首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.

Background

Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU). In West Africa there is an association between BU and residence in low-lying rural villages where aquatic sources are plentiful. Infection occurs through unknown environmental exposure; human-to-human infection is rare. Molecular evidence for M. ulcerans in environmental samples is well documented, but the association of M. ulcerans in the environment with Buruli ulcer has not been studied in West Africa in an area with accurate case data.

Methodology/Principal Finding

Environmental samples were collected from twenty-five villages in three communes of Benin. Sites sampled included 12 BU endemic villages within the Ouheme and Couffo River drainages and 13 villages near the Mono River and along the coast or ridge where BU has never been identified. Triplicate water filtrand samples from major water sources and samples from three dominant aquatic plant species were collected. Detection of M. ulcerans was based on quantitative polymerase chain reaction. Results show a significant association between M. ulcerans in environmental samples and Buruli ulcer cases in a village (p = 0.0001). A “dose response” was observed in that increasing numbers of M. ulceran- positive environmental samples were associated with increasing prevalence of BU cases (R2 = 0.586).

Conclusions/Significance

This study provides the first spatial data on the overlap of M. ulcerans in the environment and BU cases in Benin where case data are based on active surveillance. The study also provides the first evidence on M. ulcerans in well-defined non-endemic sites. Most environmental pathogens are more broadly distributed in the environment than in human populations. The congruence of M. ulcerans in the environment and human infection raises the possibility that humans play a role in the ecology of M. ulcerans. Methods developed could be useful for identifying new areas where humans may be at high risk for BU.  相似文献   

3.
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a rare but chronic debilitating skin and soft tissue disease found predominantly in West Africa and Southeast Australia. While a moderate body of research has examined the distribution of M. ulcerans, the specific route(s) of transmission of this bacterium remain unknown, hindering control efforts. M. ulcerans is considered an environmental pathogen given it is associated with lentic ecosystems and human-to-human spread is negligible. However, the pathogen is also carried by various mammals and invertebrates, which may serve as key reservoirs and mechanical vectors, respectively. Here, we examine and review recent evidence from these endemic regions on potential transmission pathways, noting differences in findings between Africa and Australia, and summarising the risk and protective factors associated with Buruli ulcer transmission. We also discuss evidence suggesting that environmental disturbance and human population changes precede outbreaks. We note five key research priorities, including adoption of One Health frameworks, to resolve transmission pathways and inform control strategies to reduce the spread of Buruli ulcer.  相似文献   

4.
The role of biofilms in the pathogenesis of mycobacterial diseases remains largely unknown. Mycobacterium ulcerans, the etiological agent of Buruli ulcer, a disfiguring disease in humans, adopts a biofilm-like structure in vitro and in vivo, displaying an abundant extracellular matrix (ECM) that harbors vesicles. The composition and structure of the ECM differs from that of the classical matrix found in other bacterial biofilms. More than 80 proteins are present within this extracellular compartment and appear to be involved in stress responses, respiration, and intermediary metabolism. In addition to a large amount of carbohydrates and lipids, ECM is the reservoir of the polyketide toxin mycolactone, the sole virulence factor of M. ulcerans identified to date, and purified vesicles extracted from ECM are highly cytotoxic. ECM confers to the mycobacterium increased resistance to antimicrobial agents, and enhances colonization of insect vectors and mammalian hosts. The results of this study support a model whereby biofilm changes confer selective advantages to M. ulcerans in colonizing various ecological niches successfully, with repercussions for Buruli ulcer pathogenesis.  相似文献   

5.
Buruli ulcer, an emerging tropical disease caused by Mycobacterium ulcerans (MU), is characterized by disfiguring skin necrosis and high morbidity. Relatively little is understood about the mode of transmission, pathogenesis, or host immune responses to MU infection. Due to significant reduction in quality of life for patients with extensive tissue scarring, and that a disproportionately high percentage of those affected are disadvantaged children, a Buruli ulcer vaccine would be greatly beneficial to the worldwide community. Previous studies have shown that mice inoculated with either M. bovis bacille Calmette–Guérin (BCG) or a DNA vaccine encoding the M. ulcerans mycolyl transferase, Ag85A (MU-Ag85A), are transiently protected against pathology caused by intradermal challenge with MU. Building upon this principle, we have generated quality-controlled, live-recombinant strains of BCG and M. smegmatis which express the immunodominant MU Ag85A. Priming with rBCG MU-Ag85A followed by an M. smegmatis MU-Ag85A boost strongly induced murine antigen-specific CD4+ T cells and elicited functional IFNγ-producing splenocytes which recognized MU-Ag85A peptide and whole M. ulcerans better than a BCG prime-boost vaccination. Strikingly, mice vaccinated with a single subcutaneous dose of BCG MU-Ag85A or prime-boost displayed significantly enhanced survival, reduced tissue pathology, and lower bacterial load compared to mice vaccinated with BCG. Importantly, this level of superior protection against experimental Buruli ulcer compared to BCG has not previously been achieved. These results suggest that use of BCG as a recombinant vehicle expressing MU antigens represents an effective Buruli ulcer vaccine strategy and warrants further antigen discovery to improve vaccine efficacy.  相似文献   

6.

