首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salmonella enterica serotype Newport is an important cause of non-typhoidal salmonellosis, a clinically less severe infection than typhoid fever caused by S. enterica serotype Typhi. In this investigation, the virulence genotypes of S. enterica Newport isolated from a backwater environment were compared with Salmonella Typhi from clinical cases in the same region where salmonellosis is endemic. Genotyping was done by PCR screening for virulence markers associated with Salmonella pathogenicity islands (SPIs) and plasmids. The virulence genes associated with SPIs I–VI were detected in 95–100% of all the isolates, while the viaB locus representing SPI-7 was detectable in 66 and 73% of the environmental and clinical isolates, respectively. A significant number of Salmonella Newport lacked virulence genes shdA and sopE compared to S. Typhi. All S. Typhi and S. Newport isolates lacked large plasmid-borne virulence genes spvR and pefA. Further investigations into the antimicrobial resistance of S. Newport revealed multiple drug resistance to ampicillin, amoxicillin/clavulanic acid, trimethorprim-sulfamethoxazole, chloramphenicol, tetracycline, cephalothin, and cephalexin. In comparison, S. Typhi were susceptible to all clinically relevant antimicrobials. The results of this study will help in understanding the spread of virulence genotypes and antibiotic resistance in S. Newport in the region of study.  相似文献   

2.
Salmonella enterica serovar Typhi and Typhimurium are closely related serovars. However, S. Typhi, a human-specific pathogen, has 5% of genes as pseudogenes, far more than S. Typhimurium, which only has 1%. One of these pseudogenes corresponds to sopD2, which in S. Typhimurium encodes an effector protein involved in Salmonella-containing vacuole biogenesis in human epithelial cell lines, which is needed for full virulence of the pathogen. We investigated whether S. Typhi trans-complemented with the functional sopD2 gene from S. Typhimurium (sopD2(STM) ) would reduce the invasion of human epithelial cell lines. Our results showed that the presence of sopD2(STM) in S. Typhi significantly modified the bacterial ability to alter cellular permeability and decrease the CFUs recovered after cell invasion of human epithelial cell line. These results add to mounting evidence that pseudogenes contribute to S. Typhi adaptation to humans.  相似文献   

3.
AIMS: Development of a PCR assay that can target multiple genes for rapid detection of Salmonella enterica serovar Typhi (S. Typhi) from water and food samples. METHODS AND RESULTS: PCR primers for invasion, O, H and Vi antigen genes, invA, prt, fliC-d and viaB were designed and used for the rapid detection of S. Typhi by multiplex PCR. Internal amplification control, which co-amplified with prt primers, was also included in the assay. The results showed that all cultures of Salmonella were accurately identified by the assay with no nonspecific amplification in other cultures. The assay had 100% detection probability when a cell suspension of 10(4) CFU ml(-1) (500 CFU per reaction) was used. Salmonella Typhi bacteria were artificially inoculated in the water and food (milk and meat rinse) samples and detected by mPCR after overnight pre-enrichment in buffered peptone water. No Salmonella bacteria could be detected from water samples collected from the field by mPCR or standard culture method. CONCLUSIONS: The developed mPCR assay provides specific detection of S. Typhi. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid methods for detection of S. Typhi from complex environmental matrices are almost nonexistent. The mPCR assay reported in this study can be useful to identify S. Typhi bacteria in field environmental samples.  相似文献   

