首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The APETALA1 (AP1) gene of A. thaliana codes type II MADS protein with domains MADS, I, K, and C. The role of K- and C-domains in the functioning of AP1 protein is poorly investigated. The analysis of phenotypic manifestation of mutations disrupting the activity of various domains of the protein product allows one to obtain information on the function of domains and, thereby, on the structural-functional organization of the gene. We investigated the action of mutant alleles of the AP1 gene whose protein products are probably lacking the functionally active domains K (ap1-20), K- and C-domains (ap1-1 and ap1-6), and C-domain (ap1-3) on the flower morphology in abr mutant (the ABRUPTUS/PINOID gene allele). It was detected that, unlike the ap1-20 allele, the presence of ap1-3, ap1-6, and ap1-1 alleles results in reduction of a number of the generative organs in the flowers of the double mutants abr ap1-3, abr ap1-6, and abr ap1-1. It was suggested that C-domain of the AP1 protein prevents the alteration of determination of the type of reproductive organs when the AP1 gene ectropically expressed in the inner whorls of a flower in the abr mutant.  相似文献   

2.
3.
4.
A new deletion allele of the APETALA1 (AP1) gene encoding a type II MADS-box protein with the key role in the initiation of flowering and development of perianth organs has been identified in A. thaliana. The deletion of seven amino acids in the conserved region of the K domain in the ap1-20 mutant considerably delayed flowering and led to a less pronounced abnormality in the corolla development compared to the weak ap1-3 and intermediate ap1-6 alleles. At the same time, a considerable stamen reduction has been revealed in ap1-20 as distinct from ap1-3 and ap1-6 alleles. These data indicate that the K domain of AP1 can be crucial for the initiation of flowering and expression regulation of B-class genes controlling stamen development.  相似文献   

5.
Gregis V  Sessa A  Colombo L  Kater MM 《The Plant cell》2006,18(6):1373-1382
Loss-of-function alleles of AGAMOUS-LIKE24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) revealed that these two similar MADS box genes have opposite functions in controlling the floral transition in Arabidopsis thaliana, with AGL24 functioning as a promoter and SVP as a repressor. AGL24 promotes inflorescence identity, and its expression is downregulated by APETALA1 (AP1) and LEAFY to establish floral meristem identity. Here, we combine the two mutants to generate the agl24 svp double mutant. Analysis of flowering time revealed that svp is epistatic to agl24. Furthermore, when grown at 30 degrees C, the double mutant was severely affected in flower development. All four floral whorls showed homeotic conversions due to ectopic expression of class B and C organ identity genes. The observed phenotypes remarkably resembled the leunig (lug) and seuss (seu) mutants. Protein interaction studies showed that dimers composed of AP1-AGL24 and AP1-SVP interact with the LUG-SEU corepressor complex. We provide genetic evidence for the role of AP1 in these interactions by showing that the floral phenotype in the ap1 agl24 svp triple mutant is significantly enhanced. Our data suggest that MADS box proteins are involved in the recruitment of the SEU-LUG repressor complex for the regulation of AGAMOUS.  相似文献   

6.
Three cDNAs showing a high degree of homology to the SQUA subfamily of MADS box genes were isolated and characterized from the lily (Lilium longiflorum). Lily MADS Box Gene 5 (LMADS5) showed high sequence identity to oil palm (Elaeis guineensis) SQUAMOSA3 (EgSQUA3). LMADS6 is closely related to LMADS5 whereas LMADS7 is more related to DOMADS2, an orchid (Dendrobium) gene in the SQUA subfamily. The expression pattern for these three genes was similar and their RNAs were detected in vegetative stem and inflorescence meristem. LMADS5 and 6 were highly expressed in vegetative leaves and carpel, whereas LMADS7 expression was absent. Ectopic expression of LMADS5, 6 or 7 in transgenic Arabidopsis plants showed novel phenotypes by flowering early and producing terminal flowers. Homeotic conversions of sepals to carpelloid structures and of petal to stamen-like structures were also observed in 35S::LMADS5, 6 or 7 flowers. Ectopic expression of LMADS6 or LMADS7 was able to complement the ap1 flower defect in transgenic Arabidopsis ap1 mutant plants. These results strongly indicated that the function of these three lily genes was involved in flower formation as well as in floral induction. Furthermore, the ability of lily LMADS6 and 7 to complement the Arabidopsis ap1 mutant provided further evidence to show that the conserved motifs (paleoAP1 or euAP1) in the C-terminus of the SQUA/AP1 subfamily of MADS box genes is not strictly necessary for their function.  相似文献   

