首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA control region sequences were analyzed to investigate population structure and possible migratory links of common minke whales (Balaenoptera acutorostrata) in two ocean basins: western South Atlantic (WSA) and western South Pacific (WSP). The results of several different phylogenetic estimations consistently grouped all haplotypes but one (n = 1) from these two ocean basins into two separate clades. South and North Atlantic haplotypes were more closely related to each other than either was to haplotypes from the WSP. The interpopulation genetic distance between WSA and WSP whales was similar to that reported between North Pacific and North Atlantic common minke whales (0.0234). The migration rate between the two ocean basins was estimated at near-zero using MDIV. The genetic evidence presented here was consistent with the hypothesis of migratory links among Brazil, Chilean Patagonia and the Antarctic Peninsula, and between low-latitude and Antarctic waters of the WSP. The results suggest multiple populations of common minke whales in the Southern Hemisphere, which may have conservation as well as taxonomic implications. Our single locus results should be corroborated by additional analyses in a larger number of samples and at more genetic markers.  相似文献   

2.
Trans-Arctic dispersals and population and range expansions during the Pleistocene enhanced opportunities for evolutionary diversification and contributed to the process of speciation within the capelin, a northern marine-fish complex exhibiting a circumpolar distribution. Capelin is composed of four highly divergent and geographically discrete mitochondrial DNA (mtDNA) clades (609 bp; cytochrome b). Two clades occur in the North Atlantic, one associated with Canadian Atlantic waters, including Hudson Bay, and the second distributed from West Greenland to the Barents Sea. Two additional clades occur in the Arctic and northeast Pacific Oceans, representing the most recent divergence within the capelin phylogenetic tree. Judged from mtDNA diversity, capelin populations comprising all clades experienced at least one demographic and spatial reduction-expansion episode during recent Pleistocene glaciations that imprinted their molecular architecture. The large contemporary populations in the northeast Pacific and Arctic Oceans exhibited significant genetic structure whereas no such structure was detected in the equally extensive North Atlantic clades. All clades are characterized by one or two prevalent mtDNA haplotypes distributed over the entire range of the clade. Assuming a Pacific ancestor for capelin, we infer that capelin dispersed on two separate occasions to the North Atlantic. A more recent event resulted in the isolation of eastern Pacific and Arctic clades, with the Arctic clade positioned for a potential third Atlantic invasion, as revealed by the presence of this clade in the Labrador Sea. The Labrador Sea is a potential contact zone for three of the four capelin clades.  相似文献   

3.
Currently, three stocks of sei whales (Balaenoptera borealis) are defined in the North Atlantic; the Nova Scotian, Iceland-Denmark Strait and Eastern North Atlantic stocks, which are mainly based upon historical catch and sighting data. We analyzed mitochondrial control region DNA (mtDNA) sequences and genotypes from 7 to 11 microsatellite loci in 87 samples from three sites in the North Atlantic; Iceland, the Gulf of Maine and the Azores, and compared against the North Pacific using 489 previously published samples. No statistically significant deviations from homogeneity were detected among the North Atlantic samples at mtDNA or microsatellite loci. The genealogy estimated from the mtDNA sequences revealed a clear division of the haplotypes into a North Atlantic and a North Pacific clade, with the exception of one haplotype detected in a single sample from the Azores, which was included in the North Pacific clade. Significant genetic divergence between the North Atlantic and North Pacific Oceans was detected (mtDNA ΦST?=?0.72, microsatellite Weir and Cockerham’s ? = 0.20; p?<?0.001). The coalescent-based estimate of the population divergence time between the North Atlantic and North Pacific populations from the sequence variation among the mtDNA sequences was at 163,000 years ago. However, the inference was limited by an absence of samples from the Southern Hemisphere and uncertainty regarding mutation rates and generation times. The estimates of inter-oceanic migration rates were low (Nm at 0.007 into the North Pacific and at 0.248 in the opposite direction). Although estimates of genetic divergence among the current North Atlantic stocks were low and consistent with the extensive range of movement observed in satellite tagged sei whales, the high uncertainty of the genetic divergence estimates precludes rejection of multiple stocks in the North Atlantic.  相似文献   

