首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the American alligator, the jaw muscles show seven bundles of tendinous structure: cranial adductor tendon, mandibular adductor tendon, lamina anterior inferior, trap-shaped lamina lateralis, lamina intramandibularis, lamina posterior, and depressor mandibular tendon (originating from the musculus depressor mandibulae, m. pseudotemporalis, m. adductor mandibulae posterior, m. adductor mandibulae externus, m. intramandibularis, m. pterygoideus anterior, and m. pterygoideus posterior). These tendinous structures are composed of many collagen fibrils and elastic fibers; however, the distributions and sizes of the fibers in these tendinous components differ in comparison with those of other masticatory muscles. The differences of these properties reflect the kinetic forces or the stretch applied to each tendon by the muscle during jaw movements in spite of the simple tendon-muscle junctions. © 1993 Wiley-Liss, Inc.  相似文献   

2.
The homologies of jaw muscles among archosaurs and other sauropsids have been unclear, confounding interpretation of adductor chamber morphology and evolution. Relevant topological patterns of muscles, nerves, and blood vessels were compared across a large sample of extant archosaurs (birds and crocodylians) and outgroups (e.g., lepidosaurs and turtles) to test the utility of positional criteria, such as the relative position of the trigeminal divisions, as predictors of jaw muscle homology. Anatomical structures were visualized using dissection, sectioning, computed tomography (CT), and vascular injection. Data gathered provide a new and robust view of jaw muscle homology and introduce the first synthesized nomenclature of sauropsid musculature using multiple lines of evidence. Despite the great divergences in cephalic morphology among birds, crocodylians, and outgroups, several key sensory nerves (e.g., n. anguli oris, n. supraorbitalis, n. caudalis) and arteries proved useful for muscle identification, and vice versa. Extant crocodylians exhibit an apomorphic neuromuscular pattern counter to the trigeminal topological paradigm: the maxillary nerve runs medial, rather than lateral to M. pseudotemporalis superficialis. Alternative hypotheses of homology necessitate less parsimonious interpretations of changes in topology. Sensory branches to the rictus, external acoustic meatus, supraorbital region, and other cephalic regions suggest conservative dermatomes among reptiles. Different avian clades exhibit shifts in some muscle positions, but maintain the plesiomorphic, diapsid soft-tissue topological pattern. Positional data suggest M. intramandibularis is merely the distal portion of M. pseudotemporalis separated by an intramuscular fibrocartilaginous sesamoid. These adductor chamber patterns indicate multiple topological criteria are necessary for interpretations of soft-tissue homology and warrant further investigation into character congruence and developmental connectivity.  相似文献   

3.
I Sato  K Shimada  H Ezure  T Sato 《Acta anatomica》1992,143(3):205-210
In the masticatory muscles, the development of bundles of the tendon was examined: they were composed of many collagen fibers and a few elastic fibers. In the masseter muscle, the property of the tendon differs in the distribution and size of collagen fibers and elastic fibers in comparison with those of other masticatory muscles. This difference is concerned with the kinetic force for the stress or the stretch of each tendon and muscle during jaw movement.  相似文献   

4.
The evolution of tendon--morphology and material properties   总被引:1,自引:0,他引:1  
Phylogenetically, tendinous tissue first appears in the invertebrate chordate Branchiostoma as myosepta. This two-dimensional array of collagen fibers is highly organized, with fibers running along two primary axes. In hagfish the first linear tendons appear and the myosepta have developed specialized regions with unidirectional fiber orientation-a linear tendon within the flat sheet of myoseptum. Tendons react to compressive load by first forming a fibrocartilaginous pad, and under severe stress, sesamoid bones. Evidence for this ability to react to load first arises in the cartilaginous fish, here documented in a tendon from the jaw of a hard-prey crushing stingray. Sesamoid bones are common in bony fish and also in tetrapods. Tendons will also calcify under tensile loads in some groups of birds, and this reaction to load is seen in no other vertebrates. We conclude that the evolutionary history of tendon gives us insight into the use of model systems for investigating tendon biology. Using mammal and fish models may be more appropriate than avian models because of the apparent evolution of a novel reaction to tensile loads in birds.  相似文献   