4.
Systemic infections caused by Salmonella enterica are an ongoing public health problem especially in Sub-Saharan Africa. Essentially typhoid fever is associated with high mortality particularly because of the increasing prevalence of multidrug-resistant strains. Thus, a rapid blood-culture based bacterial species diagnosis including an immediate sub-differentiation of the various serovars is mandatory. At present, MALDI-TOF based intact cell mass spectrometry (ICMS) advances to a widely used routine identification tool for bacteria and fungi. In this study, we investigated the appropriateness of ICMS to identify pathogenic bacteria derived from Sub-Saharan Africa and tested the potential of this technology to discriminate S. enterica subsp. enterica serovar Typhi (S. Typhi) from other serovars. Among blood culture isolates obtained from a study population suffering from febrile illness in Ghana, no major misidentifications were observed for the species identification process, but serovars of Salmonella enterica could not be distinguished using the commercially available Biotyper database. However, a detailed analysis of the mass spectra revealed several serovar-specific biomarker ions, allowing the discrimination of S. Typhi from others. In conclusion, ICMS is able to identify isolates from a sub-Saharan context and may facilitate the rapid discrimination of the clinically and epidemiologically important serovar S. Typhi and other non-S. Typhi serovars in future implementations.  相似文献   

5.
Typhoid is a systemic infection caused by Salmonella Typhi and Salmonella Paratyphi A, human-restricted bacteria that are transmitted faeco-orally. Salmonella Typhi and S. Paratyphi A are clonal, and their limited genetic diversity has precluded the identification of long-term transmission networks in areas with a high disease burden. To improve our understanding of typhoid transmission we have taken a novel approach, performing a longitudinal spatial case-control study for typhoid in Nepal, combining single-nucleotide polymorphism genotyping and case localization via global positioning. We show extensive clustering of typhoid occurring independent of population size and density. For the first time, we demonstrate an extensive range of genotypes existing within typhoid clusters, and even within individual households, including some resulting from clonal expansion. Furthermore, although the data provide evidence for direct human-to-human transmission, we demonstrate an overwhelming contribution of indirect transmission, potentially via contaminated water. Consistent with this, we detected S. Typhi and S. Paratyphi A in water supplies and found that typhoid was spatially associated with public water sources and low elevation. These findings have implications for typhoid-control strategies, and our innovative approach may be applied to other diseases caused by other monophyletic or emerging pathogens.  相似文献   

6.
Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), remains a serious global health concern. Since their emergence in the mid-1970s multi-drug resistant (MDR) S. Typhi now dominate drug sensitive equivalents in many regions. MDR in S. Typhi is almost exclusively conferred by self-transmissible IncHI1 plasmids carrying a suite of antimicrobial resistance genes. We identified over 300 single nucleotide polymorphisms (SNPs) within conserved regions of the IncHI1 plasmid, and genotyped both plasmid and chromosomal SNPs in over 450 S. Typhi dating back to 1958. Prior to 1995, a variety of IncHI1 plasmid types were detected in distinct S. Typhi haplotypes. Highly similar plasmids were detected in co-circulating S. Typhi haplotypes, indicative of plasmid transfer. In contrast, from 1995 onwards, 98% of MDR S. Typhi were plasmid sequence type 6 (PST6) and S. Typhi haplotype H58, indicating recent global spread of a dominant MDR clone. To investigate whether PST6 conferred a selective advantage compared to other IncHI1 plasmids, we used a phenotyping array to compare the impact of IncHI1 PST6 and PST1 plasmids in a common S. Typhi host. The PST6 plasmid conferred the ability to grow in high salt medium (4.7% NaCl), which we demonstrate is due to the presence in PST6 of the Tn6062 transposon encoding BetU.  相似文献   

7.
In spite of a well-documented ability of Samonella enterica Typhi strains to receive R factors from Escherichia coli and other enterobacteria, epidemiological data show that Typhi is a rather poor host of antibiotic-resistance genes and in fact, of plasmids, suggesting that most of the plasmids naturally acquired by Typhi strains become unstable and eventually segregate. We have previously reported evidence that each of three plasmids conjugatively transferred to S. enterica Typhi experienced deletion-mediated loss of a resistance determinant before plasmid segregation occurred. We now report that in Typhi strains containing these unstable plasmids a superhelical DNA species of lower mobility is detected, probably representing plasmid dimer structures. Plasmid deletion is a RecA-dependent process since it is not detected in derivatives of a recA1 S. enterica Typhi strain containing the corresponding plasmids, and in such strains we were unable to detect either the low-mobility species. We propose that the deletable segments contain key information for plasmid stability in S. enterica Typhi, possibly a multimer resolution system.  相似文献   

