首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lupus glomerulonephritis is initiated by deposition of IgG-containing immune complexes in renal glomeruli. FcR engagement by immune complexes (IC) is crucial to disease development as uncoupling this pathway in FcRgamma(-/-) abrogates inflammatory responses in (NZB x NZW)F1 mice. To define the roles of FcR-bearing hemopoietic cells and of kidney resident mesangial cells in pathogenesis, (NZB x NZW)F1 bone marrow chimeras were generated. Nephritis developed in (NZB x NZW)F1 mice expressing activating FcRs in hemopoietic cells. Conversely, recipients of FcRgamma(-/-) bone marrow were protected from disease development despite persistent expression of FcRgamma in mesangial cell populations. Thus, activating FcRs on circulating hemopoietic cells, rather than on mesangial cells, are required for IC-mediated pathogenesis in (NZB x NZW)F1. Transgenic FcRgamma(-/-) mice expressing FcRgamma limited to the CD11b+ monocyte/macrophage compartment developed glomerulonephritis in the anti-glomerular basement disease model, whereas nontransgenic FcRgamma(-/-) mice were completely protected. Thus, direct activation of circulating FcR-bearing myeloid cells, including monocytes/macrophages, by glomerular IC deposits is sufficient to initiate inflammatory responses.  相似文献   

2.
The present study investigates the contribution of gastric mast cells on PGD2 generation in rat gastric mucosa. Cold-restraint induced stress or i.v. carbachol injection methods were used for gastric mast cell degranulation. In 19 stressed, 15 carbachol-infused and 14 control rats, gastric mast cell counts and gastric mucosa PGD2 assay were performed. Gastric mucosal content of PGF2 alpha was also determined in carbachol infused and control rats. The mean number of gastric mast cells was significantly lower in stressed and carbachol infused than in control rats. Despite these differences in gastric mast cell counts, neither PGD2 or PGF2 alpha contents in the gastric mucosa were significantly different in mast cells degranulated rats than in control animals. These results suggest another source of PGD2 in the rat gastric mucosa other than mast cells.  相似文献   

3.
L929 cells synthesize relatively little lactate when using glucose as their primary energy source, and neither glucose oxidation nor lactate production is highly sensitive to stimulation by insulin. Addition of glutamine to the system containing glucose and insulin markedly stimulates lactate production from glucose without inhibiting glucose oxidation. A mechanism in which reducing equivalents derived from glutamine oxidation are used to drive lactate production is discussed.  相似文献   

4.
5.
We previously found that oscillatory fluid flow activated MC3T3-E1 osteoblastic cell Ca(2+)(i) mobilization via the inositol 1,4,5-trisphosphate pathway in the presence of 2% fetal bovine serum (FBS). However, the molecular mechanism of fluid flow-induced Ca(2+)(i) mobilization is unknown. In this study, we first demonstrated that oscillatory fluid flow in the absence of FBS failed to increase [Ca(2+)](i) in MC3T3-E1 cells. Apyrase (10 units/ml), which rapidly hydrolyzes 5' nucleotide triphosphates to monosphophates, prevented the fluid flow induced increases in [Ca(2+)](i) in the presence of FBS. Adding ATP or UTP to flow medium without FBS restored the ability of fluid flow to increase [Ca(2+)](i), suggesting that ATP or UTP may mediate the effect of fluid flow on [Ca(2+)](i). Furthermore, adenosine, ADP, UDP, or adenosine 5'-O-(3-thiotriphosphate) did not induce Ca(2+)(i) mobilization under oscillatory fluid flow without FBS. Pyridoxal phosphate 6-azophenyl-2,4'-disulfonic acid, an antagonist of P2X purinoceptors, did not alter the effect of fluid flow on the Ca(2+)(i) response, whereas pertussis toxin, a G(i/o)-protein inhibitor, inhibited fluid flow-induced increases in [Ca(2+)](i) in the presence of 2% FBS. Thus, by the process of elimination, our data suggest that P2Y purinoceptors (P2Y2 or P2Y4) are involved in the Ca(2+)(i) response to fluid flow. Finally, a decreased percentage of MC3T3-E1 osteoblastic cells treated with P2Y2 antisense oligodeoxynucleotides responded to fluid flow with an increase in [Ca(2+)](i), and an increased percentage of ROS 17/2.8 cells, which do not normally express P2Y2 purinoceptors, transfected with P2Y2 purinoceptors responded to fluid flow in the presence of 2% FBS, confirming that P2Y2 purinoceptors are responsible for oscillatory fluid flow-induced Ca(2+)(i) mobilization. Our findings shed new light of the molecular mechanisms responsible for oscillatory fluid flow-induced Ca(2+)(i) mobilization in osteoblastic cells.  相似文献   