4.
The subphylum Cephalochordata (lancelets) is a relatively small taxonomic group in contrast to the subphyla Urochordata and Vertebrata. As an initial step to determine whether lancelets exhibit small genetic divergence in keeping with their conservative body organization or large genetic variation, four Branchiostoma species from the Pacific (B. belcheri and B. malayanum) and Atlantic (B. floridae and B. lanceolatum) Oceans were genetically compared using partial mitochondrial DNA sequences of the cytochrome oxidase c subunit I (COI) and 16S ribosomal RNA (16S rRNA) genes. In both genes, large genetic differences were revealed between the Pacific and Atlantic species, as well as within the former. Two maximum-likelihood trees from the COI and 16S rRNA genes showed that the Pacific and Atlantic lancelets were reciprocally clustered into different clades. Furthermore, both gene trees consistently exhibited deep phylogenetic separation between the two oceans. The estimated divergence time suggested that differentiation may have followed the migration of ancestral lancelets from the Pacific to the Atlantic Oceans via the Tethys Sea.  相似文献   

5.
Aim We examined the phylogeography of the cold‐temperate macroalgal species Fucus distichus L., a key foundation species in rocky intertidal shores and the only Fucus species to occur naturally in both the North Pacific and the North Atlantic. Location North Pacific and North Atlantic oceans (42° to 77° N). Methods We genotyped individuals from 23 populations for a mitochondrial DNA (mtDNA) intergenic spacer (IGS) (n = 608) and the cytochrome c oxidase subunit I (COI) region (n = 276), as well as for six nuclear microsatellite loci (n = 592). Phylogeographic structure and connectivity were assessed using population genetic and phylogenetic network analyses. Results IGS mtDNA haplotype diversity was highest in the North Pacific, and divergence between Pacific haplotypes was much older than that of the single cluster of Atlantic haplotypes. Two ancestral Pacific IGS/COI clusters led to a widespread Atlantic cluster. High mtDNA and microsatellite diversities were observed in Prince William Sound, Alaska, 11 years after severe disturbance by the 1989 Exxon Valdez oil spill. Main conclusions At least two colonizations occurred from the older North Pacific populations to the North Atlantic between the opening of the Bering Strait and the onset of the Last Glacial Maximum. One colonization event was from the Japanese Archipelago/eastern Aleutians, and a second was from the Alaskan mainland around the Gulf of Alaska. Japanese populations probably arose from a single recolonization event from the eastern Aleutian Islands before the North Pacific–North Atlantic colonization. In the North Atlantic, the Last Glacial Maximum forced the species into at least two known glacial refugia: the Nova Scotia/Newfoundland (Canada) region and Andøya (northern Norway). The presence of two private haplotypes in the central Atlantic suggests the possibility of colonization from other refugia that are now too warm to support F. distichus. With the continuing decline in Arctic ice cover as a result of global climate change, renewed contact between North Pacific and North Atlantic populations of Fucus species is expected.  相似文献   

6.
7.
We present data on the genetic diversity and phylogenetic affinities of N2-fixing unicellular cyanobacteria in the plankton of the tropical North Atlantic Ocean. Our dinitrogenase gene (nifH) sequences grouped together with a group of cyanobacteria from the subtropical North Pacific; another subtropical North Pacific group was only distantly related. Most of the 16S ribosomal DNA sequences from our tropical North Atlantic samples were closely allied with sequences from a symbiont of the diatom Climacodium frauenfeldianum. These findings suggest a complex pattern of evolutionary and ecological divergence among unicellular cyanobacteria within and between ocean basins.  相似文献   

8.
There are two recognized species in the genus Berardius, Baird's and Arnoux's beaked whales. In Japan, whalers have traditionally recognized two forms of Baird's beaked whales, the common “slate‐gray” form and a smaller, rare “black” form. Previous comparison of mtDNA control region sequences from three black specimens to gray specimens around Japan indicated that the two forms comprise different stocks and potentially different species. We have expanded sampling to include control region haplotypes of 178 Baird's beaked whales from across their range in the North Pacific. We identified five additional specimens of the black form from the Aleutian Islands and Bering Sea, for a total of eight “black” specimens. The divergence between mtDNA haplotypes of the black and gray forms of Baird's beaked whale was greater than their divergence from the congeneric Arnoux's beaked whale found in the Southern Ocean, and similar to that observed among other congeneric beaked whale species. Taken together, genetic evidence from specimens in Japan and across the North Pacific, combined with evidence of smaller adult body size, indicate presence of an unnamed species of Berardius in the North Pacific.  相似文献   