Background

Buruli ulcer (BU) is an emerging infectious disease caused by Mycobacterium ulcerans that can result in extensive necrotizing cutaneous lesions due to the cytotoxic exotoxin mycolactone. There is no specific vaccine against BU but reports show some degree of cross-reactive protection conferred by M. bovis BCG immunization. Alternatively, an M. ulcerans-specific immunization could be a better preventive strategy.

Methodology/Principal Findings

In this study, we used the mouse model to characterize the histological and cytokine profiles triggered by vaccination with either BCG or mycolactone-negative M. ulcerans, followed by footpad infection with virulent M. ulcerans. We observed that BCG vaccination significantly delayed the onset of M. ulcerans growth and footpad swelling through the induction of an earlier and sustained IFN-γ T cell response in the draining lymph node (DLN). BCG vaccination also resulted in cell-mediated immunity (CMI) in M. ulcerans-infected footpads, given the predominance of a chronic mononuclear infiltrate positive for iNOS, as well as increased and sustained levels of IFN-γ and TNF. No significant IL-4, IL-17 or IL-10 responses were detected in the footpad or the DLN, in either infected or vaccinated mice. Despite this protective Th1 response, BCG vaccination did not avoid the later progression of M. ulcerans infection, regardless of challenge dose. Immunization with mycolactone-deficient M. ulcerans also significantly delayed the progression of footpad infection, swelling and ulceration, but ultimately M. ulcerans pathogenic mechanisms prevailed.

Conclusions/Significance

The delay in the emergence of pathology observed in vaccinated mice emphasizes the relevance of protective Th1 recall responses against M. ulcerans. In future studies it will be important to determine how the transient CMI induced by vaccination is compromised.  相似文献   

7.
Buruli ulcer, a disease caused by Mycobacterium ulcerans, is emerging as an increasingly important cause of morbidity throughout the world, for which surgery is the only efficient treatment to date. The aim of this work was to identify potential vaccine candidates in an experimental model of mouse infection. In BALB/c mice infected with M. ulcerans subcutaneously, Hsp65 appeared to be an immunodominant antigen eliciting both humoral and cellular responses. However, vaccination of mice with a DNA vector encoding Mycobacterium leprae Hsp65 only poorly limited the progression of M. ulcerans infection. In contrast, a substantial degree of protection was conferred by subcutaneous vaccination with BCG, suggesting that BCG antigens that are conserved in M. ulcerans, such as TB10.4, the 19 kDa antigen, PstS3 and Hsp70, may be interesting to consider as subunit vaccines in future prospects.  相似文献   

8.
It has recently been shown that in a Buruli ulcer (BU) endemic region of southeastern Australia, significant numbers of possums (native tree-dwelling marsupials) have clinical BU disease. Furthermore, based on quantitative PCR (qPCR) analysis, animals with BU lesions (and some without) shed M. ulcerans DNA in their faeces, indicative of bacterial loads of up to 10(8) organisms/gram. These findings led us to propose that humans might also harbour M. ulcerans in their gastrointestinal tract and shed the bacterium in their faeces. We conducted a pilot study and collected faecal swabs from 26 patients with confirmed BU and 31 healthy household controls. Faecal samples were also collected from 10 healthy controls from non-endemic regions in Ghana. All 67 specimens were negative when tested by IS2404 PCR. The detection sensitivity of this method was ≥10(4) bacteria per gram (wet-weight) of human faecal material. We conclude that the human gastrointestinal tract is unlikely to be a significant reservoir of M. ulcerans.  相似文献   

9.
This study reports a potential role that fish may play in the transmission of Mycobacterium ulcerans disease (Buruli ulcer). Fish found positive for M. ulcerans DNA all appear to feed on insects or plankton and are believed to concentrate M. ulcerans from this usual food source. These observations provide additional data supporting our previous hypothesis on sources of M. ulcerans and modes of transmission.  相似文献   