8.
Z66 antigen-positive strains of Salmonella enterica serovar Typhi change flagellin expression in only one direction from the z66 antigen to the d or j antigen, which is different from the phase variation of S. enterica serovar Typhimurium. In the present study, we identified a new flagellin gene in z66 antigen-positive strains of S. enterica serovar Typhi. The genomic structure of the region containing this new flagellin gene was similar to that of fljBA operon of biphasic S. enterica serovars. A fljA-like gene was present downstream of the new flagellin gene. A rho-independent terminator was located between the new flagellin gene and the fljA-like gene. Hin-like gene was not present upstream of the new flagellin gene. We generated a mutant strain of S. enterica serovar Typhi, which carries a deletion of the new flagellin gene. Western blotting revealed that the 51-kDa z66 antigen protein was absent from the population of proteins secreted by the mutant strain. Southern hybridization demonstrated that the z66 antigen-positive strains of S. enterica serovar Typhi carried the new flagellin gene and fliC on two different genomic EcoRI fragments. When z66 antigen-positive strains were incubated with anti-z66 antiserum, the flagellin expression by S. enterica serovar Typhi changed from z66 antigen to j antigen. The new flagellin gene and the fljA-like gene were absent in the strain with altered flagellin expression. These results suggested that the new flagellin gene is a fljB-like gene, which encodes the z66 antigen of S. enterica serovar Typhi, and that deletion of fljBA-like operon may explain why S. enterica serovar Typhi alters the flagellin expression in only one direction from the z66 antigen to the d or j antigen.  相似文献   

9.
Salmonella enterica serovar Typhi (S. Typhi) is the etiological agent of the systemic disease typhoid fever. Transmission occurs via ingestion of contaminated food or water. S. Typhi is specific to humans, and no animal or environmental reservoirs are known. As the free-living amoeba Acanthamoeba castellanii is an environmental host for many pathogenic bacteria, this study investigates interactions between S. Typhi and A. castellanii by using cocultures. Growth of both organisms was estimated by cell count, viable count, flow cytometry, and fluorescence microscopy. Results indicate that S. Typhi can survive at least 3 weeks when grown with A. castellanii, as opposed to less than 10 days when grown as singly cultured bacteria under the same conditions. Interestingly, growth rates of amoebae after 14 days were similar in cocultures or when amoebae were singly cultured, suggesting that S. Typhi is not cytotoxic to A. castellanii. Bacteria surviving in coculture were not intracellular and did not require a physical contact with amoebae for their survival. These results suggest that S. Typhi may have a selective advantage when it is associated with A. castellanii and that amoebae may contribute to S. Typhi persistence in the environment.  相似文献   

10.
11.
Delivery of microbial products into the mammalian cell cytosol by bacterial secretion systems is a strong stimulus for triggering pro-inflammatory host responses. Here we show that Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, tightly regulates expression of the invasion-associated type III secretion system (T3SS-1) and thus fails to activate these innate immune signaling pathways. The S. Typhi regulatory protein TviA rapidly repressed T3SS-1 expression, thereby preventing RAC1-dependent, RIP2-dependent activation of NF-κB in epithelial cells. Heterologous expression of TviA in S. enterica serovar Typhimurium (S. Typhimurium) suppressed T3SS-1-dependent inflammatory responses generated early after infection in animal models of gastroenteritis. These results suggest that S. Typhi reduces intestinal inflammation by limiting the induction of pathogen-induced processes through regulation of virulence gene expression.  相似文献   