9.
Angel sharks of the genus Squatina represent a group comprising 22 extant benthic species inhabiting continental shelves and upper slopes. In the present study, a comprehensive phylogenetic reconstruction of 17 Squatina species based on two mitochondrial markers (COI and 16S rRNA) is provided. The phylogenetic reconstructions are used to test biogeographic patterns. In addition, a molecular clock analysis is conducted to estimate divergence times of the emerged clades. All analyses show Squatina to be monophyletic. Four geographic clades are recognized, of which the Europe–North Africa–Asia clade is probably a result of the Tethys Sea closure. A second sister group relationship emerged in the analyses, including S. californica (eastern North Pacific) and S. dumeril (western North Atlantic), probably related to the rise of the Panamanian isthmus. The molecular clock analysis show that both lineage divergences coincide with the estimated time of these two geological events.  相似文献   

10.
Brucella, a causative agent of brucellosis, has been isolated recently from a variety of marine mammals. The molecular analysis of marine mammalian Brucella strains, without manifest pathology of brucellosis in the eastern North Atlantic, showed that they are distinct from terrestrial Brucella species. Previously, we reported abnormal gonads in common minke whales (Balaenoptera acutorostrata) in the western North Pacific and suggested the presence of Brucella infection in the whales in pathology and serology studies. In the present study, using polymerase chain reaction (PCR), Brucella was detected in granular testes of the whales showing caseation or calcification. The insertion of an IS711 transposable element specific for marine mammal isolates as well as a seal isolate-specific DNA fragment were also found. Molecular characterization of Brucella based on sequence analysis of the PCR products amplified from the outer membrane protein (omp) 2 gene showed that the Brucella from North Pacific common minke whales was different from terrestrial and North Atlantic marine mammal Brucella strains. The North Pacific Brucella showed the highest similarity to North Atlantic seal strains among the known Brucella strains.  相似文献   

11.
We investigated phylogenetic relationships and the biogeographic history of the Calonectris species complex, using both molecular and biometric data from one population of the Cape Verde shearwater Calonectris edwardsii (Cape Verde Islands), one from the streaked shearwater C. leucomelas (western Pacific Ocean) and 26 from Cory's shearwater populations distributed across the Atlantic (C. d. borealis) and the Mediterranean (C. d. diomedea). The streaked shearwater appeared as the most basal and distant clades, whereas the genetic divergences among the three main clades within the Palearctic were similar. Clock calibrations match the first speciation event within Calonectris to the Panama Isthmus formation, suggesting a vicariant scenario for the divergence of the Pacific and the Palearctic clades. The separation between the Atlantic and Mediterranean clades would have occurred in allopatry by range contraction followed by local adaptation during the major biogeographic events of the Pleistocene. The endemic form from Cape Verde probably evolved as a result of ecological divergence from the Mediterranean subspecies. Finally, one Mediterranean population (Almeria) was unexpectedly grouped into the Atlantic subspecies clade, both by genetic and by morphometric analyses, pointing out the Almeria-Oran oceanographic front (AOOF) as the actual divide between the two Cory's shearwater subspecies. Our results highlight the importance of oceanographic boundaries as potentially effective barriers shaping population and species phylogeographical structure in pelagic seabirds.  相似文献   

12.
We present data on the genetic diversity and phylogenetic affinities of N2-fixing unicellular cyanobacteria in the plankton of the tropical North Atlantic Ocean. Our dinitrogenase gene (nifH) sequences grouped together with a group of cyanobacteria from the subtropical North Pacific; another subtropical North Pacific group was only distantly related. Most of the 16S ribosomal DNA sequences from our tropical North Atlantic samples were closely allied with sequences from a symbiont of the diatom Climacodium frauenfeldianum. These findings suggest a complex pattern of evolutionary and ecological divergence among unicellular cyanobacteria within and between ocean basins.  相似文献   

13.
1. To help define areas and ecological parameters critical to the survival and recovery of the remnant population of North Pacific right whales, habitat use was investigated by examining all available sighting and catch records in the south-eastern Bering Sea (SEBS) and Gulf of Alaska (GOA) over the past two centuries. 2. Based on re-analyses of commercial whaling records, search effort, and resultant catches and sightings, waters of the: (i) SEBS slope and shelf, (ii) eastern Aleutian Islands and (iii) GOA slope and abyssal plain were important habitat for North Pacific right whales through the late 1960s. 3. Since 1980, the only area where right whales have been seen consistently is on the SEBS middle shelf. However, acoustic detections and single sightings have been reported in all other regions except the SEBS slope and oceanic GOA (areas where little, if any, acoustic and visual effort has occurred). 4. Sightings since 1979 were in waters < 200 m deep which may simply reflect the paucity of search effort elsewhere. From the commercial whaling era to the late 1960s, right whales were commonly seen in waters > 2000 m deep, indicating that their distribution is not restricted to shallow continental shelves. 5. North Pacific right whale sightings through the centuries have been associated with a variety of oceanic features, and there is little in common in the bathymetry of these regions. These whales appear to have a greater pelagic distribution than that observed in the North Atlantic, which may be related to the availability of larger copepods across the SEBS and GOA.  相似文献   

