首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intralocus sexual conflict occurs when a trait encoded by the same genetic locus in the two sexes has different optima in males and females. Such conflict is widespread across taxa, however, the shared phenotypic traits that mediate the conflict are largely unknown. We examined whether the sex hormone, testosterone (T), that controls sexual differentiation, contributes to sexually antagonistic fitness variation in the bank vole, Myodes glareolus. We compared (opposite-sex) sibling reproductive fitness in the bank vole after creating divergent selection lines for T. This study shows that selection for T was differentially associated with son versus daughter reproductive success, causing a negative correlation in fitness between full siblings. Our results demonstrate the presence of intralocus sexual conflict for fitness in this small mammal and that sexually antagonistic selection is acting on T. We also found a negative correlation in fitness between parents and their opposite-sex progeny (e.g. father-daughter), highlighting a dilemma for females, as the indirect genetic benefits of selecting reproductively successful males (high T) are lost with daughters. We discuss mechanisms that may mitigate this disparity between progeny quality.  相似文献   

2.
Recent research has shown that a variety of traits that increase male success in mating and sperm competition can impose costs on females, resulting in antagonistic coevolution between the sexes. Yet, in many animals, females are known to receive direct benefit from their mates, including many in which female multiple mating results in intense sperm competition among males. The most common explanation for the evolution of male‐provided direct benefits is pre‐mating female choice based on benefit quality. This explanation is insufficient, however, for those direct benefits that females cannot directly assess prior to mating. Given that intrasexual selection will often favor male traits that increase female mating costs, many types of direct benefits can thus be difficult to explain. In this paper, we review four additional hypotheses for the evolution of male‐provided direct benefits, and present a fifth hypothesis that has received little attention. This latter hypothesis proposes that selection often favors female reproductive tactics that are conditional upon the past costs and benefits of mating. These conditional female reproductive tactics should evolve because the quality of the benefit provided by a previous mate can change the costs and benefits of alternative reproductive decisions. Furthermore, many of the conditional reproductive tactics we might expect females to express should incidentally penalize males which provide lower quality direct benefits. These conditional reproductive tactics may thus play an important role in determining whether females incur costs or receive benefits from their mates. In addition to favoring the evolution of direct benefits, we argue that conditional female reproductive tactics may also favor reliable signaling of benefit quality. The most common explanation for reliable signaling is the handicap mechanism, which proposes that differential costs of signaling prevent low quality males from deceptively producing attractive signals. For direct benefits, however, there is a second type of deception: males which produce attractive signals and can afford to provide high quality direct benefits may choose to cheat on the advertised benefit. The handicap mechanism does nothing to prevent cheating on direct benefits by males which can afford to produce attractive signals, and is thus insufficient for ensuring reliable signaling of benefit quality. In contrast, conditional female reproductive tactics that incidentally penalize low benefit males should also penalize males which cheat on the benefits advertised by their signals.  相似文献   

3.
The sex-specific slopes of Bateman's gradients have importantimplications for understanding animal mating systems, includingpatterns of sexual selection and reproductive competition. Intersexualdifferences in the fitness benefits derived from mating withmultiple partners are expected to yield distinct patterns ofreproductive success for males and females, with variance indirect fitness predicted to be greater among males. These analysesassume that typically all adults are reproductive and that failureto produce offspring is non-adaptive. Among some species ofcooperatively breeding birds and mammals, however, non-breedingadult alloparents are common and may comprise the majority ofindividuals in social groups. The presence of a large numberof non-breeding adults, particularly when coupled with greatersocial suppression of reproduction among females, may alterthe relative variance in direct fitness between the sexes, therebygenerating an apparent contradiction to Bateman's Paradigm.To explore quantitatively the effects of non-breeding alloparentson variance in reproductive success, we used genetic estimatesof parentage and reproductive success drawn from the literatureto calculate the relative variability in direct fitness forfemales and males in alloparental and "other" societies of birdsand mammals. Our analyses indicate that in mammals and, to alesser extent, in birds, variability in direct fitness is greateramong females in species characterized by the presence of non-breedingalloparents. These data suggest that social interactions, includingsocial suppression of reproduction, are powerful determinantsof individual direct fitness that may modify sex-specific patternsof reproductive variance from those described by Bateman.  相似文献   

