首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of hydrogen peroxide on morphological characteristics and resistance of common wheat calluses (Triticum aestivum L.) to Tilletia caries Till. The induction of the defense response and morphogenesis in calluses depended on H2O2 concentration. A correlation was revealed between the elevated concentration of hydrogen peroxide in wheat calluses and high activity of oxalate oxidase in the cell wall. Administration of H2O2 into the callus culture medium was followed by rhizogenesis, induced the formation of dense regions, and inhibited fungal growth on calluses. Hydrogen peroxide at high concentrations was less potent in inhibiting the growth of fungi. A relationship was found between oxalate oxidase activity, H2O2 concentration, and morphogenetic and defense responses of calluses induced by exogenous hydrogen peroxide. These data suggest that the induction of H2O2 generation is one of the approaches to increase callus resistance.  相似文献   

2.
The effect of salicylic acid (SA) on oxalate oxidase and peroxidase activities and hydrogen peroxide (H2O2) production in leaf cells has been studied in wheat of the susceptible cultivar Zhnitsa infected by Septoria nodorum, a pathogen of wheat leaf blotch. The results show that fungal hyphae spread into interstices between mesophyll cells and that infected tissues contain H2O2. Treatment with SA results in enhanced H2O2 production in mesophyll cells, which is due to activation of oxalate oxidase and peroxidase in the cell wall. It is proposed that the modulating effect of SA on oxidoreductase activities is involved in the induction of protective response to fungal infection in wheat plants.  相似文献   

3.
4.
Head blight caused by Fusarium graminearum (F. graminearum) is one of the major threats to wheat and barley around the world. The importance of this disease is due to a reduction in both grain yield and quality in infected plants. Currently, there is limited knowledge about the physiological mechanisms involved in plant resistance against this pathogen. To reveal the physiological mechanisms underlying the resistance to F. graminearum, spikes of resistant (Sumai3) and susceptible (Falat) wheat cultivars were analyzed 4 days after inoculation, as the first symptoms of pathogen infection appeared. F. graminearum inoculation resulted in a greater induction level and activity of salicylic acid (SA), callose, phenolic compounds, peroxidase, phenylalanine ammonia lyase (PAL), and polyphenol oxidase in resistant versus susceptible cultivars. Soil drench application to spikes of SA, 24 h before inoculation with F. graminearum alleviated Fusarium head blight symptoms in both resistant and susceptible cultivars. SA treated plants showed a significant increment in hydrogen peroxide (H2O2) production, lipid peroxidation, SA, and callose content. SA-induced H2O2 level seems to be related to increased superoxide dismutase and decreased catalase activities. In addition, real-time quantitative PCR analysis showed that SA pretreatment induced expression of PAL genes in both infected and non-infected head tissues of the susceptible and resistant cultivars. Our data showed that soil drench application of SA activates antioxidant defense responses and may subsequently induce systemic acquired resistance, which may contribute to the resistance against F. graminearum. These results provide novel insights about the physiological and molecular role of SA in plant resistance against hemi-biotrophic pathogen infection.  相似文献   

5.
The effect of two strains of the phytopathogenic fungus Septoria nodorum Berk. of different virulence on the intensity of local generation of hydrogen peroxide in common wheat leaves and the role of oxidoreductases in this process was studied. Differences in the pattern of hydrogen peroxide production in wheat plants infected with high- and low-virulence pathogen strains have been found. The low-virulent S. nodorum strain caused a long-term hydrogen peroxide (H2O2) generation in the infection zone, whereas the inoculation of leaves with the highly virulent strain resulted in a transient short-term increase in the H2O2 concentration at the initial moment of contact between the plant and the fungus. It was shown that the low level of H2O2 production by plant cells at the initial stages of pathogenesis facilitates S. nodorum growth and development. The decrease in the H2O2 concentration induced by the highly virulent S. nodorum strain is determined by inhibition of the oxalate oxidase activity in plant tissues and by the ability of the fungus to actively synthesize an extracellular catalase. The pattern of hydrogen peroxide generation at the initial stages of septoriosis may serve as an index of virulence of S. nodorum population.  相似文献   

6.
The effect of 1-methylcyclopropene (1-MCP), which inhibits the reception of ethylene, on the following has been studied: hydrogen peroxide generation, oxalate oxidase activity, peroxidase activity, catalase activity, and lignin accumulation in infected leaves of soft spring wheat (Triticum aestivum L.) cultivars that differ in their resistance to the leaf blotch disease, caused by the hemibiotrophic fungus Septoria nodorum Berk. A decrease in the development of leaf blotch in wheat leaves under the influence of 1-MCP was, on one hand, followed by an inhibition of catalase activity; on the other hand, it was accompanied by an increase in oxalate oxidase and peroxidase activity, as well as an accumulation of H2O2 in tissues and lignin in the infected zone. The role of the ethylene reception system in the defense response of plants to infection with a hemibiotrophic pathogen, that causes leaf blotch disease, is discussed.  相似文献   

