioning, synaptic regulation with the pathological hallmarks of Alzheimer's disease (AD). These observations call for the need to developing compounds that promote neurogenesis and alleviates deficits in cognition and synaptic regulation.Purpose and study designThe present study was conducted to determine the proneurogenic effects of R. officinalis and its active compounds (ursolic acid and rosmarinic acid) in comparison to Donepezil in an Aβ1-42-induced mouse model of AD.MethodsBALB/c mice were divided into ten groups. Half were injected with Aβ1-42 in the hippocampus through stereotaxic surgery to generate the disease groups. The other half received control injections. Each set of five groups were administered orally with vehicle, an ethanolic extract of R. officinalis, ursolic acid, rosmarinic acid or donepezil. Behavior analysis included the Morris water maze test, the novel object recognition test and the Elevated plus maze. The mice were then sacrificed and the hippocampal tissue was processed for immunohistochemistry and gene expression analysis.ResultsThe results show a protective effect by rosmarinic acid and ursolic acid in reversing the deficits in spatial and recognition memory as well as changes in anxiety induced by Aβ1-42. The neuronal density and the expression levels of neurogenic (Ki67, NeuN and DCX) and synaptic (Syn I, II, III, Synaptophysin and PSD-95) markers were also normalized upon treatment with rosmarinic and ursolic acid.ConclusionOur findings indicate the potential of R. officinalis and its active compounds as therapeutic agents against Aβ1-42-induced neurotoxicity in AD.  相似文献   

15.
Using homonuclear 1H NOESY spectra, with chemical shifts, 3JHNHα scalar couplings, residual dipolar couplings, and 1H-15N NOEs, we have optimized and validated the conformational ensembles of the amyloid-β 1–40 (Aβ40) and amyloid-β 1–42 (Aβ42) peptides generated by molecular dynamics simulations. We find that both peptides have a diverse set of secondary structure elements including turns, helices, and antiparallel and parallel β-strands. The most significant difference in the structural ensembles of the two peptides is the type of β-hairpins and β-strands they populate. We find that Aβ42 forms a major antiparallel β-hairpin involving the central hydrophobic cluster residues (16–21) with residues 29–36, compatible with known amyloid fibril forming regions, whereas Aβ40 forms an alternative but less populated antiparallel β-hairpin between the central hydrophobic cluster and residues 9–13, that sometimes forms a β-sheet by association with residues 35–37. Furthermore, we show that the two additional C-terminal residues of Aβ42, in particular Ile-41, directly control the differences in the β-strand content found between the Aβ40 and Aβ42 structural ensembles. Integrating the experimental and theoretical evidence accumulated over the last decade, it is now possible to present monomeric structural ensembles of Aβ40 and Aβ42 consistent with available information that produce a plausible molecular basis for why Aβ42 exhibits greater fibrillization rates than Aβ40.  相似文献   

16.
17.
Molecular Biology Reports - The coronary artery disease (CAD) is a chronic inflammatory disease caused by atherosclerosis, in which arteries become clogged due to plaque formation, fat...  相似文献   

18.
19.
Zekry D  Epperson TK  Krause KH 《IUBMB life》2003,55(6):307-313
Because of population ageing, dementias are likely to become a major scourge of the 21st century. Causes of dementia include Alzheimer's disease, cerebrovascular disease, and lesser known entities such as frontotemporal dementia or dementia with Lewy bodies. Neuroinflammation is likely to play an important role in the pathogenesis of dementia by the killing of neurons through inflammatory mechanisms. Such a role of neuroinflammation is well documented for Alzheimer's disease, and it is likely to play a role in other types of dementia as well. Reactive oxygen species (ROS) play a key role in inflammatory tissue destruction. The phagocyte NADPH oxidase NOX2 is the best studied ROS-generating system. In the central nervous system, it is expressed in microglia and--to a lesser extent--in neurons. Indeed, there is emerging experimental evidence for a role of NOX2 in Alzheimer's and cerebrovascular disease. Recently, six novel ROS-generating NADPH oxidases with homology to NOX2 have been discovered. Several of them are also expressed in the central nervous system. In this article, we hypothesize a role of NOX-type NADPH oxidases in inflammatory neuronal loss. We review presently available evidence and suggest that NOX-type NADPH oxidases may become promising pharmacological targets for the treatment and prevention of dementia.  相似文献   

20.
Type I interferon (IFN-I) signalling represents a major target for modulation in a virus' bid for latency. IFN-I perturbations are also present in such as Alzheimer's disease (AD) and multiple sclerosis (MS), where viral infections are known to increase symptomatic burden. IFN-I modulation such as via IFNβ-1a, an established MS treatment, has been researched to a limited extent to both AD and COVID-19. In this mini review, we present emerging research on trained immunity as a pathogenetic basis for Alzheimer's disease and the emerging context for IFNβ-1a repositioning, via mechanisms shared with multiple sclerosis and induced by viral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号