4.
The reproductive interests of males and females are not always aligned, leading to sexual conflict over parental investment, rate of reproduction and mate choice. Traits that increase the genetic interests of one sex often occur at the expense of the other, selecting for counter-adaptations leading to antagonistic coevolution. Reproductive conflict is not limited to intraspecific interactions; interspecific hybridization can produce pronounced sexual conflict between males and females of different species, but it is unclear whether such conflict can drive sexually antagonistic coevolution between reproductively isolated genomes. We tested for hybridization-driven sexually antagonistic adaptations in queens and males of the socially hybridogenetic ‘J’ lineages of Pogonomyrmex harvester ants, whose mating system promotes hybridization in queens but selects against it in males. We conducted no-choice mating assays to compare patterns of mating behaviour and sperm transfer between inter- and intra-lineage pairings. There was no evidence for mate discrimination on the basis of pair type, and the total quantity of sperm transferred did not differ between intra- and inter-lineage pairs; however, further dissection of the sperm transfer process into distinct mechanistic components revealed significant, and opposing, cryptic manipulation of copulatory investment by both sexes. Males of both lineages increased their rate of sperm transfer to high-fitness intra-lineage mates, with a stronger response in the rarer lineage for whom mating mistakes are the most likely. By contrast, the total duration of copulation for intra-lineage mating pairs was significantly shorter than for inter-lineage crosses, suggesting that queens respond to prevent excessive sperm loading by prematurely terminating copulation. These findings demonstrate that sexual conflict can lead to antagonistic coevolution in both intra-genomic and inter-genomic contexts. Indeed, the resolution of sexual conflict may be a key determinant of the long-term evolutionary potential of host-dependent reproductive strategies, counteracting the inherent instabilities arising from such systems.  相似文献   

5.
The evolutionary basis for female mate choice in lek mating systems has been a common subject of research in animal behaviour. Because males apparently provide only gametes to females in lekking species, most research has focused on possible indirect (genetic) benefits that females might gain by discriminating among males. Despite the emphasis on indirect benefits, it has been recognized that females in non-resource-based systems such as leks could potentially gain direct benefits via mate choice if males varied in fertilization abilities, for example. Previous evidence has shown that females of a lekking Hawaiian Drosophila, D. grimshawi, vary in fecundity when mated to certain males, and that females possess preferences for vigorously courting males. This study tests the hypothesis that D. grimshawi females gain direct benefits by preferentially mating with more sexually vigorous males. Male courtship vigour (performance of wing and head-under-wing displays) and the consequences of female choice on offspring production were evaluated separately using different females. Unexpectedly, matings involving more vigorously courting males resulted in fewer offspring being produced. Reduced offspring number resulted because females laid fewer eggs when mating with males having greater courtship success. These results are discussed in light of sexual conflict and possible multiple mating by females. Females also demonstrated considerable variation in mating behaviour and behavioural variation was correlated with mating benefits. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

6.
If, in their partner choice, males seek direct benefits (fecund females), the result will be selection for traits indicating female quality rather than for arbitrary (Fisherian) traits. However, the costs of developing and maintaining the sexually selected traits (ornaments) may reduce the resources available to the female for allocation to reproduction and hence result in lower reproductive success per brood. This hitherto unrecognized fecundity cost of sexually selected traits will constrain both the potency of sexual selection mechanisms and the degree of elaboration of sexually selected traits in females, and can also apply to males which invest in their offspring: sexual selection becomes self-limiting. The fitness implications of these costs are examined for both sexes in a variety of mating and parental care patterns. Sexual selection acting on both sexes may lead to either dimorphism or monomorphism, the latter being the case when the quality indicators chosen by both sexes coincide. Ways of evasion or reduction of these reproductive costs of allocations to sexually selected traits include using different resource components for the ornament and for reproduction, or partitioning the two allocations in time.  相似文献   

7.
Male reproductive success generally increases with number of mates but this need not be true for females. If females are the limiting sex, as few as one mate can be optimal. Despite the theoretical differences driving multiple mating in the sexes, multiple mating is the norm rather than the exception. Empirical investigations are therefore required to determine why females mate with multiple males. Both nonadaptive (correlated responses to selection on males, given the mean mating rates have to be the same) and adaptive (direct or indirect fitness benefits) can drive the evolution of multiple mating in females. Females of the burying beetle Nicorphorus vespilloides often mate repeatedly with the same male, but this appears to be a correlated response to selection on males rather than reflecting direct benefits to females for multiple mating. However, an unexamined alternative to this nonadaptive explanation is that females benefit by mating with multiple different males and therefore are selected for general promiscuity. Here we examine if mating polyandrously provides fitness benefits by examing the effects of number of mates (1, 2 or 3), mating system (monogamous, polyandrous) and their interaction. The only significant influence was mating more than once. This did not depend on type of mating. We suggest that unlike most other species examined, in N. vespilloides mating with the same male repeatedly or with several different males reflects an indiscriminate willingness to mate as a result of correlated selection on males for high rates of mating.  相似文献   