12.
《Genomics》2021,113(4):2171-2176
BackgroundRecent reports have established the emergence and dissemination of extensively drug resistant (XDR) H58 Salmonella Typhi clone in Pakistan. In India where typhoid fever is endemic, only sporadic cases of ceftriaxone resistant S. Typhi are reported. This study aimed at elucidating the phylogenetic evolutionary framework of ceftriaxone resistant S. Typhi isolates from India to predict their potential dissemination.MethodsFive ceftriaxone resistant S. Typhi isolates from three tertiary care hospitals in India were sequenced on an Ion Torrent Personal Genome Machine (PGM). A core genome single-nucleotide-polymorphism (SNP) based phylogeny of the isolates in comparison to the global collection of MDR and XDR S. Typhi isolates was built. Two of five isolates were additionally sequenced using Oxford Nanopore MinION to completely characterize the plasmid and understand its transmission dynamics within Enterobacteriaceae.ResultsComparative genomic analysis and detailed plasmid characterization indicate that while in Pakistan (4.3.1 lineage I) the XDR trait is associated with blaCTX-M-15 gene on IncY plasmid, in India (4.3.1 lineage II), the ceftriaxone resistance is due to short term persistence of resistance plasmids such as IncX3 (blaSHV-12) or IncN (blaTEM-1B + blaDHA-1).ConclusionConsidering the selection pressure exerted by the extensive use of ceftriaxone in India, there are potential risks for the occurrence of plasmid transmission events in the predominant H58 lineages. Therefore, continuous monitoring of S. Typhi lineages carrying plasmid-mediated cephalosporin resistant genes is vital not just for India but also globally.  相似文献   

13.
Wu HY  Zhang XL  Pan Q  Wu J 《Peptides》2005,26(11):2057-2063
Salmonella enterica serovar Typhi (S. Typhi) is an important pathogen which infects humans exclusively and causes typhoid or enteric fever. Recently it has been discovered that type IVB pili, encoded by the S. Typhi pil operon located in the major pathogenicity island, may be important in the pathogenesis of epidemic enteric fever. To further investigate the roles of type IVB pili of S. Typhi, a 12-mer peptide (RQERSSLSKPVV), binding to the structural protein PilS of the type IVB pili of S. Typhi, was isolated with a ribosome display system. This peptide was designated as peptide R. We found that peptide R inhibited adhesion to/invasion of human monocytic THP-1 cells by piliated S. Typhi bacteria, but had no effects on nonpiliated S. Typhi bacteria. A random 12-mer peptide, of size and solubility equal to peptide R, served as a control on the specificity of peptide R. The specific interaction and binding equilibrium between the 12-mer peptide R and PilS protein was determined by isothermal titration calorimetry (ITC) and a binding constant Ka determined to be between 0.4 x 10(5) and 2.2 x 10(5)L mol(-1). Our findings suggest that the type IV pili-binding peptide R holds potential as an antibacterial peptide effective against S. Typhi infections, both in terms of prevention and therapeutic treatment. The data further provide insights into the understanding of the pathogenic roles of the type IVB pili of S. Typhi.  相似文献   

14.
Foods contaminated with Salmonella enterica serovar Typhi are a mojor cause of typhoid fever, leading to public health problems and economic losses worldwide. Nisin and ρ-cymene were tested in this study for their antimicrobial activity against S. Typhi at 4 °C and 37 °C. Nisin and ρ-cymene, when used separately, did not inhibit the bacterium at either temperature. A synergistic antimicrobial effect between both compounds was observed when they were used simultaneously. This synergism was greater at 37 °C than at 4 °C. The lowest concentrations of nisin and ρ-cymene required for complete inhibition of S. Typhi at 37 °C were 0.3 ppm and 1.5 ppm, respectively, and 0.3 ppm and 2.5 ppm at 4 °C. The potential of nisin and ρ-cymene to control an S. Typhi population on ready-to-eat Thai-style pork sausage was also examined. The compounds were able to eliminate the contaminating bacterium with concentrations depending on the bacterial cell number on the food.  相似文献   

15.

Background

Salmonella enterica serotype Typhi can colonize and persist in the biliary tract of infected individuals, resulting in a state of asymptomatic chronic carriage. Chronic carriers may act as persistent reservoirs of infection within a community and may introduce infection to susceptible individuals and new communities. Little is known about the interaction between the host and pathogen in the biliary tract of chronic carriers, and there is currently no reliable diagnostic assay to identify asymptomatic S. Typhi carriage.

