首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Hori  J. C. Green 《Protoplasma》1985,125(1-2):140-151
Summary Mitosis and cytokinesis have been studied in the flagellate algaIsochrysis galbana Parke (Prymnesiophyceae). Nuclear division is preceded by replication of the flagella and haptonema, the Golgi body and the chloroplast; fission in the chloroplast occurs in the region of the pyrenoid. During prophase, spindle microtubules radiating from two ill-defined poles are formed. The nuclear envelope breaks down and the chromatin condenses. At metaphase the spindle is fully developed, some pole-to-pole microtubules passing through the well-defined chromatin plate, others terminating at it. No kinetochores or individual chromosomes were observed. By late metaphase, many Golgi-derived vesicles may be seen against the two poleward faces of the metaphase plate. During anaphase, the two daughter masses of chromatin move towards the poles. In early telophase, the nuclear envelope of each daughter nucleus is complete only on the side towards the adjacent chloroplast, remaining open on the interzonal side. However, during telophase each nucleus becomes reorientated so that it lies lateral to the long axis of the spindle and with its open side towards the chloroplasts. By late telophase, each new nuclear envelope is complete and confluence with the adjacent chloroplast ER established.Cytokinesis and subsequent segregation of the daughter cells are effected by the dilation of Golgi- and ER-derived vesicles in the interzonal region. No microtubular structures are involved. Comparisons with the results from other studies of mitosis in members of thePrymnesiophyceae show that they all have a number of features in common, but that there are differences in detail between species.  相似文献   

2.
Cell division in Chlamydomonas moewusii is described. The cells become immobile with flagellar abscission prior to mitosis. The basal bodies migrate toward the nucleus and become intimately associated with the nuclear membrane which is devoid, of ribosomes where adjacent to the basal bodies. The basal bodies replicate at preprophase. The nucleolus fragments at this stage. By prophase the basal body pairs have migrated, to the nuclear poles. Spindle fibers become prominent in the nucleus. The nuclear membrane does not fragment. The nucleus assumes a crescent-form by metaphase. Polar fenestrae are absent. Kinetochores appear at anaphase. An interzonal spindle elongates as the chromosomes move to the nuclear poles. Daughter nuclei become abscised by an ingrowth of nuclear membrane, leaving behind a separated, degenerating interzonal spindle. Ribosomes reappear on the outer nuclear membrane at late telophase. Nucleoli reform early in cytokinesis. The cleavage furrow, associated microtubules, and endoplasmic reticulum comprise the phycoplast. Cytokinesis proceeds rapidly after the completion of telophase. The basal body-nucleus relationship becomes reorganized into the typical interphase condition late in cytokinesis. Specific and predictable organelle rearrangements during mitosis have been described. Cell division in C. moewusii is compared with other algae, especially C. reinhardi.  相似文献   

3.
Except for the lack of a centriole, interphase cell morphology and cell division in Stichococcus is similar to that in Klebsormidium. The cell in Stichococcus is largely filled by a chloroplast and pyrenoid, at the side of which are two mitochondria and one small peroxisome. The chloroplast/pyrenoid cleaves early in prophase, probably completely, and the nucleus is inserted between the two halves. A band of 3–5 microtubules always encircles the prophase nucleus; these disappear by metaphase. The spindle is open, the daughter nuclei remain far apart at telophase and during cytokinesis, and vacuoles collect between them; no phycoplast is associated with the cleavage furrow.

These results indicate a close phyletic relationship between Stichococcus and Klebsormidium, two organisms which are now considered to be more closely related to the progenitors of the higher land plants than most of the other members of the Ulotrichales.  相似文献   

4.
ABSTRACT The ultrastructural features of cell division in the biflagellate, phagotrophic euglenoid, Entosiphon sulcatum, have been examined. Prophase is marked by the appearance of daughter feeding apparatuses and the emergence of two additional flagella. Pairs of flagella begin to migrate laterally along the surface of the elongating nucleus and remain lateral to the developing spindle poles. As the nucleolus elongates, it becomes dumbbell-shaped and the chromosomes move to the center of the nucleus, forming a loosely organized metaphase plate. Microtubules from opposing spindle poles attach to one of the pair of kinetochores found on each chromosome. The initial chromosome separation occurs during anaphase as the nucleus elongates. The length of the chromosomal microtubules does not decrease until late anaphase/early telophase. As the nucleus elongates, it forms a dumbbell-shaped structure. Most of the remaining microtubules are positioned in the interzone between the forming daughter nuclei. The interzonal spindle becomes somewhat constricted but remains intact until it is broken by the impinging cleavage furrow. Replication of the pellicular strips is not completed until late in cytokinesis.  相似文献   