5.
Tendons of the jaw adductor muscles of a hard prey crushing stingray exhibit similar adaptations to compressive and shear loads as those seen in mammalian tendons. Ventral intermandibular tendon from the cownose ray, Rhinoptera bonasus, has a prominent fibrocartilaginous pad that lies between a fibrous region of the tendon and the mineralized tissue of the jaw. Histologically the pad is similar to the fibrocartilaginous meniscus of mammals, and these tissues also share some biochemical traits. Proteoglycan (PG) content in the fibrocartilaginous pad is nearly four times higher than in the linearly arrayed tendinous tissue. The predominant PGs appear to be an aggrecan-like molecule and a decorin-like molecule. The decorin-like molecule is quite small when compared to mammalian decorin (20-80 kDa vs. 100-200 kDa). This study is the first to document adaptations to compressive/shear loading in tendon from a cartilaginous fish, and the similarities to the mammalian condition argue for the early evolution of this reactive ability of tendinous tissue.  相似文献   

6.
Two months after hatching, the fibers of the jaw muscles of the American alligator are associated with three types of nerve terminals namely, plates, simple plates, and grape endings. Simple plate endings are mainly observed on the small muscle fibers. Grape-type endings are found on muscle fibers that resemble the tonic fibers of garter snakes (Hess, Am. J. Anat., '63). Most terminals are plate endings and account for 53.7–74.7% of terminals per muscle. Fibers with grape-type endings were found in all the jaw muscles studied; they lack well organized T-systems, M-lines, and post-junctional sarcolemmal folds, as well as irregularly distributed small of fibrils, and zigzag Z-lines. The properties of nerve endings of the American alligator indicate that M. depressor mandibulae, M. pseudotemporalis, and M. pterygoideus posterior have primary roles in jaw movements. M. pterygoideus anterior and M. intramandibularis contribute mainly to postural adjustments of the jaws. The multiplicity of nerve terminals in the jaw muscles of American alligators contrasts with the simple movements of their jaws. © 1994 Wiley-Liss, Inc.  相似文献   

7.
The herbivorous adaptations of the jaw adductor muscles in Neotoma mexicana were clarified by a comparative study with an unspecialized relative, Peromyscus maniculatus. In P. maniculatus, the anterior part of the deep masseter arises entirely from the lateral side of an aponeurosis, i.e., superior zygomatic plate aponeurosis, whereas N. mexicana has an additional aponeurosis for this part of the muscle, and the fibers attach on both sides of the superior zygomatic plate aponeurosis. Although the structure of the temporalis muscle is nearly identical in the two genera, a clear aponeurosis of origin occurs only in N. mexicana. These characteristics allow fibrous tissues to be processed with a large occlusal force. The deep masseter, internal pterygoid, and external pterygoid muscles of N. mexicana incline more anterodorsally than those of P. maniculatus. The transverse force component of these muscles relative to whole muscle force is smaller in N. mexicana than in P. maniculatus, with the exception of the internal pterygoid. The anterior part of the temporalis muscle of N. mexicana is specialized to produce occlusal pressure. These findings suggest that in N. mexicana a large anterior force is required to move the heavy mandible, due to the hypsodont molars, against frictional force from food, and that the posterior pull of the temporalis, which adjusts the forward force by the other jaw adductor muscles to a suitable level, need not be large for the mandibular movement.  相似文献   

8.
9.
The general structural patterns of jaw adductors in all orders of extant amphibians and reptiles, and also polypteriforms, crossopterygians (coelacanth), and dipnoans, are compared. The pterygoideus muscles probably developed independently and in parallel in gymnophions and amniotes from the profound pseudotemporalis muscle, which was present in their fishlike ancestors and was retained in caudate and anuran amphibians. The functional causes of the development of pterygoideus muscles in the majority of tetrapod groups and the absence of these muscles in Urodela and Anura are discussed. The anterior pterygoideus muscle of crocodiles is homologous to the pseudotemporalis (superficial) muscle of other reptiles.  相似文献   

10.
By means of scanning and transmissive electron microscopy, the construction of the fibrous framework of the human skeletal muscles, fasciae and tendons has been investigated and its morphofunctional analysis has been performed. The fibrous framework of the endomysium is presented as a complexly organized system of anastomosing fibers of the connective tissue, forming a net-like construction. The fibrous structures of the framework are united into a whole construction by connecting fibers and fibrils. Different types of structural interconnection of collagenous fibers with sarcolemma are revealed. The structure of the fibrous framework both in different muscles and within one muscle has certain peculiarities. The main constructive element of the fascial fibrous framework make large anastomosing collagenous fibers, their architectonics is stabilized by connective fibers and fibrils. The construction of the tendinous fibrous framework is characterized by a pronounced anisotropia of the largest collagenous fibers and a developed network of connective structures both on the surface and inside the collagenous fibers. Structural mechanisms, interconnecting muscles and tendons, are demonstrated. Presence of anastomoses between the fibrils in the composition of the collagenous fibers in the fascia and Achilles tendon are stated. Together with the peculiarities existing, the general principle of the structural organization of the fibrous framework of the muscle system is the net-like constructure dependent on presence of anastomoses and elements of the connective system between the fibrous structures. Depending on the organ's function, the construction of the network acquires certain specific morphological forms.  相似文献   