14.
Samples were collected from 407 fin whales, Balaenoptera physalus , at four North Atlantic and one Mediterranean Sea summer feeding area as well as the Sea of Cortez in the Pacific Ocean. For each sample, the sex, the sequence of the first 288 nucleotides of the mitochondrial (mt) control region and the genotype at six microsatellite loci were determined. A significant degree of divergence was detected at all nuclear and mt loci between North Atlantic/Mediterranean Sea and the Sea of Cortez. However, the divergence time estimated from the mt sequences was substantially lower than the time elapsed since the rise of the Panama Isthmus, suggesting occasional gene flow between the North Pacific and North Atlantic ocean after the separation of the two oceans. Within the North Atlantic and Mediterranean Sea, significant levels of heterogeneity were observed in the mtDNA between the Mediterranean Sea, the eastern (Spain) and the western (the Gulf of Maine and the Gulf of St Lawrence) North Atlantic. Samples collected off West Greenland and Iceland could not be unequivocally assigned to either of the two areas. The homogeneity tests performed using the nuclear data revealed significant levels of divergence only between the Mediterranean Sea and the Gulf of St Lawrence or West Greenland. In conclusion, our results suggest the existence of several recently diverged populations in the North Atlantic and Mediterranean Sea, possibly with some limited gene flow between adjacent populations, a population structure which is consistent with earlier population models proposed by Kellogg, Ingebrigtsen, and Sergeant.  相似文献   

15.
Bowhead whales occur in the Arctic year‐round. Their movements are largely correlated with seasonal expansions and reductions of sea ice, but a few recent extralimital sightings have occurred in the eastern and western North Atlantic and one was also documented in the western North Pacific over 50 years ago. Here we present details of a juvenile bowhead whale that was photographed and filmed from above and below the water while it was skim‐feeding in Caamaño Sound, BC, Canada on May 31, 2016. This sighting occurred over 2000 km southeast from the nearest known range for this species in the Bering Sea at a time that most bowhead whales in that region would have been migrating northeast. This sighting represents the first and only documentation of a bowhead whale in the eastern North Pacific to date.  相似文献   

16.
Phylogenetic and paleontological analyses are combined to reveal patterns of species origination and divergence and to define the significance of potential and actual barriers to dispersal in Conus, a species-rich genus of predatory gastropods distributed throughout the world's tropical oceans. Species-level phylogenetic hypotheses are based on nucleotide sequences from the nuclear calmodulin and mitochondrial 16S rRNA genes of 138 Conus species from the Indo-Pacific, eastern Pacific, and Atlantic Ocean regions. Results indicate that extant species descend from two major lineages that diverged at least 33 mya. Their geographic distributions suggest that one clade originated in the Indo-Pacific and the other in the eastern Pacific + western Atlantic. Impediments to dispersal between the western Atlantic and Indian Oceans and the central and eastern Pacific Ocean may have promoted this early separation of Indo-Pacific and eastern Pacific + western Atlantic lineages of Conus. However, because both clades contain both Indo-Pacific and eastern Pacific + western Atlantic species, migrations must have occurred between these regions; at least four migration events took place between regions at different times. In at least three cases, incursions between regions appear to have crossed the East Pacific Barrier. The paleontological record illustrates that distinct sets of Conus species inhabited the Indo-Pacific, eastern Pacific + western Atlantic, and eastern Atlantic + former Tethys Realm in the Tertiary, as is the case today. The ranges of <1% of fossil species (N=841) spanned more than one of these regions throughout the evolutionary history of this group.  相似文献   