7.
8.
The effect of hydrogen sulfide (H2S) donor sodium hydrosulfide (NaHS) on the heat resistance of wheat (Triticum aestivum L.) coleoptile cells, the formation of reactive oxygen species (ROS), and the activity of the antioxidant enzymes in them was investigated. The treatment of coleoptiles with 100 µM NaHS caused transient enhancement of the generation of the superoxide anion radical (O2 ?) and an increased hydrogen peroxide content. The activities of antioxidant enzymes—superoxide dismutase, catalase, and guaiacol peroxidase— and coleoptile resistance to damaging heat was later found to have increased. The biochemical and physiological effects of the hydrogen sulfide donor described above were inhibited by the treatment of wheat coleoptiles with the hydrogen peroxide scavenger dimethylthiourea, the NADPH oxidase inhibitor imidazole, the extracellular calcium chelator EGTA, and the phosphatidylinositol-specific phospholipase C inhibitor neomycin. A conclusion was made on the role of ROS generation, which is dependent on the activity of NADPH oxidase and calcium homeostasis, in the transduction of the H2S signal, which induces antioxidant enzymes and the development of plant cell heat resistance.  相似文献   

9.
The effect of salicylic acid on the content of soluble proteins and individual polypeptides in Tatar buckwheat Fagopyrum tataricum calluses differing in ability for morphogenesis was studied. Changes in the protein composition of the calluses cultivated in the dark and in the light indicated the higher sensitivity of the non-morphogenic callus. Different response of callus cultures to salicylic acid and conditions of cultivation (light, darkness) is suggested to be associated with the antioxidant defense system, which is, in particular, characterized by the hydrogen peroxide content in the calluses. Salicylic acid increased the H2O2 content in non-morphogenic calluses more strongly than in morphogenic calluses, and the difference was more significant for the calluses cultivated in the light.Translated from Biokhimiya, Vol. 70, No. 3, 2005, pp. 390–396.Original Russian Text Copyright © 2005 by Maksyutova, Galeeva, Rumyantseva, Viktorova.  相似文献   

10.
The ability of Bacillus subtilis Cohn and Bacillus thuringiensis Berliner to induce systemic resistance in wheat plants to the casual agent of Septoria nodorum Berk., blotch has been studied. It has been shown that strains of Bacillus ssp. that possess the capacity for endophytic survival have antagonistic activity against this pathogen in vitro. A reduction of the degree of Septoria nodorum blotch development on wheat leaves under the influence of Bacillus spp. was accompanied by the suppression of catalase activity, an increase in peroxidase activity and H2O2 content, and expression of defence related genes such us PR-1, PR-6, and PR-9. It has been shown that B. subtilis 26 D induces expression levels of wheat pathogenesis-related (PR) genes which marks a SA-dependent pathway of sustainable development and that B. thuringiensis V-5689 and V-6066 induces a JA/ET-dependent pathway. These results suggest that these strain Bacillus spp. promotes the formation of wheat plant resistance to S. nodorum through systemic activation of the plant defense system. The designed bacterial consortium formed a complex biological response in wheat plants infected phytopathogen.  相似文献   

11.
Functional interactions of calcium ions, hydrogen peroxide, and nitric oxide as signal mediators in root cells of wheat (Triticum aestivum L.) seedlings upon induction of their heat resistance was studied with use of inhibitor-based analysis. Treatment of the seedlings with hydrogen peroxide or a combination of calcium chloride with ionophore A23187 significantly increased their content of nitric oxide, which peaked 0.5–1 h after the start of the treatment. CaCl2 or exogenous NO donor (sodium nitroprusside, SNP) transitorily increased the hydrogen peroxide level in the roots. Seedlings pretreatments with calcium chelator (EGTA), blocker of Ca2+ channels (LaCl3), inhibitor of phospholipase C (neomycin), or antagonist of cyclic adenosine-5'-diphosphatribose formation (nicotinamide) more or less prevented the rise in the nitric oxide content in roots caused by exogenous H2O2; the SNP-induced rise in hydrogen peroxide was also damped down. However, the seedlings pretreatment with antioxidants ionol or dimethylthiourea did not hinder the increase in the NO level, which was caused by exogenous Ca2+. The inhibitors of NO synthase (NG-nitro-L-arginine methyl ester, L-NAME) or nitrate reductase (sodium tungstate) did not interfere in the accumulation of H2O2 in root tissues stimulated by exogenous calcium. Calcium antagonists diminished the seedlings heat resistance increased by hydrogen peroxide or SNP. Antioxidants and inhibitors of NO synthase or nitrate reductase weakened the calcium-stimulated enhancement in the seedlings heat resistance. It was concluded that calcium may activate NO- and H2O2-generating enzymatic systems as well as participate in the transduction of signals of these mediators into genetic apparatus and in the formation of physiological reactions underlying the enhanced heat resistance.  相似文献   