5.
In the present work we report the phosphorylation pattern of histone H3 and the development of microtubular structures using immunostaining techniques, in mitosis of Rhynchospora tenuis (2n = 4), a Cyperaceae with holocentric chromosomes. The main features of the holocentric chromosomes of R. tenuis coincide with those of other species namely: the absence of primary constriction in prometaphase and metaphase, and the parallel separation of sister chromatids at anaphase. Additionaly, we observed a highly conserved chromosome positioning at anaphase and early telophase sister nuclei. Four microtubule arrangements were distinguished during the root tip cell cycle. Interphase cells showed a cortical microtubule arrangement that progressively forms the characteristic pre-prophase band. At prometaphase the microtubules were homogeneously distributed around the nuclear envelope. Metaphase cells displayed the spindle arrangement with kinetochore microtubules attached throughout the entire chromosome extension. At anaphase kinetochoric microtubules become progressively shorter, whereas bundles of interzonal microtubules became increasingly broader and denser. At late telophase the microtubules were observed equatorially extended beyond the sister nuclei and reaching the cell wall. Immunolabelling with an antibody against phosphorylated histone H3 revealed the four chromosomes labelled throughout their entire extension at metaphase and anaphase. Apparently, the holocentric chromosomes of R. tenuis function as an extended centromeric region both in terms of cohesion and H3 phosphorylation.  相似文献   

6.
Dividing cells of Spirogyra sp. were examined with both the light and electron microscopes. By preprophase many of the typical transverse wall micro-tubules disappeared while others were seen in the thickened cytoplasmic strands. Microtubules appeared in the polar cytoplasm at prophase and by prometaphase they penetrated the nucleus. They were attached to chromosomes at metaphase and early anaphase, and formed a sheath surrounding the spindle during anaphase; they were seen in the interzonal strands and cytoplasmic strands at telophase. The interphase nucleolus, containing 2 distinct zones and chromatinlike material, fragmented at prophase; at metaphase and anaphase nucleolar material coated the chromosomes, obscuring them by late anaphase. The chromosomes condensed in the nucleoplasm at prophase, moving into the nucleolus at prometaphase. The nuclear envelope was finally disrupted at anaphase during spindle elongation; at telophase membrane profiles coated the reforming nuclei. During anaphase and early telophase the interzonal region contained vacuoles, a few micro-tubules, and sometimes eliminated n ucleolar material; most small organelles, including swollen endoplasmic reticulum and tubular membranes, were concentrated in the polar cytoplasm. Quantitative and qualitative cytological observations strongly suggest movement of intact wall rnicrotubules to the spindle at preprophase and then back again at telophase.  相似文献   

7.
Rab24 is an atypical member of the Rab GTPase family whose distribution in interphase cells has been characterized; however, its function remains largely unknown. In this study, we have analyzed the distribution of Rab24 throughout cell division. We have observed that Rab24 was located at the mitotic spindle in metaphase, at the midbody during telophase and in the furrow during cytokinesis. We have also observed partial co‐localization of Rab24 and tubulin and demonstrated its association to microtubules. Interestingly, more than 90% of transiently transfected HeLa cells with Rab24 presented abnormal nuclear connections (i. e. chromatin bridges). Furthermore, in CHO cells stably transfected with GFP‐Rab24wt, we observed a large percentage of binucleated and multinucleated cells. In addition, these cells presented an extremely large size and multiple failures in mitosis, as aberrant spindle formation (metaphase), delayed chromosomes (telophase) and multiple cytokinesis. A marked increase in binucleated, multinucleated and multilobulated nucleus formation was observed in HeLa cells depleted of Rab24. We also present evidence that a fraction of Rab24 associates with microtubules. In addition, Rab24 knock down resulted in misalignment of chromosomes and abnormal spindle formation in metaphase leading to the appearance of delayed chromosomes during late telophase and failures in cytokinesis. Our findings suggest that an adequate level of Rab24 is necessary for normal cell division. In summary, Rab24 modulates several mitotic events, including chromosome segregation and cytokinesis, perhaps through the interaction with microtubules.  相似文献   