17.
In the classical taxonomy, three Scomber species are distinguished: S. scombrus, S. australasicus, and S. japonicus. Yet, some fish taxonomists have recently recognized Scomber colias, inhabiting the Atlantic Ocean, as a separate species from S. japonicus, distributed in the Pacific Ocean. Such proposal was based on significant mitochondrial DNA divergence as well as great phenotypic variation among individuals from these two ocean basins. However, in the absence of nuclear DNA data this issue remains still controversial. In this study, a phylogenetic analysis of nuclear 5S rDNA sequences was performed. A total of 30 individuals of S. colias collected in the Atlantic and 34 specimens of S. japonicus from the Pacific were characterized. Moreover, nine individuals of Pacific S. australasicus and eight of Atlantic S. scombrus were included. Maximum likelihood, maximum parsimony, and neighbor-joining analyses revealed the presence of two well-supported distinct clades corresponding to S. colias and S. japonicus, respectively. Altogether, morphologic and genetic data are in agreement with the recognition of two different species, S. colias in the Atlantic, and S. japonicus in the Pacific.  相似文献   

18.
Right whales carry large populations of three 'whale lice' (Cyamus ovalis, Cyamus gracilis, Cyamus erraticus) that have no other hosts. We used sequence variation in the mitochondrial COI gene to ask (i) whether cyamid population structures might reveal associations among right whale individuals and subpopulations, (ii) whether the divergences of the three nominally conspecific cyamid species on North Atlantic, North Pacific, and southern right whales (Eubalaena glacialis, Eubalaena japonica, Eubalaena australis) might indicate their times of separation, and (iii) whether the shapes of cyamid gene trees might contain information about changes in the population sizes of right whales. We found high levels of nucleotide diversity but almost no population structure within oceans, indicating large effective population sizes and high rates of transfer between whales and subpopulations. North Atlantic and Southern Ocean populations of all three species are reciprocally monophyletic, and North Pacific C. erraticus is well separated from North Atlantic and southern C. erraticus. Mitochondrial clock calibrations suggest that these divergences occurred around 6 million years ago (Ma), and that the Eubalaena mitochondrial clock is very slow. North Pacific C. ovalis forms a clade inside the southern C. ovalis gene tree, implying that at least one right whale has crossed the equator in the Pacific Ocean within the last 1-2 million years (Myr). Low-frequency polymorphisms are more common than expected under neutrality for populations of constant size, but there is no obvious signal of rapid, interspecifically congruent expansion of the kind that would be expected if North Atlantic or southern right whales had experienced a prolonged population bottleneck within the last 0.5 Myr.  相似文献   

19.
No global synthesis of the status of baleen whales has been published since the 2008 IUCN Red List assessments. Many populations remain at low numbers from historical commercial whaling, which had ceased for all but a few by 1989. Fishing gear entanglement and ship strikes are the most severe current threats. The acute and long‐term effects of anthropogenic noise and the cumulative effects of multiple stressors are of concern but poorly understood. The looming consequences of climate change and ocean acidification remain difficult to characterize. North Atlantic and North Pacific right whales are among the species listed as Endangered. Southern right, bowhead, and gray whales have been assessed as Least Concern but some subpopulations of these species ‐ western North Pacific gray whales, Chile‐Peru right whales, and Svalbard/Barents Sea and Sea of Okhotsk bowhead whales ‐ remain at low levels and are either Endangered or Critically Endangered. Eastern North Pacific blue whales have reportedly recovered, but Antarctic blue whales remain at about 1% of pre‐exploitation levels. Small isolated subspecies or subpopulations, such as northern Indian Ocean blue whales, Arabian Sea humpback whales, and Mediterranean Sea fin whales are threatened while most subpopulations of sei, Bryde's, and Omura's whales are inadequately monitored and difficult to assess.  相似文献   

20.
Molecular phylogenetic studies on the evolution of the red algae indicate that this ancient division has many lineages that have recently undergone radiations. One such example is the cold–temperate family Palmariaceae. In this study, sequences from the ribosomal DNA internal transcribed spacer regions were compared among ten species in the Palmariaceae from both Atlantic and Pacific sites, Phylogenetic analyses of sequence data, in which Rhodophysema georgii Batters was used as outgroup and root, indicate a radiation into four clades, three of which contain species of “Palmaria” and the fourth species of Halosaccion. Palmaria palmata (L.) Kuntze, the type and only North Atlantic species in the genus, stands apart from all remaining species in the family and terminates the most basal branch in the rooted tree. The three more derived clades have radiated mainly in the North Pacific. Southern Ocean Palmaria and North Atlantic Devaleraea are hypothesized to have invaded from separate but closely related North Pacific ancestors. The ease with which sequences could be aligned combined with an unsaturated transition: transversion ratio and modest divergence involving predominantly point mutations suggests that the initial radiation is relatively recent (late Miocene–Pliocene) and that the Devaleraea–Palmaria clade is even more recent (late Pliocene–Pleistocene).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号