11.
Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.  相似文献   

12.
The occurrence and distribution of muscle spindles was studied in histochemically and conventionally stained serial cross sections of 6-week-old and adult rat masticatory and suprahyoid muscles. Spindles were present in moderate to large numbers in jaw closers, but they were absent in jaw openers and two of four muscles of an accessory suprahyoid group. In jaw closers, 67% or more of the total spindle population was concentrated relatively distant from the temporomandibular joint, in muscle portions which contained large numbers of extrafusal fibers reacting strongly for oxidative enzymes. Because of their location, spindles in these portions should be stretched more and, subsequently, should respond with a greater afferent discharge at any given muscle length than spindles situated nearer to the joint. Spindles in jaw closers, especially the medial pterygoid and deep masseter, often occurred in clusters and complex forms near the terminal branching of intramuscular nerve trunks. No such concentrations were seen in the two muscles of the accessory suprahyoid group that had spindles. The association in jaw closers of spindles with extrafusal fibers high in oxidative enzyme activity is consistent with the view that spindles are the sensory component of a reflex system that recruits these fibers for finely-graded contractions in response to small internal length-changes of the muscle (Botterman et al., '78); however, in jaw openers and two muscles of the accessory suprahyoid group, the absence of spindles, coupled with the presence of large populations of extrafusal fibers high in oxidative enzyme activity, is not easily reconciled with this concept.  相似文献   

13.
1. The functional morphological study of the jaw muscles of 2 species of Imperial Pigeons, Ducula aenea nicobarica and Ducula badia insignis has revealed that the structural variations of the bill, osteological and connective tissue elements, and muscles of the jaw apparatus may be correlated to functional diversity in the fruit-eating adaptation of these birds. 2. Both the species of Ducula possess moderately long, thick and stout bill with flexion zones inside, elongated orbital process of the quadrate, stout pterygoid, broad palatine and wide mandibular ramus on either side with increased retroarticular space. Such skeletal modifications together with increased orbital space indicate wide attachment-sites for the muscles, aponeuroses, tendons, and ligaments. 3. The morphology of the quadrato-mandibular joints suggests possible 'coupled kinesis' of the upper jaw, along with depression of the lower jaw. However, in a rhynchokinetic upper jaw as possessed by these birds, the kinesis is just moderate. Hence the gape of the mouth is mainly effected by the depression of the lower jaw, rather less so by the protraction of the upper jaw. 4. Among the functional groups of muscles, M. depressor mandibulae, M. adductor mandibulae externus, M. pseudotemporalis profundus, and M. pterygoideus are especially well developed. The various components of these muscles are provided with stiff as well as wide aponeuroses and tendons (much stronger than those observed in Columba), indicating forceful opening and closure of the beaks for plucking off the fruit, grasping it hard and manipulating it with the help of the beaks before swallowing. 5. The fleshy insertion of the outer slip of M. pseudotemporalis profundus extends ventrally over the dorsolateral surface of the mandible much more than it does in Columba. Further, 2 short and stiff aponeuroses at the rostral insertion of the inner slip of the muscle increase the force of adduction on the mandible. 6. M. adductor mandibulae posterior has not only wider origin and insertion, but also greater mass of fibres than that observed in Columba. 7. M. adductor mandibulae externus and M. pterygoideus form muscle-complexes with the predominance of bipinnate and multipinnate arrangements of fibres and with occasional joining fibres between their components. Such arrangements of fibres indicate sustained force-production, rather than faster movements of the jaw apparatus. 8. M. pterygoideus ventralis lateralis has a well developed 'venter externus' slip which has its thick and fleshy insertion on the outer lateral angular and articular mandible.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
In musculoskeletal models of the human temporomandibular joint (TMJ), muscles are typically represented by force vectors that connect approximate muscle origin and insertion centroids (centroid-to-centroid force vectors). This simplification assumes equivalent moment arms and muscle lengths for all fibers within a muscle even with complex geometry and may result in inaccurate estimations of muscle force and joint loading. The objectives of this study were to quantify the three-dimensional (3D) human TMJ muscle attachment morphometry and examine its impact on TMJ mechanics. 3D muscle attachment surfaces of temporalis, masseter, lateral pterygoid, and medial pterygoid muscles of human cadaveric heads were generated by co-registering measured attachment boundaries with underlying skull models created from cone-beam computerized tomography (CBCT) images. A bounding box technique was used to quantify 3D muscle attachment size, shape, location, and orientation. Musculoskeletal models of the mandible were then developed and validated to assess the impact of 3D muscle attachment morphometry on joint loading during jaw maximal open-close. The 3D morphometry revealed that muscle lengths and moment arms of temporalis and masseter muscles varied substantially among muscle fibers. The values calculated from the centroid-to-centroid model were significantly different from those calculated using the ‘Distributed model’, which considered crucial 3D muscle attachment morphometry. Consequently, joint loading was underestimated by more than 50% in the centroid-to-centroid model. Therefore, it is necessary to consider 3D muscle attachment morphometry, especially for muscles with broad attachments, in TMJ musculoskeletal models to precisely quantify the joint mechanical environment critical for understanding TMJ function and mechanobiology.  相似文献   