8.
The relative force of direct and indirect selection underlying the evolution of polyandry is contentious. When females acquire direct benefits during mating, indirect benefits are often considered negligible. Although direct benefits are likely to play a prominent role in the evolution of polyandry, post‐mating selection for indirect benefits may subsequently evolve. We examined whether polyandrous females acquire indirect benefits and quantified direct and indirect effects of multiple mating on female fitness in a nuptial gift‐giving spider (Pisaura mirabilis). In this system, the food item donated by males during mating predicts direct benefits of polyandry. We compared fecundity, fertility and survival of singly mated females to that of females mated three times with the same (monogamy) or different (polyandry) males in a two‐factorial design where females were kept under high and low feeding conditions. Greater access to nutrients and sperm had surprisingly little positive effect on fitness, apart from shortening the time until oviposition. In contrast, polyandry increased female reproductive success by increasing the probability of oviposition, and egg hatching success indicating that indirect benefits arise from mating with several different mating partners rather than resources transferred by males. The evolution of polyandry in a male‐resource‐based mating system may result from exploitation of the female foraging motivation and that indirect genetic benefits are subsequently derived resulting from co‐evolutionary post‐mating processes to gain a reproductive advantage or to counter costs of mating. Importantly, indirect benefits may represent an additional explanation for the maintenance of polyandry.  相似文献   

9.
Rosvall KA 《Behavioral ecology》2011,22(6):1131-1140
In spite of recent interest in sexual selection in females, debate exists over whether traits that influence female-female competition are sexually selected. This review uses female-female aggressive behavior as a model behavioral trait for understanding the evolutionary mechanisms promoting intrasexual competition, focusing especially on sexual selection. I employ a broad definition of sexual selection, whereby traits that influence competition for mates are sexually selected, whereas those that directly influence fecundity or offspring survival are naturally selected. Drawing examples from across animal taxa, including humans, I examine 4 predictions about female intrasexual competition based on the abundance of resources, the availability of males, and the direct or indirect benefits those males provide. These patterns reveal a key sex difference in sexual selection: Although females may compete for the number of mates, they appear to compete more so for access to high-quality mates that provide direct and indirect (genetic) benefits. As is the case in males, intrasexual selection in females also includes competition for essential resources required for access to mates. If mate quality affects the magnitude of mating success, then restricting sexual selection to competition for quantity of mates may ignore important components of fitness in females and underestimate the role of sexual selection in shaping female phenotype. In the future, understanding sex differences in sexual selection will require further exploration of the extent of mutual intrasexual competition and the incorporation of quality of mating success into the study of sexual selection in both sexes.  相似文献   

10.
There is much interest in explaining why female insects mate multiply. Females of the stalk-eyed fly Cyrtodiopsis dalmanni can mate several times each day in a lifetime which may span several months. There are many adaptive explanations, but one hypothesis that has received little rigorous empirical attention is that female multiple mating has evolved for non-adaptive reasons as a correlated response to selection for high male mating frequency rather than because of direct or indirect benefits accruing to females. We tested this hypothesis in stalk-eyed flies by measuring the mating frequency of females from lines that exhibited a direct response in males to artificial selection for increased ('high') and decreased ('low') male mating frequency. We found that the mating frequency of high-line females did not differ from that of low-line females. Hence, there was no support for a genetic correlation between male and female mating frequency in this species. Our study suggests that the genes which influence remating may not be the same in the sexes, and that females remate frequently in this species to gain as yet unidentified benefits.  相似文献   

11.
Sexual conflicts are ubiquitous in nature and are expected to lead to an antagonistic coevolution between the sexes. This coevolutionary process is driven by selection on sexually antagonistic traits that can either be directional or fluctuating. In this study, we used dormant cysts of Artemia franciscana, collected in the same population in three different years over a 23-year period (corresponding to ~160 generations in this system), to investigate male-female coevolution in natural conditions over time. We performed a cross experiment study where reproduction of females mated to males from the past, present, or future was monitored until death. In agreement with a model of "fluctuating selection," we found that females survived better and had longer interbrood intervals when mated with their contemporary males compared to when mated with males from the future or the past. However, female weekly and lifetime reproductive successes displayed no differences between contemporary and noncontemporary matings. Finally, the coevolutionary patterns ("arms race dynamics" or "fluctuating selection dynamics") possibly acting on female relative fitness could not be discriminated. This study is the first direct demonstration that the process of male-female coevolution, previously revealed by experimental evolution in laboratory artificial conditions, can occur in nature on a short evolutionary time scale.  相似文献   