6.
Nine monoclonal antibodies (mAbs) against apoA-I reacting with distinct but overlapping epitopes covering more than 90% of the sequence have been used to block the interaction of 125I-labeled high density lipoprotein (125I-HDL) with HepG2 cells in order to delineate the cell binding domain of apolipoprotein A-I (apoA-I). While 2 mAbs reacting with epitopes exclusively localized in the N-terminal region (residues 1 to 86) enhanced slightly association of 125I-HDL, all other mAbs, which react with epitopes localized in the regions of amphipathic alpha-helical repeats, inhibited that association by 9 to 15%. Although this inhibition is not significant compared to the effect of an irrelevant mAb, combination of these mAbs could significantly inhibit the association of 125I-HDL (32 to 43%) as could polyclonal antibodies (up to 95%). These results are compatible with the concept of HDL binding to these cells via the nonexclusive interaction of each of the amphipathic alpha-helical repeats of apoA-I. When the same approach was applied to block the association of 3H-cholesteryl ether (CE)-labeled HDL to HepG2 cells, each anti-apoA-I could inhibit by 15 to 25% the cellular association of cholesteryl ether while mAbs in combination or polyclonal antibodies could inhibit this association up to 45% or 60%, respectively. The cholesteryl ether radioactivity that remained associated with the cells (40%) in the presence of polyclonal antibodies could be effectively blocked by addition of an antibody against the receptor binding domain of apoE (1D7). Therefore, the differential cellular association of cholesteryl ether compared to apolipoprotein can be explained by the presence of apoE secreted by HepG2 and apoE or apoB/E receptors. Thus, we conclude that the optimum uptake of both cholesteryl ether and apoA-I of HDL by cells requires the accessibility of the entire apoA-I and the cooperative binding of the amphipathic alpha-helical repeats to HepG2 cell membranes. This type of interaction would explain the competitive binding observed for apoA-I, -A-II, and -A-IV by others.  相似文献   

7.
Graft-vs-host disease (GVHD) is caused by a donor T cell anti-host reaction that evolves over several weeks to months, suggesting a requirement for persistent alloreactive T cells. Using the C3H.SW anti-C57BL/6 (B6) mouse model of human GVHD directed against minor histocompatibility Ags, we found that donor CD8(+) T cells secreting high levels of IFN-gamma in GVHD B6 mice receiving C3H.SW naive CD8(+) T cells peaked by day 14, declined by day 28 after transplantation, and persisted thereafter, corresponding to the kinetics of a memory T cell response. Donor CD8(+) T cells recovered on day 42 after allogeneic bone marrow transplantation expressed the phenotype of CD44(high)CD122(high)CD25(low), were able to homeostatically survive in response to IL-2, IL-7, and IL-15 and rapidly proliferated upon restimulation with host dendritic cells. Both allogeneic effector memory (CD44(high)CD62L(low)) and central memory (CD44(high)CD62L(high)) CD8(+) T cells were identified in B6 mice with ongoing GVHD, with effector memory CD8(+) T cells as the dominant (>80%) population. Administration of these allogeneic memory CD8(+) T cells into secondary B6 recipients caused virulent GVHD. A similar allogeneic memory CD4(+) T cell population with the ability to mediate persistent GVHD was also identified in BALB/b mice receiving minor histocompatibility Ag-mismatched B6 T cell-replete bone marrow transplantation. These results indicate that allogeneic memory T cells are generated in vivo during GVH reactions and are able to cause GVHD, resulting in persistent host tissue injury. Thus, in vivo blockade of both alloreactive effector and memory T cell-mediated host tissue injury may prove to be valuable for GVHD prevention and treatment.  相似文献   

8.
Beta cells are responsible for CXCR3-mediated T-cell infiltration in insulitis   总被引:11,自引:0,他引:11  
T cell-mediated loss of insulin-secreting beta cells in the islets of Langerhans is the hallmark of type 1 diabetes. The molecular basis for the directed migration of autoreactive T cells leading to insulitis is presently unknown. Here we demonstrate that in response to inflammation, beta cells secrete the chemokines CXC ligand 10 and CXC ligand 9, which specifically attract T-effector cells via the CXC chemokine receptor 3. In mice deficient for this receptor, the onset of type 1 diabetes is substantially delayed. Thus, in the absence of known etiological agents, CXC receptor 3 represents a novel target for therapeutic interference early in type 1 diabetes.  相似文献   