8.
D. B. Gromov 《Protoplasma》1985,126(1-2):130-139
Summary The fine structure ofAmoeba proteus nuclei has been studied during interphase and mitosis. The interphase nucleus is discoidal, the nuclear envelope is provided with a honeycomb layer on the inside. There are numerous nucleoli at the periphery and many chromatin filaments and nuclear helices in the central part of nucleus.In prophase the nucleus becomes spherical, the numerous chromosomes are condensed, and the number of nucleoli decreases. The mitotic apparatus forms inside the nucleus in form of an acentric spindle. In metaphase the nuclear envelope loses its pore complexes and transforms into a system of rough endoplasmic reticulum cisternae (ERC) which separates the mitotic apparatus from the surrounding cytoplasm; the nucleoli and the honeycomb layer disappear completely. In anaphase the half-spindles become conical, and the system of ERC around the mitotic spindle persists. Electron dense material (possibly microtubule organizing centers—MTOCs) appears at the spindle pole regions during this stage. The spindle includes kinetochore microtubules attached to the chromosomes, and non-kinetochore ones which pierce the anaphase plate. In telophase the spindle disappears, the chromosomes decondense, and the nuclear envelope becomes reconstructed from the ERC. At this stage, nucleoli can already be revealed with the light microscope by silver staining; they are visible in ultrathin sections as numerous electron dense bodies at the periphery of the nucleus.The mitotic chromosomes consist of 10 nm fibers and have threelayered kinetochores. Single nuclear helices still occur at early stages of mitosis in the spindle region.  相似文献   

9.
Summary The ultrastructure of mitosis and cytokinesis of the uninucleateTribonema regulare has been investigated by employing transmission electron microscopy. Prophase is characterized by settlement of a pair of centrioles at the presumptive poles of the spindle, metaphase by equatorial bulging of the nucleus, anaphase by non-synchronous separation of the chromosomes, and telophase by a persistent, strongly elongated, interzonal spindle. Throughout mitosis, at each pole dictyosomes are associated with the polar gaps of the nuclear envelope that otherwise remains intact. Cytokinesis does not immediately follow mitosis; from the static images it can be concluded that it is necessary for the daughter nuclei to approach each other before cytokinesis is initiated by complete division of the protoplast via plasma membrane cleavage. Afterwards, a ring of cell wall material is deposited close near the lateral wall in the plane of protoplast separation followed by a simultaneous or centripetal development of a single integral partitioning septum. Once the septum is completed, the cylindrical portion of the H-shaped segment is manufactured. The phylogenetic position ofTribonema amongst those algae, which may have evolved from unicells into filaments, is discussed.  相似文献   

10.
Each stage of nuclear division inMicrasterias americana was investigated by electron microscopy. Some chromosomes in metaphase had two or more centromeres on them, that is, they were polycentric. The centromere was roundish, moderately dense, and partially embedded in the chromosomes. Many microtubules of the spindle fibers were attached to the centromere. Abundant granules of high electron density, derived from dictyosomes in the cytoplasm, were seen in the metaphase spindle. Only the chromosomes moved towards the poles in anaphase, while these granules remained at the equatorial plate. Many nucleoli appeared in early telophase in one or more regions in almost all chromosomes. These nucleoli fused and enlarged during telophase.  相似文献   

11.
The structure of centric, intranuclear mitosis and of organelles associated with nuclei are described in developing zoosporangia of the chytrid Rhizophydium spherotheca. Frequently dictyosomes partially encompass the sides of diplosomes (paired centrioles). A single, incomplete layer of endoplasmic reticulum with tubular connections to the nuclear envelope is found around dividing nuclei. The nuclear envelope remains intact during mitosis except for polar fenestrae which appear during spindle incursion. During prophase, when diplosomes first define the nuclear poles, secondary centrioles occur adjacent and at right angles to the sides of primary centrioles. By late metaphase the centrioles in a diplosome are positioned at a 40° angle to each other and are joined by an electron-dense band; by telophase the centrioles lie almost parallel to each other. Astral microtubules radiate into the cytoplasm from centrioles during interphase, but by metaphase few cytoplasmic microtubules are found. Cytoplasmic microtubules increase during late anaphase and telophase as spindle microtubules gradually disappear. The mitotic spindle, which contains chromosomal and interzonal microtubules, converges at the base of the primary centriole. Throughout mitosis the semipersistent nucleolus is adjacent to the nuclear envelope and remains in the interzonal region of the nucleus as chromosomes separate and the nucleus elongates. During telophase the nuclear envelope constricts around the chromosomal mass, and the daughter nuclei separate from each end of the interzonal region of the nucleus. The envelope of the interzonal region is relatively intact and encircles the nucleolus, but later the membranes of the interzonal region scatter and the nucleolus disperses. The structure of the mitotic apparatus is similar to that of the chytrid Phlyctochytrium irregulare.  相似文献   