10.
Infection of subcutaneous tissue with Mycobacterium ulcerans can lead to chronic skin ulceration known as Buruli ulcer. The pathogenesis of this neglected tropical disease is dependent on a lipid‐like toxin, mycolactone, which diffuses through tissue away from the infecting organisms. Since its identification in 1999, this molecule has been intensely studied to elucidate its cytotoxic and immunosuppressive properties. Two recent major advances identifying the underlying molecular targets for mycolactone have been described. First, it can target scaffolding proteins (such as Wiskott Aldrich Syndrome Protein), which control actin dynamics in adherent cells and therefore lead to detachment and cell death by anoikis. Second, it prevents the co‐translational translocation (and therefore production) of many proteins that pass through the endoplasmic reticulum for secretion or placement in cell membranes. These pleiotropic effects underpin the range of cell‐specific functional defects in immune and other cells that contact mycolactone during infection. The dose and duration of mycolactone exposure for these different cells explains tissue necrosis and the paucity of immune cells in the ulcers. This review discusses recent advances in the field, revisits older findings in this context and highlights current developments in structure‐function studies as well as methodology that make mycolactone a promising diagnostic biomarker.  相似文献   

11.

Introduction

Buruli Ulcer (BU) is caused by the environmental microbe Mycobacterium ulcerans. Despite unclear transmission, contact with a BU endemic region is the key known risk factor. In Victoria, Australia, where endemic areas have been carefully mapped, we aimed to estimate the Incubation Period (IP) of BU by interviewing patients who reported defined periods of contact with an endemic area prior to BU diagnosis.

Method

A retrospective review was undertaken of 408 notifications of BU in Victoria from 2002 to 2012. Telephone interviews using a structured questionnaire and review of notification records were performed. Patients with a single visit exposure to a defined endemic area were included and the period from exposure to disease onset determined (IP).

Results

We identified 111 of 408 notified patients (27%) who had a residential address outside a known endemic area, of whom 23 (6%) reported a single visit exposure within the previous 24 months. The median age of included patients was 30 years (range: 6 to 73) and 65% were male. 61% had visited the Bellarine Peninsula, currently the most active endemic area. The median time from symptom onset to diagnosis was 71 days (range: 34–204 days). The midpoint of the reported IP range was utilized to calculate a point estimate of the IP for each case. Subsequently, the mean IP for the cohort was calculated at 135 days (IQR: 109–160; CI 95%: 113.9–156), corresponding to 4.5 months or 19.2 weeks. The shortest IP recorded was 32 days and longest 264 days (Figure 1 & 2). IP did not vary for variables investigated.Open in a separate windowFigure 1Geographic representation of Bellarine Peninsula, considered endemic for BU as of 2012.Bellarine Peninsula – east of line from Geelong to Torquay. Mornington and Westernport – southwest of line from Hampton to Tooradin (including Phillip Island).Open in a separate windowFigure 2Geographic representation of East Gippsland, considered endemic for BU as of 2012.East Gippsland: East of Sale and south of the great divide.

Conclusions

The estimated mean IP of BU in Victoria is 135 days (IQR: 109–160 days), 4.5 months. The shortest recorded was IP 34 days and longest 264 days. A greater understanding of BU IP will aid clinical risk assessment and future research.  相似文献   

12.
Mycobacterium ulcerans is the causative agent of Buruli ulcer, the third most common mycobacterial disease in humans after tuberculosis and leprosy. Although the disease is associated with aquatic ecosystems, cultivation of the bacillus from the environment is difficult to achieve. Therefore, at the moment, research is based on the detection by PCR of the insertion sequence IS2404 present in M. ulcerans and some closely related mycobacteria. In the present study, we compared four DNA extraction methods for detection of M. ulcerans DNA, namely the one tube cell lysis and DNA extraction procedure (OT), the FastPrep procedure (FP), the modified Boom procedure (MB), and the Maxwell 16 Procedure (M16). The methods were performed on serial dilutions of M. ulcerans, followed by PCR analysis with different PCR targets in M. ulcerans to determine the detection limit (DL) of each method. The purity of the extracted DNA and the time and effort needed were compared as well. All methods were performed on environmental specimens and the two best methods (MB and M16) were tested on clinical specimens for detection of M. ulcerans DNA. When comparing the DLs of the DNA extraction methods, the MB and M16 had a significantly lower DL than the OT and FP. For the different PCR targets, IS2404 showed a significantly lower DL than mlsA, MIRU1, MIRU5 and VNTR6. The FP and M16 were considerably faster than the MB and OT, while the purity of the DNA extracted with the MB was significantly higher than the DNA extracted with the other methods. The MB performed best on the environmental and clinical specimens. This comparative study shows that the modified Boom procedure, although lengthy, provides a better method of DNA extraction than the other methods tested for detection and identification of M. ulcerans in both clinical and environmental specimens.  相似文献   