12.
Males and females share a genome and express many shared phenotypic traits, which are often selected in opposite directions. This generates intralocus sexual conflict that may constrain trait evolution by preventing the sexes from reaching their optimal phenotype. Furthermore, if present across multiple loci, intralocus sexual conflict can result in a gender load that may diminish the benefits of sexual selection and help maintain genetic variation for fitness. Despite the importance of intralocus sexual conflict, surprisingly few empirical studies conclusively demonstrate its operation. We show that the pattern of multivariate selection acting on three sexually dimorphic life-history traits (development time, body size, and longevity) in the Indian meal moth, Plodia interpunctella, is opposing for the sexes. Moreover, we combined our estimates of selection with the additive genetic variance-covariance matrix (G) to predict the evolutionary response of the life-history traits in the sexes and showed that the angle between the vector of responses and the vector of sexually antagonistic selection was almost orthogonal at 84.70°. Thus, G biases the predicted response of life-history traits in the sexes away from the direction of sexually antagonistic selection, confirming the presence of strong intralocus sexual conflict in this species. Despite this, sexual dimorphism has evolved in all of the life-history traits examined suggesting that mechanism(s) have evolved to resolve this conflict and allow the sexes to reach their life-history optima. We argue that intralocus sexual conflict is likely to play an important role in the evolution of divergent life-history strategies between the sexes in this species.  相似文献   

13.
Sexual conflict facilitates the evolution of traits that increase the reproductive success of males at the expense of components of female fitness. Theory suggests that indirect benefits are unlikely to offset the direct costs to females from antagonistic male adaptations, but empirical studies examining the net fitness pay‐offs of the interaction between the sexes are scarce. Here, we investigate whether matings with males that invest intrinsically more into accessory gland tissue undermine female lifetime reproductive success (LRS) in the cricket Teleogryllus oceanicus. We found that females incur a longevity cost of mating that is proportional to the partner’s absolute investment into the production of accessory gland products. However, male accessory gland weight positively influences embryo survival, and harmful ejaculate‐induced effects are cancelled out when these are put in the context of female LRS. The direct costs of mating with males that sire offspring with higher viability are thus compensated by direct and possibly indirect genetic benefits in this species.  相似文献   

14.
The relatively small number of ova produced by a female can be fertilized by a single ejaculate in most species. Why females of many species mate with multiple males is therefore enigmatic, especially given that costs associated with remating have been well documented. Recently, it has been argued that females may remate at a maladaptive rate as an outcome of sexually antagonistic coevolution: the evolutionary tug-of-war between manipulation by one sex and resistance to being manipulated by the other sex. We tested this hypothesis experimentally for the evolution of the female remating interval in a naturally promiscuous species, Drosophila melanogaster. In two replicate populations, sexual selection was removed through enforced monogamous mating with random mate assignment, or retained in polyandrous controls. Monogamy constrains the reproductive success of mates to be identical, thereby converting prior conflicts between mates into opportunities for mutualism. Under these experimental conditions, the sexually antagonistic coevolution hypothesis generates explicit predictions regarding the direction of evolutionary change in female remating behaviour. These predictions are contingent upon the mechanism of male manipulation, which may be mediated biochemically by seminal fluids or behaviourally by courtship. Levels of divergence in female remating interval across lines, and in male ejaculatory and courtship effects on female remating, were quantified after 84 generations of selection. Data refute the hypothesis that the evolutionary change in female remating behaviour was due to sexually antagonistic coevolution of courtship signal and receiver traits. The data were, however, consistent with a hypothesis of sexual conflict mediated through ejaculate manipulation. Monogamy-line males evolved ejaculates that were less effective in inducing female non-receptivity and monogamy-line females evolved to remate less frequently, symptomatic of lowered resistance to ejaculate manipulation. The consistency of the results with alternative hypotheses to explain female promiscuity are discussed.  相似文献   

15.
Sexual conflict occurs when the evolutionary interests of the sexes differ and it broadly applies to decisions over mating, fertilization and parental investment. Recently, a narrower view of sexual conflict has emerged in which direct selection on females to avoid male-imposed costs during mating is considered the distinguishing feature of conflict, while indirect selection is considered negligible. In this view, intersexual selection via sensory bias is seen as the most relevant mechanism by which male traits that harm females evolve, with antagonistic coevolution between female preferences and male manipulation following. Under this narrower framework, female preference and resistance have been synonymized because both result in a mating bias, and similarly male display and coercion are not distinguished. Our recent work on genital evolution in waterfowl has highlighted problems with this approach. In waterfowl, preference and resistance are distinct components of female phenotype, and display and coercion are independent male strategies. Female preference for male displays result in mate choice, while forced copulations by unpreferred males result in resistance to prevent these males from achieving matings and fertilizations. Genital elaborations in female waterfowl appear to function in reinforcing female preference to maintain the indirect benefits of choice rather than to reduce the direct costs of coercive mating. We propose a return to a broader view of conflict where indirect selection and intrasexual selection are considered important in the evolution of conflict.  相似文献   