15.
The actions of the masticatory muscles of a variety of mammalsin which feeding behavior and the configuration of the masticatoryapparatus differ have been reported. The most common approachused in these studies involves (1) obtaining a good anatomicalperception of the musculature, (2) deriving a theoretical modelof the actions of these muscles during jaw movement, and (3)testing this model by recording muscle activity and jaw movementssimultaneously. A catalogue of the activity patterns in eleven species of mammalsduring food reduction reveals certain trends in the actionsof the masticatory muscles. Horizontal jaw movements are generatedprimarily by differential activities of the deep temporalis,superficial masseter, and medial pterygoid. Vertical movementsand the maintenance of tooth to food contact apparently areproduced by action of the superficial temporalis, deep masseter,and zygomaticomandibularis. Thus, horizontal movements are seeminglygenerated by muscles having fibers arranged in marked anteroposteriordirection, whereas vertical movements are generated by muscleshaving more or less vertically arranged fibers. The asymmetry of jaw movement and the muscular activity generatingit suggest that mastication involves an interactionbetween anunbalanced and flexible functional unit (muscles) and a balancedand stable structural unit (skull and teeth). Thus, any unbalancingof the structural unit results in a further unbalancing of themasticatory process.  相似文献   

16.
The role of tenascin-C in adaptation of tendons to compressive loading   总被引:3,自引:0,他引:3  
Although most tendon regions are subjected primarily to high tensile loads, selected regions, primarily those that directly contact bones that change the direction of the tendon, must withstand high compressive loads as well. Compressed tendon regions differ from regions subjected to primarily tensile loads: they have a fibrocartilaginous structure with spherical cells surrounded by a matrix containing aggrecan and collagen types I and II, in contrast regions not exposed to compression have a fibrous structure with spindle shaped fibroblasts surrounded by a matrix of dense, longitudinally oriented type I collagen fibrils. The spherical shape of cells in fibrocartilagenous regions indicates these cells are more loosely attached to the matrix than their spindle-shaped counterparts in fibrous regions, a feature that may help to minimize cell deformation during tendon compression. We hypothesized that expression of tenascin-C, an anti-adhesive protein, is part of the adaptation of tendon cells to compression that helps establish and maintain fibrocartilaginous regions. To test this hypothesis we compared tenascin-C content and expression in compressed (distal) versus uncompressed (proximal) segments of bovine flexor tendons. Immunohistochemistry and immunoblot analyses showed that tenascin-C content was increased in the distal tendon where it co-distributed with type II collagen and aggrecan. Tendon cells from the distal segments expressed more tenascin-C than did cells from the proximal segments for up to four days in cell culture, indicating that increased tenascin-C expression is a relatively stable feature of the distal cells. These observations support the hypothesis that tenascin-C expression is a cellular adaptation to compression that helps establish and maintain fibrocartilagenous regions of tendons.  相似文献   