Methodology/Principal Findings

To study host-pathogen interactions in the biliary tract during S. Typhi carriage, we applied an immunoscreening technique called in vivo-induced antigen technology (IVIAT), to identify potential biomarkers unique to carriers. IVIAT identifies humorally immunogenic bacterial antigens expressed uniquely in the in vivo environment, and we hypothesized that S. Typhi surviving in the biliary tract of humans may express a distinct antigenic profile. Thirteen S. Typhi antigens that were immunoreactive in carriers, but not in healthy individuals from a typhoid endemic area, were identified. The identified antigens included a number of putative membrane proteins, lipoproteins, and hemolysin-related proteins. YncE (STY1479), an uncharacterized protein with an ATP-binding motif, gave prominent responses in our screen. The response to YncE in patients whose biliary tract contained S. Typhi was compared to responses in patients whose biliary tract did not contain S. Typhi, patients with acute typhoid fever, and healthy controls residing in a typhoid endemic area. Seven of 10 (70%) chronic carriers, 0 of 8 bile culture-negative controls (0%), 0 of 8 healthy Bangladeshis (0%), and 1 of 8 (12.5%) Bangladeshis with acute typhoid fever had detectable anti-YncE IgG in blood. IgA responses were also present.

Conclusions/Significance

Further evaluation of YncE and other antigens identified by IVIAT could lead to the development of improved diagnostic assays to identify asymptomatic S. Typhi carriers.  相似文献   

16.
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a life-threatening human disease. The lack of animal models due to S. Typhi's strict human host specificity has hindered its study and vaccine development. We find that immunodeficient Rag2(-/-) γc(-/-) mice engrafted with human fetal liver hematopoietic stem and progenitor cells are able to support?S. Typhi replication and persistent infection. A?S. Typhi mutant in a gene required for virulence in humans was unable to replicate in these mice. Another mutant unable to produce typhoid toxin exhibited increased replication, suggesting a role for this toxin in the establishment of persistent infection. Furthermore, infected animals mounted human innate and adaptive immune responses to S. Typhi, resulting in the production of cytokines and pathogen-specific antibodies. We expect that this mouse model will be a useful resource for understanding S.?Typhi pathogenesis and for evaluating potential vaccine candidates against typhoid fever.  相似文献   

17.
Vi capsular polysaccharide production is encoded by the viaB locus, which has a limited distribution in Salmonella enterica serovars. In S. enterica serovar Typhi, viaB is encoded on a 134-kb pathogenicity island known as SPI-7 that is located between partially duplicated tRNA(pheU) sites. Functional and bioinformatic analysis suggests that SPI-7 has a mosaic structure and may have evolved as a consequence of several independent insertion events. Analysis of viaB-associated DNA in Vi-positive S. enterica serovar Paratyphi C and S. enterica serovar Dublin isolates revealed the presence of similar SPI-7 islands. In S. enterica serovars Paratyphi C and Dublin, the SopE bacteriophage and a 15-kb fragment adjacent to the intact tRNA(pheU) site were absent. In S. enterica serovar Paratyphi C only, a region encoding a type IV pilus involved in the adherence of S. enterica serovar Typhi to host cells was missing. The remainder of the SPI-7 islands investigated exhibited over 99% DNA sequence identity in the three serovars. Of 30 other Salmonella serovars examined, 24 contained no insertions at the equivalent tRNA(pheU) site, 2 had a 3.7-kb insertion, and 4 showed sequence variation at the tRNA(pheU)-phoN junction, which was not analyzed further. Sequence analysis of the SPI-7 region from S. enterica serovar Typhi strain CT18 revealed significant synteny with clusters of genes from a variety of saprophytic bacteria and phytobacteria, including Pseudomonas aeruginosa and Xanthomonas axonopodis pv. citri. This analysis suggested that SPI-7 may be a mobile element, such as a conjugative transposon or an integrated plasmid remnant.  相似文献   