16.
The interests of males and females over reproduction rarely coincide and conflicts between the sexes over mate choice, mating frequency, reproductive investment, and parental care are common in many taxa. In Drosophila melanogaster, the optimum mating frequency is higher for males than it is for females. Furthermore, females that mate at high frequencies suffer significant mating costs due to the actions of male seminal fluid proteins. Sexual conflict is predicted to lead to sexually antagonistic coevolution, in which selection for adaptations that benefit males but harm females is balanced by counterselection in females to minimize the extent of male-induced harm. We tested the prediction that elevated sexual conflict should select for increased female resistance to male-induced harm and vice versa. We manipulated the intensity of sexual conflict by experimentally altering adult sex ratio. We created replicated lines of D. melanogaster in which the adult sex ratio was male biased (high conflict lines), equal (intermediate conflict lines), or female biased (low conflict lines). As predicted, females from high sexual conflict lines lived significantly longer in the presence of males than did females from low conflict lines. Our conclusion that the evolutionary response in females was to the level of male-induced harm is supported by the finding that there were no female longevity differences in the absence of males. Differences between males in female harming ability were not detected. This suggests that the response in females was to differences between selection treatments in mating frequency, and not to differences in male harmfulness.  相似文献   

17.
The tendency of females to mate with multiple males is often explained by direct and indirect benefits that could outweigh the many potential costs of multiple mating. However, behaviour can only evolve in response to costs and benefits if there is sufficient genetic variation on which selection can act. We followed 108 mating chases of 85 North American red squirrels (Tamiasciurus hudsonicus) during 4 years, to measure each female's degree of multiple male mating (MMM), and used an animal model analysis of our multi-generational pedigree to provide what we believe is the first estimate of the heritability of MMM in the wild. Female red squirrels were highly polyandrous, mating with an average of 7.0 ± 0.2 males on their day of oestrus. Although we found evidence for moderate levels of additive genetic variation (CV(A) = 5.1), environmental variation was very high (CV(E) = 32.3), which resulted in a very low heritability estimate (h(2) < 0.01). So, while there is genetic variation in this trait, the large environmental variation suggests that any costs or benefits associated with differences among females in MMM are primarily owing to environmental and not genetic differences, which could constrain the evolutionary response to natural selection on this trait.  相似文献   

18.
We consider mathematical models describing the evolutionary consequences of antagonistic interactions between male offence, male defence and female reproductive tract and physiology in controlling female mating rate. Overall, the models support previous verbal arguments about the possibility of continuous coevolutionary chase between the sexes driven by two-way (e.g. between male offence and female traits) and three-way (e.g. between male offence, male defence and female traits) inter-sexual antagonistic interactions. At the same time, the models clarify these arguments by identifying various additional potential evolutionary dynamics and important parameters (e.g. genetic variances, female optimum mating rates, strength of selection in females and the relative contributions of first and second males into offspring) and emphasizing the importance of initial conditions. Models also show that sexual conflict can result in the evolution of monandry in an initially polyandrous species and in the evolution of random mating in a population initially exhibiting non-random mating.  相似文献   

19.
20.
Harano T  Miyatake T 《Heredity》2007,99(3):295-300
Female multiple mating, which is common in animals, may have evolved not in response to fitness advantages to females but as a genetic corollary to selection on males to mate frequently. This nonadaptive hypothesis assumes a genetic correlation between females and males in mating frequency, which has received a few empirical investigations. We tested this hypothesis by observing the correlated response in male mating frequency in the adzuki bean beetle, Callosobruchus chinensis to artificial selection on female propensity to remate. Compared to control females, females from lines selected for increased or decreased female propensity to remate had, respectively, higher or lower mating frequency measured by the number of mating within a given period. This indicates that female receptivity to remating is genetically correlated with female mating frequency, and thus the artificial selection for female propensity to remate influenced female mating frequency. In contrast, males from the selected lines that diverged in female mating frequency did not vary significantly in their mating frequency. These results indicate that there is no genetic correlation between the sexes in mating frequency in C. chinensis. This study shows that the reason why females in C. chinensis remate despite suffering fitness costs cannot be explained by indirect selection resulting from selection on males to mate multiple times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号