7.
8.
9.
Genetic interactions among floral homeotic genes of Arabidopsis.   总被引:79,自引:0,他引:79  
We describe allelic series for three loci, mutations in which result in homeotic conversions in two adjacent whorls in the Arabidopsis thaliana flower. Both the structure of the mature flower and its development from the initial primordium are described by scanning electron microscopy. New mutations at the APETALA2 locus, ap2-2, ap2-8 and ap2-9, cause homeotic conversions in the outer two whorls: sepals to carpels (or leaves) and petals to stamens. Two new mutations of PISTILLATA, pi-2 and pi-3, cause second and third whorl organs to differentiate incorrectly. Homeotic conversions are petals to sepals and stamens to carpels, a pattern similar to that previously described for the apetala3-1 mutation. The AGAMOUS mutations, ag-2 and ag-3, affect the third and fourth whorls and cause petals to develop instead of stamens and another flower to arise in place of the gynoecium. In addition to homeotic changes, mutations at the APETALA2, APETALA3 and PISTILLATA loci may lead to reduced numbers of organs, or even their absence, in specific whorls. The bud and flower phenotypes of doubly and triply mutant strains, constructed with these and previously described alleles, are also described. Based on these results, a model is proposed that suggests that the products of these homeotic genes are each active in fields occupying two adjacent whorls, AP2 in the two outer whorls, PI and AP3 in whorls two and three, and AG in the two inner whorls. In combination, therefore, the gene products in these three concentric, overlapping fields specify the four types of organs in the wild-type flower. Further, the phenotypes of multiple mutant lines indicate that the wild-type products of the AGAMOUS and APETALA2 genes interact antagonistically. AP2 seems to keep the AG gene inactive in the two outer whorls while the converse is likely in the two inner whorls. This field model successfully predicts the phenotypes of all the singly, doubly and triply mutant flowers described.  相似文献   

10.
Hsu HF  Yang CH 《Plant & cell physiology》2002,43(10):1198-1209
cDNA for a B group MADS box gene OMADS3 was isolated and characterized from Oncidium Gower Ramsey, an important species of orchid. OMADS3 encoding a 204 amino acid protein showed high sequence homology to both paleoAP3 and TM6 lineage of B group MADS box gene such as monocots AP3 homologue LMADS1 in lily and GDEF1 in Gerbera hybrida. Despite the sequence homology, consensus motifs identified in the C-terminal region of B group genes were absent in OMADS3. Southern analysis indicated that OMADS3 was present in O. Gower Ramsey genome in low copy numbers. Different from most B group genes, OMADS3 mRNA was detected in all four floral organs as well as in vegetative leaves. This is similar to the expression pattern of GDEF1. 35S::OMADS3 transgenic plants showed novel phenotypes by producing terminal flowers similar to those observed in transgenic plants ectopically expressed A functional genes such as AP1. Ectopic expression of OMADS3 cDNA truncated with the MADS box or C terminal region in Arabidopsis generated novel ap2-like flowers in which sepals and petals were converted into carpel-like and stamen-like structures. Yeast two-hybrid analysis indicated that OMADS3 is able to strongly form homodimers. Our results suggested that OMADS3 might represent an ancestral form of TM6-like gene which was conserved in monocots with a function similar to A functional gene in regulating flower formation as well as floral initiation.  相似文献   

11.
The MADS domain homeotic proteins APETALA1 (AP1), APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG) combinatorially specify the identity of Arabidopsis floral organs. AP1/AP1, AG/AG, and AP3/PI dimers bind to similar CArG box sequences; thus, differences in DNA-binding specificity among these proteins do not seem to be the origin of their distinct organ identity properties. To assess the overall contribution that specific DNA binding could make to their biological specificity, we have generated chimeric genes in which the amino-terminal half of the MADS domain of AP1, AP3, PI, and AG was substituted by the corresponding sequences of human SRF and MEF2A proteins. In vitro DNA-binding assays reveal that the chimeric proteins acquired the respective, and distinct, DNA-binding specificity of SRF or MEF2A. However, ectopic expression of the chimeric genes reproduces the dominant gain-of-function phenotypes exhibited by plants ectopically expressing the corresponding Arabidopsis wild-type genes. In addition, both the SRF and MEF2 chimeric genes can complement the pertinent ap1-1, ap3-3, pi-1, or ag-3 mutations to a degree similar to that of AP1, AP3, PI, and AG when expressed under the control of the same promoter. These results indicate that determination of floral organ identity by the MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. In addition, the DNA-binding experiments show that either one of the two MADS domains of a dimer can be sufficient to confer a particular DNA-binding specificity to the complex and that sequences outside the amino-terminal basic region of the MADS domain can, in some cases, contribute to the DNA-binding specificity of the proteins.  相似文献   