12.
The mitosis and cytokinesis of Draparnaldia glomerata as examined here by transmission electron microscopy are in many aspects similar to those described earlier for other chaetophoralean algae. The standard chaetophoralean model of the mechanism of mitosis/cytokinesis is described in detail. Characteristic in this pattern is the movement of sets of centrioles towards the nuclear poles followed by a proliferation of extranuclear microtubules at prophase, the (partial) fusion of centrioles with the spindle poles at metaphase and anaphase, the simultaneous separation of chromosomes apparently caused by both spindle elongation and shortening of the chromosomal microtubules at anaphase, the expulsion of the centrioles by daughter nuclei and finally the non–persistent spindle at telophase. Cytokinesis takes place by formation of a cell plate associated with phycoplast microtubules. The possible function of the phycoplast in cytokinesis in Draparnaldia is discussed.  相似文献   

13.
The apical cells of Sphacelaria tribuloides Menegh. are larger than other thallus cells, contain more organelles and appear polarized. Their tip portion, where they grow, contains a well developed Golgi apparatus, abundant endoplasmic reticulum (ER) membranes, mitochondria, chloroplasts and a large number of small vacuoles. It seems likely that a continuous flow of membranous material from the ER membranes to the dictyosomes and from the latter to the plasmalemma of the extending tip portion takes place. In contrast, the basal pole possesses fewer organelles and is occupied mainly by large-sized, sometimes central vacuoles. The apical cells undergo two distinct types of highly asymmetrical differential divisions giving rise to cells of the thallus and hair initials. During the early stages of mitosis the nuclear envelope remains intact, except for fenestrated poles. Microtubules pass through the fenestrae into the nucleoplasm. During meta-phase, a typical chromosome plate is organized. The sites of attachment of spindle microtubules to the chromosomes are structurally different from the rest of the chromosomes. At late anaphase, the nuclear envelope breaks down completely. During telophase, a new membrane encloses the chromosomes which are decondensed and the nucleoli are reorganized. Cytokinesis proceeds long after mitosis at a stage in which the nuclei have increased in size and have moved farther apart. A membranous furrow develops centripetally, without the participation of microtubules. However, microtubules traverse the thin cytoplasmic strands which, in both interphase and cytokinetic cells, meander among the vacuoles of the basal pole of the cell and the internuclear space. Dictyosomes appear to be involved in the subsequent wall deposition.  相似文献   

14.
Some details of interphase cell structure are given. At prophase the nuclear envelope breaks down and the nucleolus disperses; very small doubled chromosomes generally form a precisely aligned, metaphase plate with normal spindle microtubules present; 2 plates of chromatids separate during anaphase, the spindle becoming invaded, by (mucilage) vesicles. Telophase nuclei arc initially very hard to discern, until they increase in volume. Microtubules collect at each pole, becoming increasingly focused on one small region containing fine granular malarial, the microtubule center (MC). The septum, an annular ingrowth, begins forming at prophase and partitions the cell by telophase. At no stage were microtubules involved in this initial cross-wall formation. At telophase the spindle collapses and as the nuclei move back to the septum, increasing numbers of microtubules appear near this cross wall, all transversely aligned. An annular split deepens down the middle of the wall material in the septum, and the daughter cells begin to expand, stretching the new wall; the microtubules appearing near the septum now are transformed steadily into typical hooplike wall, microtubules, but strictly confined to the expanding wall (there are none near interphase cell walls). Meanwhile, the MC, has moved, to the side of the cell and begins migrating along one of the grooves in the chloroplast; a large number of parallel microtubules extends back to the nucleus, which becomes increasingly deformed as it begins to extend a long thin protrusion along these, microtubules. The MC keeps moving along the cell until it lodges in the cleavage developing in the chloroplast. Some microtubules extend still further up the cell, others appear in the chloroplast cleavage, but most en-sheathe the nucleus which by now is moving along the cell as a cylindrical structure tightly fitting in the chloroplast groove. The nuclear membrane is then drawn up into the deepening chloroplast constriction, and when the chloroplast is finally cut in 2, the nucleus lakes up its interphase position between the 2 halves. While all this is occurring, the whole cytoplasm is expanding into the new semicell being created by growth of the wall originally derived from the septum. Thus the interphase cell symmetry is reestablished after mitosis. These results are discussed in terms of more general phenomena of cell division and morphogenesis.  相似文献   