17.
Ungulates generally have large masseter and pterygoid muscles and a necessarily large angular process provides attachment surface on the mandible. The temporalis muscle tends to be small. It has been suggested that this is an adaptation for enhanced control of the lower jaw and reduction of forces at the jaw joint. I suggest an additional reason: because of the geometry of the jaw, the length of that segment of the lower jaw that spans the distance from the jaw joint to the most posterior tooth is significantly reduced when the masseler and pterygoid are the dominant muscles; this region is necessarily much longer when the temporalis is large.  相似文献   

18.
《Journal of morphology》2017,278(10):1400-1411
Sesamoids are elements that originate as intratendinous structures due to genetic and epigenetic factors. These elements have been reported frequently in vertebrates, although cranial sesamoids have been recorded almost exclusively in non‐tetrapod Osteichthyes. The only tetrapod cranial sesamoids reported until now have been the transiliens cartilage (of crocodiles and turtles), and another one located in the quadrate‐mandibular joint of birds. Here, we examined seven squamate species using histological sections, dissections of preserved specimens, dry skeletons, cleared and stained specimens, computed tomographies (CT), and report the presence of other cranial sesamoids. One is attached to the cephalic condyle of the quadrate, embedded in the bodenaponeurosis and jaw adductor muscles of Ophiodes intermedius (Anguidae). The other sesamoid is found at the base of the basicranium of several squamates, capping the sphenoccipital tubercle, on the lateral side of the basioccipital–basisphenoid suture. This bone has previously been reported as “element X.” We reinterpret it as a basicranial sesamoid, as it is associated with tendons of the cranio‐cervical muscles. This bone seems to have the function of resisting tension‐compression forces generated by the muscle during flexion the head. This element was previously known in several squamates, and we confirmed its presence in three additional squamate families: Gymnophthalmidae, Gekkonidae, and Pygopodidae. The evidence suggests that cranial sesamoids are a widespread character in squamates, and it is possible that this feature has been present since the origin of the group.  相似文献   

19.
The program of acquisition of adult metabolic phenotypes was studied in three jaw muscles in order to determine the link between muscle metabolism and functional development. During early postnatal stages, there were similar transitions in the masseter, anterior digastric, and internal pterygoid muscles with respect to fiber growth, fiber type composition, and whole muscle energy metabolism. Oxidative capacity, as judged by the activities of the enzymes succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and beta-hydroxyacyl CoA dehydrogenase (beta OAC), rose sharply after birth to reach near maximal levels by 3 weeks. The capacities for glycolytic metabolism represented by lactate dehydrogenase (LDH), and for high-energy phosphate metabolism represented by adenylokinase (AK) and creatine kinase (CK) activities, rose gradually, not reaching peak values until 6 weeks or later. Thus, the maturation of oxidative metabolism preceded that of glycolytic metabolism in the developing jaw muscles. This was documented for individual fibers in the masseter muscle. Differential metabolic maturation among the jaw muscles was evident beyond 3 weeks. All three jaw muscles attained their specific adult fiber-type profile by about 6 weeks. This maturation program differed from that of hindlimb muscles [Nemeth et al., J Neurosci 9:2336-2343, 1989] and diaphragm muscle [Kelly et al., J Neurosci 11:1231-1242, 1991], reflecting their differential energy demands for contractile performance.  相似文献   

20.
We investigated patterns of jaw-muscle coordination during rhythmic mastication in three species of ungulates displaying the marked transverse jaw movements typical of many large mammalian herbivores. In order to quantify consistent motor patterns during chewing, electromyograms were recorded from the superficial masseter, deep masseter, posterior temporalis and medial pterygoid muscles of goats, alpacas and horses. Timing differences between muscle pairs were evaluated in the context of an evolutionary model of jaw-muscle function. In this model, the closing and food reduction phases of mastication are primarily controlled by two distinct muscle groups, triplet I (balancing-side superficial masseter and medial pterygoid and working-side posterior temporalis) and triplet II (working-side superficial masseter and medial pterygoid and balancing-side posterior temporalis), and the asynchronous activity of the working- and balancing-side deep masseters. The three species differ in the extent to which the jaw muscles are coordinated as triplet I and triplet II. Alpacas, and to a lesser extent, goats, exhibit the triplet pattern whereas horses do not. In contrast, all three species show marked asynchrony of the working-side and balancing-side deep masseters, with jaw closing initiated by the working-side muscle and the balancing-side muscle firing much later during closing. However, goats differ from alpacas and horses in the timing of the balancing-side deep masseter relative to the triplet II muscles. This study highlights interspecific differences in the coordination of jaw muscles to influence transverse jaw movements and the production of bite force in herbivorous ungulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号