9.
Van Den Ende-Gupta syndrome (VDEGS) is an extremely rare autosomal-recessive disorder characterized by distinctive craniofacial features, which include blepharophimosis, malar and/or maxillary hypoplasia, a narrow and beaked nose, and an everted lower lip. Other features are arachnodactyly, camptodactyly, peculiar skeletal abnormalities, and normal development and intelligence. We present molecular data on four VDEGS patients from three consanguineous Qatari families belonging to the same highly inbred Bedouin tribe. The patients were genotyped with SNP microarrays, and a 2.4 Mb homozygous region was found on chromosome 22q11 in an area overlapping the DiGeorge critical region. This region contained 44 genes, including SCARF2, a gene that is expressed during development in a number of mouse tissues relevant to the symptoms described above. Sanger sequencing identified a missense change, c.773G>A (p.C258Y), in exon 4 in the two closely related patients and a 2 bp deletion in exon 8, c.1328_1329delTG (p.V443DfsX83), in two unrelated individuals. In parallel with the candidate gene approach, complete exome sequencing was used to confirm that SCARF2 was the gene responsible for VDEGS. SCARF2 contains putative epidermal growth factor-like domains in its extracellular domain, along with a number of positively charged residues in its intracellular domain, indicating that it may be involved in intracellular signaling. However, the function of SCARF2 has not been characterized, and this study reports that phenotypic effects can be associated with defects in the scavenger receptor F family of genes.  相似文献   

10.
11.
Multiple studies have shown that bipolar (BP) electric pulses in the microsecond range are more effective at permeabilizing cells while maintaining similar cell survival rates as compared to monopolar (MP) pulse equivalents. In this paper, we investigated whether the same advantage existed for BP nanosecond-pulsed electric fields (nsPEF) as compared to MP nsPEF. To study permeabilization effectiveness, MP or BP pulses were delivered to single Chinese hamster ovary (CHO) cells and the response of three dyes, Calcium Green-1, propidium iodide (PI), and FM1-43, was measured by confocal microscopy. Results show that BP pulses were less effective at increasing intracellular calcium concentration or PI uptake and cause less membrane reorganization (FM1-43) than MP pulses. Twenty-four hour survival was measured in three cell lines (Jurkat, U937, CHO) and over ten times more BP pulses were required to induce death as compared to MP pulses of similar magnitude and duration. Flow cytometry analysis of CHO cells after exposure (at 15 min) revealed that to achieve positive FITC-Annexin V and PI expression, ten times more BP pulses were required than MP pulses. Overall, unlike longer pulse exposures, BP nsPEF exposures proved far less effective at both membrane permeabilization and cell killing than MP nsPEF.  相似文献   

12.
The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-[125I]iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-[N-acetyl-beta-glucosaminyl] asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide. Complete removal of N-linked oligosaccharide from the dopamine D2 receptor did not change the rank order potency of agonist and antagonist compounds to compete for [3H]spiperone binding to crude membrane fractions. The dopamine D2 receptor represents a highly glycosylated neural receptor.  相似文献   

13.
In many cell systems, sphingosine 1-phosphate (SPP) increases cytosolic Ca2+ concentration ([Ca2+]i) by acting as intracellular mediator and extracellular ligand. We recently demonstrated (Meacci E, Cencetti F, Formigli L, Squecco R, Donati C, Tiribilli B, Quercioli F, Zecchi-Orlandini S, Francini F, and Bruni P. Biochem J 362: 349-357, 2002) involvement of endothelial differentiation gene (Edg) receptors (Rs) specific for SPP in agonist-mediated Ca2+ response of a mouse skeletal myoblastic (C2C12) cell line. Here, we investigated the Ca2+ sources of SPP-mediated Ca2+ transients in C2C12 cells and the possible correlation of ion response to cytoskeletal rearrangement. Confocal fluorescence imaging of C2C12 cells preloaded with Ca2+ dye fluo 3 revealed that SPP elicited a transient Ca2+ increase propagating as a wave throughout the cell. This response required extracellular and intracellular Ca2+ pool mobilization. Indeed, it was significantly reduced by removal of external Ca2+, pretreatment with nifedipine (blocker of L-type plasma membrane Ca2+ channels), and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-mediated Ca2+ pathway inhibitors. Involvement of EdgRs was tested with suramin (specific inhibitor of Edg-3). Fluorescence associated with Ins(1,4,5)P3Rs and L-type Ca2+ channels was evident in C2C12 cells. SPP also induced C2C12 cell contraction. This event, however, was unrelated to [Ca2+]i increase, because the two phenomena were temporally shifted. We propose that SPP may promote C2C12 cell contraction through Ca2+-independent mechanisms.  相似文献   