13.
Mycobacterium ulcerans infections were found in 11 koalas (Phascolarctos cinereus) between 1980 and 1985, in a population of approximately 200 koalas on Raymond Island in southeastern Australia. Ulcers caused by the infection occurred on the face, forearm, rump, groin and footpads. Seven koalas had multiple ulcers. All the infected animals were mature (age classes 4, 5 and 6), and eight were male. The distribution of ulcers corresponded with the distribution of wounds in a sample of 87 koalas. Many of these wounds were associated with social behaviour.  相似文献   

14.
BackgroundChronic wounds pose a significant healthcare burden in low- and middle-income countries. Buruli ulcer (BU), caused by Mycobacterium ulcerans infection, causes wounds with high morbidity and financial burden. Although highly endemic in West and Central Africa, the presence of BU in Sierra Leone is not well described. This study aimed to confirm or exclude BU in suspected cases of chronic wounds presenting to Masanga Hospital, Sierra Leone.MethodologyDemographics, baseline clinical data, and quality of life scores were collected from patients with wounds suspected to be BU. Wound tissue samples were acquired and transported to the Swiss Tropical and Public Health Institute, Switzerland, for analysis to detect Mycobacterium ulcerans using qPCR, microscopic smear examination, and histopathology, as per World Health Organization (WHO) recommendations.FindingsTwenty-one participants with wounds suspected to be BU were enrolled over 4-weeks (Feb-March 2019). Participants were predominantly young working males (62% male, 38% female, mean 35yrs, 90% employed in an occupation or as a student) with large, single, ulcerating wounds (mean diameter 9.4cm, 86% single wound) exclusively of the lower limbs (60% foot, 40% lower leg) present for a mean 15 months. The majority reported frequent exposure to water outdoors (76%). Self-reports of over-the-counter antibiotic use prior to presentation was high (81%), as was history of trauma (38%) and surgical interventions prior to enrolment (48%). Regarding laboratory investigation, all samples were negative for BU by microscopy, histopathology, and qPCR. Histopathology analysis revealed heavy bacterial load in many of the samples. The study had excellent participant recruitment, however follow-up proved difficult.ConclusionsBU was not confirmed as a cause of chronic ulceration in our cohort of suspected cases, as judged by laboratory analysis according to WHO standards. This does not exclude the presence of BU in the region, and the definitive cause of these treatment-resistance chronic wounds is uncertain.  相似文献   

15.
Background Mycobacterium ulcerans is the causative agent of the necrotizing skin disease Buruli ulcer (BU), which has been reported from over 30 countries worldwide. The majority of notified patients come from West African countries, such as Côte d’Ivoire, Ghana, Benin and Cameroon. All clinical isolates of M. ulcerans from these countries are closely related and their genomes differ only in a limited number of single nucleotide polymorphisms (SNPs).ConclusionsOur comparative genomic analysis revealed that M. ulcerans clones diversify locally by the accumulation of SNPs. Case isolates coming from more recently emerging BU endemic areas, such as the Mapé river basin, may be less diverse than populations from longer standing disease foci, such as the Nyong river basin. Exchange of strains between distinct endemic areas seems to be rare and local clonal complexes can be easily distinguished by whole genome sequencing.  相似文献   

16.
Buruli ulcer (BU), a neglected tropical disease of the skin and subcutaneous tissue, is caused by Mycobacterium ulcerans and is the third most common mycobacterial disease after tuberculosis and leprosy. While there is a strong association of the occurrence of the disease with stagnant or slow flowing water bodies, the exact mode of transmission of BU is not clear. M. ulcerans has emerged from the environmental fish pathogen M. marinum by acquisition of a virulence plasmid encoding the enzymes required for the production of the cytotoxic macrolide toxin mycolactone, which is a key factor in the pathogenesis of BU. Comparative genomic studies have further shown extensive pseudogene formation and downsizing of the M. ulcerans genome, indicative for an adaptation to a more stable ecological niche. This has raised the question whether this pathogen is still present in water-associated environmental reservoirs. Here we show persistence of M. ulcerans specific DNA sequences over a period of more than two years at a water contact location of BU patients in an endemic village of Cameroon. At defined positions in a shallow water hole used by the villagers for washing and bathing, detritus remained consistently positive for M. ulcerans DNA. The observed mean real-time PCR Ct difference of 1.45 between the insertion sequences IS2606 and IS2404 indicated that lineage 3 M. ulcerans, which cause human disease, persisted in this environment after successful treatment of all local patients. Underwater decaying organic matter may therefore represent a reservoir of M. ulcerans for direct infection of skin lesions or vector-associated transmission.  相似文献   