12.
Results of the flower structure analysis of single mutants abr, ap3-1, and pi-1 and double mutants abr ap3-1 and abr pi-1 of the Arabidopsis thaliana are presented. An increase in the expressivity of the ap3-1 and pi-1 mutations against a background of the abr mutation which break auxin transport was detected. Unlike flowers of parental mutant plants which had stamens in our experiment, stamens were absent in basal flowers of double mutants. It can be assumed that anomalies in auxin distributions in cells can break the program of the development of stamens which is triggered by the ap3-1 and pi-1 alleles remaining the residual function during the plant growing at 21–24°C.  相似文献   

13.
14.
15.
We isolated three alleles of an Arabidopsis thaliana gene named ROXY1, which initiates a reduced number of petal primordia and exhibits abnormalities during further petal development. The defects are restricted to the second whorl of the flower and independent of organ identity. ROXY1 belongs to a subgroup of glutaredoxins that are specific for higher plants and we present data on the first characterization of a mutant from this large Arabidopsis gene family for which information is scarce. ROXY1 is predominantly expressed in tissues that give rise to new flower primordia, including petal precursor cells and petal primordia. Occasionally, filamentous organs with stigmatic structures are formed in the second whorl of the roxy1 mutant, indicative for an ectopic function of the class C gene AGAMOUS (AG). The function of ROXY1 in the negative regulation of AG is corroborated by premature and ectopic AG expression in roxy1-3 ap1-10 double mutants, as well as by enhanced first whorl carpeloidy in double mutants of roxy1 with repressors of AG, such as ap2 or lug. Glutaredoxins are oxidoreductases that oxidize or reduce conserved cysteine-containing motifs. Mutagenesis of conserved cysteines within the ROXY1 protein demonstrates the importance of cysteine 49 for its function. Our data demonstrate that, unexpectedly, a plant glutaredoxin is involved in flower development, probably by mediating post-translational modifications of target proteins required for normal petal organ initiation and morphogenesis.  相似文献   

16.
17.
Two rice MADS domain proteins interact with OsMADS1   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
Ding H  Mukerji I  Oliver D 《Biochemistry》2003,42(46):13468-13475
The SecA ATPase motor is a central component of the eubacterial protein translocation machinery. It is comprised of N- and C-domain substructures, where the N-domain is comprised of two nucleotide-binding domains that flank a preprotein-binding domain (PPXD), while the C-domain binds phospholipids as well as SecB chaperone. Our recent crystal structure of Bacillus subtilis SecA protomer [Hunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhofer, J. (2002) Science 297, 2018-2026] along with experimental support for the correct dimer structure [Ding, H., Hunt, J. F., Mukerji, I., and Oliver, D. (2003) Biochemistry 42, 8729-8738] have now allowed us to study SecA structural dynamics during interaction with various translocation ligands and to relate these findings to current models of SecA-dependent protein translocation. In this paper, we utilized fluorescence resonance energy transfer methodology with genetically engineered SecA proteins containing unique pairs of tryptophan and fluorophore-labeled cysteine residues within the PPXD and C-domains of SecA to investigate the interaction of these two domains and their response to temperature, model membranes, and nucleotide. Consistent with the crystal structure of SecA, we found that the PPXD and C-domains are proximal to one another in the ground state. Increasing temperature or binding to model membranes promoted a loosening of PPXD and C-domain association, while ADP binding promoted a tighter association. A similar pattern of PPXD and C-domain association was obtained also for Escherichia coli SecA protein. Furthermore, a hyperactive Azi-PrlD SecA protein of E. coli had increased PPXD and C-domain separation, consistent with its activation in the ground state. Interestingly, PPXD and C-domain separation occurred prior to the onset of major temperature-induced conformational changes in both the PPXD and C-domains of SecA. Our results support a model in which PPXD and C-domain proximity is important for regulating the initial stages of SecA activation, and they serve also as a template for future structural studies aimed at elucidation of the chemomechanical cycle of SecA-dependent protein translocation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号