12.
A study was made of the influence of bisol 2 and baitan compounds on morphogenesis and defence response of wheat calluse cells infected with bunt agent in associated with oxalate oxidase activation. After introduction of bisol and baitan into cultivation medium, dense area with meristema zones, germs of shoots and rhizoids appeared on non-morphogenic calluses, which correlated with enzyme activation. Parenchyma-like cells, generating hydrogen peroxide, were seen in the site of pathogen penetration under infestation, but were never revealed in control. Generation of hydrogen peroxide in the site of infection was accompanied with an increased oxalate oxidase activity in the cytoplasmic fraction, and with suppression of this activity in a fraction bound to the cell wall. Both compounds induced oxalate oxidase activity under combined cultivation of wheat calluses with bunt agent.  相似文献   

13.
Peroxiredoxins (Prxs) are ubiquitous thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative Type II Prx (ThPrx1) was identified and characterized from Tamarix hispida. The expression of ThPrx1 is highly induced in response to hydrogen peroxide (H2O2) and methyl viologen (MV) stresses. When expressed ectopically, ThPrx1 showed enhanced tolerance against oxidative stress in yeast and Arabidopsis. In addition, transgenic Arabidopsis plants overexpressing ThPrx1 displayed improved seedling survival rates and increased root growth and fresh weight gain under H2O2 and MV treatments. Moreover, transgenic Arabidopsis plants showed decreased accumulation of H2O2, superoxide (O2??) and malondialdehyde (MDA), increased superoxide dismutase (SOD) activity compared to wild-type (WT) plants under oxidative stress. Moreover, transgenic plants maintained higher photosynthesis efficiency and lower electrolyte leakage rates than that of WT plants under stress conditions. These results clearly indicated that ThPrx1 plays an important role in cellular redox homeostasis under stress conditions, leading to the maintenance of membrane integrity and increased tolerance to oxidative stress.  相似文献   

14.
The effect of Ca2+ on morphophysiological parameters of wheat calli (Triticum aestivum L.) infected by the bunt pathogen Tilletia caries, in particular on the level of active oxygen species, activity of oxalate oxidase, peroxidase, and catalase is investigated. The concentration of O2−, H2O2, and activity of oxidoreductases (oxalate oxidase, peroxidase, and catalase) depended on the content of Ca2+ in the culture medium of calli. The increase of the concentration of Ca2+ ions in the culture medium led to forming of calli with high structure, induction of activity of oxalate oxidase and of some isoperoxidase, and to accumulation of active oxygen species. These changes contributed to inhibition of development of the fungus. So this dependence confirm the role of calcium as the intermediant in biochemical reactions related to the formation of the protective response of plant cells to biotic stress.  相似文献   

15.
Effect of high-frequency vibration on growth rate, membrane stability and activities of some antioxidant enzymes were studied in callus tissues of Hyoscyamus kurdicus. Calli initiated from leaf (LE), shoot (SE) and root (RE) explants, and sinusoidal vibrations at 0, 50, 100 and 150 Hz for 30 min were applied on the H. kurdicus calli. Results showed that sinusoidal vibration at 50 and 100 Hz promoted the growth rate as compared to control, and the optimum growth was found at 50 Hz. Sinusoidal vibration increased significantly protein and proline contents and activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POX) enzymes, and decreased total carbohydrate, H2O2 level and CAT activity as compared to control. Lipid peroxidation also decreased under sinusoidal vibration in all the calli, and the maximum percentage of decrease was observed at 50 Hz. Native polyacrylamide gel electrophoresis indicated different isoform profiles in vibration treated and untreated plants concerning antioxidant enzymes. The responses of different types of calluses were different, and RE callus showed the highest growth, membrane stability and antioxidant enzymes activity as compared to LE and SE calli. These results suggest sinusoidal vibration at optimum frequency could improve callus growth by induction of antioxidative enzymes activity and membrane stability in calli of H. kurdicus.  相似文献   