17.
Mycobacterium ulcerans, the causative agent of Buruli ulcer, is an emerging environmental bacterium in Australia and West Africa. The primary risk factor associated with Buruli ulcer is proximity to slow moving water. Environmental constraints for disease are shown by the absence of infection in arid regions of infected countries. A particularly mysterious aspect of Buruli ulcer is the fact that endemic and non-endemic villages may be only a few kilometers apart within the same watershed. Recent studies suggest that aquatic invertebrate species may serve as reservoirs for M. ulcerans, although transmission pathways remain unknown. Systematic studies of the distribution of M. ulcerans in the environment using standard ecological methods have not been reported. Here we present results from the first study based on random sampling of endemic and non-endemic sites. In this study PCR-based methods, along with biofilm collections, have been used to map the presence of M. ulcerans within 26 aquatic sites in Ghana. Results suggest that M. ulcerans is present in both endemic and non-endemic sites and that variable number tandem repeat (VNTR) profiling can be used to follow chains of transmission from the environment to humans. Our results suggesting that the distribution of M. ulcerans is far broader than the distribution of human disease is characteristic of environmental pathogens. These findings imply that focal demography, along with patterns of human water contact, may play a major role in transmission of Buruli ulcer.  相似文献   

18.
Numerous studies have associated Buruli ulcer (BU) disease with disturbed aquatic habitats; however, the natural reservoir, distribution, and transmission of the pathogen, Mycobacterium ulcerans, remain unknown. To better understand the role of aquatic plants in the ecology of this disease, a large-scale survey was conducted in waterbodies of variable flow throughout three regions of Ghana, Africa. Our objectives were to characterize plant communities and identify potential relationships with M. ulcerans and other mycolactone-producing mycobacteria (MPM). Waterbodies with M. ulcerans had significantly different aquatic plant communities, with submerged terrestrial plants identified as indicators of M. ulcerans presence. Mycobacterium ulcerans and MPM were detected on 14 plant taxa in emergent zones from both lotic and lentic waterbodies in endemic regions; however, M. ulcerans was not detected in the non-endemic Volta region. These findings support the hypothesis that plants provide substrate for M. ulcerans colonization and could act as potential indicators for disease risk. These findings also suggest that M. ulcerans is a widespread environmental bacteria species, but that it is absent or reduced in regions of low disease incidence. A better understanding is needed regarding the mechanistic associations among aquatic plants and M. ulcerans for identifying the mode of transmission of BU disease.  相似文献   

19.
20.
Efforts to control the spread of Buruli ulcer – an emerging ulcerative skin infection caused by Mycobacterium ulcerans - have been hampered by our poor understanding of reservoirs and transmission. To help address this issue, we compared whole genomes from 18 clinical M. ulcerans isolates from a 30km2 region within the Asante Akim North District, Ashanti region, Ghana, with 15 other M. ulcerans isolates from elsewhere in Ghana and the surrounding countries of Ivory Coast, Togo, Benin and Nigeria. Contrary to our expectations of finding minor DNA sequence variations among isolates representing a single M. ulcerans circulating genotype, we found instead two distinct genotypes. One genotype was closely related to isolates from neighbouring regions of Amansie West and Densu, consistent with the predicted local endemic clone, but the second genotype (separated by 138 single nucleotide polymorphisms [SNPs] from other Ghanaian strains) most closely matched M. ulcerans from Nigeria, suggesting another introduction of M. ulcerans to Ghana, perhaps from that country. Both the exotic genotype and the local Ghanaian genotype displayed highly restricted intra-strain genetic variation, with less than 50 SNP differences across a 5.2Mbp core genome within each genotype. Interestingly, there was no discernible spatial clustering of genotypes at the local village scale. Interviews revealed no obvious epidemiological links among BU patients who had been infected with identical M. ulcerans genotypes but lived in geographically separate villages. We conclude that M. ulcerans is spread widely across the region, with multiple genotypes present in any one area. These data give us new perspectives on the behaviour of possible reservoirs and subsequent transmission mechanisms of M. ulcerans. These observations also show for the first time that M. ulcerans can be mobilized, introduced to a new area and then spread within a population. Potential reservoirs of M. ulcerans thus might include humans, or perhaps M. ulcerans-infected animals such as livestock that move regularly between countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号