14.
15.
16.
《The Journal of cell biology》1989,109(6):3419-3424
Transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 2 were found to be potent mitogens for purified rat Schwann cells, each stimulating DNA synthesis in quiescent cells and also increasing their proliferation rate. Half-maximal stimulation of DNA synthesis occurred at approximately 0.1 ng/ml TGF-beta 1 or TGF-beta 2. Mitogenic stimulation by TGF-beta 1 and TGF-beta 2 was enhanced by forskolin, which activates adenylate cyclase, at concentrations up to 0.5 microM forskolin. However, at 5 microM forskolin, the synergistic interaction between forskolin and TGF-beta 1 was abolished. These results are in contrast to the observed synergy between forskolin and another Schwann cell mitogen, glial growth factor (GGF). Both 0.5 and 5 microM forskolin were found to enhance the stimulation of DNA synthesis by partially purified GGF (GGF-CM). As well as being functionally distinct, TGF-beta 1 and GGF-CM activities were also physically separable by chromatography on a Superose 12 gel permeation column. Thus, TGF-beta 1 and beta 2 are rat Schwann cell mitogens, and Schwann cells are one of the few normal cell populations to respond mitogenically to TGF-beta.  相似文献   

17.
Similar to its role in secretory cells, calcium triggers exocytosis in nonsecretory cells. This calcium-dependent exocytosis is essential for repair of membrane ruptures. Using total internal reflection fluorescence microscopy, we observed that many organelles implicated in this process, including ER, post-Golgi vesicles, late endosomes, early endosomes, and lysosomes, were within 100 nm of the plasma membrane (in the evanescent field). However, an increase in cytosolic calcium led to exocytosis of only the lysosomes. The lysosomes that fused were predominantly predocked at the plasma membrane, indicating that calcium is primarily responsible for fusion and not recruitment of lysosomes to the cell surface.  相似文献   

18.
19.
Although prostaglandin E2 (PGE2) has been shown by pharmacologic and genetic studies to be important in skin cancer, the molecular mechanism(s) by which it contributes to tumor growth is not well understood. In this study, we investigated the mechanisms by which PGE2 stimulates murine keratinocyte proliferation using in vitro and in vivo models. In primary mouse keratinocyte cultures, PGE2 activated the epidermal growth factor receptor (EGFR) and its downstream signaling pathways as well as increased cyclic AMP (cAMP) production and activated the cAMP response element binding protein (CREB). EGFR activation was not significantly inhibited by pretreatment with a c-src inhibitor (PP2), nor by a protein kinase A inhibitor (H-89). However, PGE2-stimulated extracellularly regulated kinase 1/2 (ERK1/2) activation was completely blocked by EGFR, ERK1/2, and phosphatidylinositol 3-kinase (PI3K) pathway inhibitors. In addition, these inhibitors attenuated the PGE2-induced proliferation, nuclear factor-kappa B, activator protein-1 (AP-1), and CREB binding to the promoter regions of the cyclin D1 and vascular endothelial growth factor (VEGF) genes and expression of cyclin D1 and VEGF in primary mouse keratinocytes. Similarly, in vivo, we found that WT mice treated with PGE2 and untreated cyclooxygenase-2-overexpressing transgenic mice had higher levels of cell proliferation and expression of cyclin D1 and VEGF, as well as higher levels of activated EGFR, nuclear factor-kappa B, AP-1, and CREB, than vehicle-treated WT mice. Our findings provide evidence for a link between cyclooxygenase-2 overexpression and EGFR-, ERK-, PI3K-, cAMP-mediated cell proliferation, and the tumor-promoting activity of PGE2 in mouse skin.  相似文献   

20.
Pancreatic beta-cells have an intrinsic oscillatory Ca2+ activity supposed to be synchronized among the islets by cytoplasmic Ca2+ transients elicited by nonadrenergic, noncholinergic (NANC) neurons. To improve the understanding of this process, the cytoplasmic Ca2+ concentration ([Ca2+]i) was measured in two insulin-releasing cell lines using dual wavelength microfluorometry and the indicator fura-2. INS-1 cells but not RINm5F cells were found to generate transients of [Ca2+]i in the presence of the Ca2+ channel blocker methoxyverapamil. These transients differed from those occurring in native beta-cells persisting in the presence of thapsigargin or during prolonged exposure to ATP. Moreover, the [Ca2+]i transients were poorly synchronized whether or not the INS-1 cells had physical contact. If appearing in native beta-cells, the type of [Ca2+]i transients now observed may interfere with the coordination of the beta-cell rhythmicity evoked by NANC neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号