16.
17.
Transgenic chilli pepper (Capsicum annuum L.) plants tolerant to salinity stress were produced by introducing the wheat Na+/H+ antiporter gene (TaNHX2) via Agrobacterium-mediated transformation. Cotyledonary explants were infected with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBin438 that contains a wheat antiporter (TaNHX2) gene driven by the double CaMV 35S promoter and NPT II gene as a selectable marker. PCR and semiquantitative RT-PCR analysis confirmed that the TaNHX2 gene had been integrated and expressed in the T1 generation of transgenic pepper plants as compared to the non-transformed plants. Southern blot analysis further verified the integration and presence of TaNHX2 gene in the genome of chilli pepper plants. Biochemical assays of these transgenic plants revealed enhanced levels of proline, chlorophyll, superoxide dismutase, ascorbate peroxidase, relative water content, and reduced levels of hydrogen peroxide (H2O2), malondialdehyde compared to wild-type plants under salt stress conditions. The present investigation clearly showed that overexpression of the TaNHX2 gene enhanced salt stress tolerance in transgenic chilli pepper plants.  相似文献   

18.
To evaluate the effectiveness of a germin-like protein (GLP) in legumes against the serious soil-borne pathogen Fusarium oxysporum f. sp. lentis, an Oryza sativa root-expressed GLP (OsRGLP1) was expressed in the model legume Medicago truncatula using the recombinant vector pCOsRGLP1. The transgene was highly expressed in M. truncatula transformed lines as assessed by RT-qPCR. Consistent with the active status of the transgene there was an elevated accumulation of H2O2 in transformed progeny. Enzymatic characterization of T1 transgenic progeny showed increased superoxide dismutase (SOD) activity. The additional SOD activity in transgenic lines was insensitive to potassium cyanide and sensitive to H2O2 indicating its resemblance to FeSOD. The effectiveness of the OsRGLP1 gene was tested by monitoring the root disease after infection of wild-type and transgenic lines. Wild-type plants were greatly affected by the pathogen infection showing a percent disease index value of 50 compared to 10–18 for the transgenic lines. The tolerance of the transgenic lines leads to recovery in fresh weight and pod production to an almost normal level. Analysis of defense-related genes downstream of hydrogen peroxide (H2O2) in transgenic plants showed induction of salicylic acid and jasmonate signaling pathways and increased expression of some pathogenesis-related-1 (PR-1) genes and a plant defensin gene. Overall, the findings suggest that OsRGLP1 provides protection against the fungal pathogen F. oxysporum that may involve the direct influence of H2O2 on signaling pathways leading to the activation of defense-related genes.  相似文献   

19.
The influence of cold hardening of rye (Secale cereale L.) and wheat (Triticum aestivum L.) seedlings on their resistance to the oxidative stress (OS) agents, namely, 50 mM hydrogen peroxide or 5 mM iron (II) sulfate was studied. Unhardened rye seedlings were more resistant to hydrogen peroxide than those of wheat, since their growth was less inhibited, and they accumulated lesser amounts of lipid peroxidation products after a treatment with H2O2. The interspecific differences in responses to FeSO4 were less significant. The unhardened seedlings of rye, in comparison with those of wheat, possessed more active guaiacol peroxidase (GPO) and more levels of anthocyanins and proline. In response to the OS agents, the unhardened rye seedlings enhanced activities of superoxide dismutase and catalase, whereas the wheat seedlings enhanced GPO activity and proline content. The cold hardening (6 days at 2°C) increased activities of antioxidant (AO) enzymes, contents of proline, sugars, and anthocyanins in seedlings of both species, and made the seedlings more resistant to the OS agents. After the cold hardening, rye seedlings were more resistant to OS than wheat seedlings. The hardened seedlings of both species activated the AO enzymes in response to H2O2 or FeSO4 greater than the unhardened ones. However, the hardened wheat seedlings, in contrast to the unhardened ones, did not augment the proline content in contact with the OS agents. The conclusion was drawn on different contributions of AO enzymes and low-molecular weight compounds to the basal and induced by the cold—hardening resistances of rye and wheat seedlings to OS.  相似文献   

20.
The level of active oxygen species (AOS)—superoxide anion radical (O 2 ·? ) and hydrogen peroxide (H2O2)—in pea (Pisum sativum L.) cultivar Marat seedlings was studied upon their inoculation with symbiotic (Rhizobium leguminosarum bv. viceae strain CIAM 1026) and pathogenic (Pseudomonas syringae pv. pisi Sackett) microorganisms. Different patterns of the changes in AOS in pea seedlings during the interactions with the symbiont and the phytopathogen were recorded. It is assumed that O 2 ·? and H2O2 are involved in the defense and regulatory mechanisms of the host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号