18.
Enteric fever, caused by Salmonella enterica, remains an unresolved public health problem in India and antimicrobial therapy is the main mode of treatment. The objective of this study was to characterize the Salmonella enterica isolates from Kolkata with respect to their antimicrobial resistance (AMR), virulence profiles and molecular subtypes. Salmonella enterica blood isolates were collected from clinically suspected enteric fever patients attending various hospitals in Kolkata, India from January 2009 to June 2013 and were tested for AMR profiles by standard protocols; for resistance gene transfer by conjugation; for resistance and virulence genes profiles by PCR; and for molecular subtypes by Pulsed Field Gel Electrophoresis (PFGE). A total of 77 Salmonella enterica serovar Typhi (S. Typhi) and 25 Salmonella enterica serovar Paratyphi A (S. Paratyphi A) from Kolkata were included in this study. Although multidrug resistance (resistance to chloramphenicol, ampicillin, co-trimoxazole) was decreasing in S. Typhi (18.2%) and absent in S. Paratyphi A, increased resistance to fluoroquinolone, the current drug of choice, caused growing concern for typhoid treatment. A single, non-conjugative non-IncHI1 plasmid of 180 kb was found in 71.4% multidrug resistant (MDR) S. Typhi; the remaining 28.6% isolates were without plasmid. Various AMR markers (bla TEM-1, catA, sul1, sul2, dfrA15, strA-strB) and class 1 integron with dfrA7 gene were detected in MDR S. Typhi by PCR and sequencing. Most of the study isolates were likely to be virulent due to the presence of virulence markers. Major diversity was not noticed among S. Typhi and S. Paratyphi A from Kolkata by PFGE. The observed association between AMR profiles and S. Typhi pulsotypes might be useful in controlling the spread of the organism by appropriate intervention. The study reiterated the importance of continuous monitoring of AMR and molecular subtypes of Salmonella isolates from endemic regions for better understanding of the disease epidemiology.  相似文献   

19.
The Salmonella enterica serovar Typhi CT18 (S.Typhi) chromosome harbours seven distinct prophage-like elements, some of which may encode functional bacteriophages. In silico analyses were used to investigate these regions in S.Typhi CT18, and ultimately compare these integrated bacteriophages against 40 other Salmonella isolates using DNA microarray technology. S.Typhi CT18 contains prophages that show similarity to the lambda, Mu, P2 and P4 bacteriophage families. When compared to other S.Typhi isolates, these elements were generally conserved, supporting a clonal origin of this serovar. However, distinct variation was detected within a broad range of Salmonella serovars; many of the prophage regions are predicted to be specific to S.Typhi. Some of the P2 family prophage analysed have the potential to carry non-essential "cargo" genes within the hyper-variable tail region, an observation that suggests that these bacteriophage may confer a level of specialisation on their host. Lysogenic bacteriophages therefore play a crucial role in the generation of genetic diversity within S.enterica.  相似文献   

20.
An initial biochemical characterization of the Salmonella enterica serovar Typhi ( S . Typhi) EnvZ sensor protein and several mutant derivatives was performed. Autophosphorylation levels were higher for Escherichia coli EnvZ, intermediate for S. enterica serovar Typhimurium EnvZ and very low for S . Typhi EnvZ, in spite of their high amino acid sequence identity. Consequently, OmpR phosphorylation was related to EnvZ autophosphorylation. Among the mutant derivatives, a C354G mutation in S . Typhi EnvZ resulted in a substantial increase in autophosphorylation, while mutation of its other cysteine residue at position 277 to L or S decreased the EnvZ autophosphorylation level. Upon heterodimerization, the S . Typhi C354G mutant complemented the wild type in vitro , increasing the EnvZ-P yield of both monomers, in accordance with the model where EnvZ autophosphorylation occurs in trans , indicating that dimer formation is a dynamic process. Hence, the C354 and the C277 residues are fundamental in determining the particular intrinsic biochemical characteristics of EnvZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号