15.
Structural constituents of the spindle apparatus essential for cleavage induction remain undefined. Findings from various cell types using different approaches suggest the importance of all structural constituents, including asters, the central spindle, and chromosomes. In this study, we systematically dissected the role of each constituent in cleavage induction in grasshopper spermatocytes and narrowed the essential one down to bundled microtubules. Using micromanipulation, we produced "cells" containing only asters, a truncated central spindle lacking both asters and chromosomes, or microtubules alone. We show that furrow induction occurs under all circumstances, so long as sufficient microtubules are present. Microtubules, as the only spindle structural constituent, undergo dramatic, stage-specific reorganizations, radiating toward cell cortex in "metaphase," disassembling in "anaphase," and bundling into arrays in "telophase." Furrow induction usually occurs at multisites around microtubule bundles, but only those induced by sustained bundles ingress. We suggest that microtubules, regardless of source, are the only structural constituent of the spindle apparatus essential for cleavage furrow induction.  相似文献   

16.
M. Jarman  J. Pickett-Heaps 《Protoplasma》1990,157(1-3):136-143
Summary During anaphase in thisNetrium, the reforming daughter nuclei hardly pause at the poles before they elongate and rapidly and smoothly move along the daughter cells in one of the grooves in the chloroplast. Ahead of each nucleus is a pointed mass of cytoplasm that is distinctly striated; straight, mobile strands of cytoplasm emanate from this region ahead of the nucleus. When the nucleus reaches the large vacuole that divides the two chloroplasts, it steadily slides over to the chloroplast surface distal to the cleavage furrow. It then stops moving and slowly expands into the normal interphase morphology.Under the electron microscope, the chromosome-to-pole distance does not decrease much during anaphase (i.e., anaphase A is minimal) and so the half spindles remain about the same length by telophase. The poles of the open spindle are initially broad and contain typical spindle microtubules (MTs). These persist intact during anaphase and become focused upon a discrete Organizing Centre as the daughter nuclei reform. These MTs become a cone-shaped array that creates the pointed cytoplasmic mass ahead of the moving nucleus in live cells. Thus, this placoderm desmid behaves very likeClosterium during division and shows the lack of anaphase A, and the transformation of the telophase spindle into a MT-based motility system, now characteristic of many members of the Zygnematales.Abbreviations MT microtubule - MTOC microtubule organizing centre Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

17.
The mitotic phases and the changes that the chromatin and mitotic microtubules undergo during mitosis in the sexually transmitted parasite Trichomonas vaginalis are described. Parasites arrested in the gap 2 phase of the cell cycle by nutrient starvation were induced to mitosis by addition of fresh whole medium. [(3)H] Thymidine labeling of trichomonad parasites for 24 h showed that parasites have at least four synchronic duplications after mitosis induction. Fixed or live and acridine orange (AO)-stained trichomonads analyzed at different times during mitosis by epifluorescence microscopy showed that mitosis took about 45 min and is divided into five stages: prophase, metaphase, early and late anaphase, early and late telophase, and cytokinesis. The AO-stained nucleus of live trichomonads showed green (DNA) and orange (RNA) fluorescence, and the nucleic acid nature was confirmed by DNase and RNase treatment, respectively. The chromatin appeared partially condensed during interphase. At metaphase, it appeared as six condensed chromosomes, as recently reported, which decondensed at anaphase and migrated to the nuclear poles at telophase. In addition, small bundles of microtubules (as hemispindles) were detected only in metaphase with the polyclonal antibody anti-Entamoeba histolytica alpha-tubulin. This antibody showed that the hemispindle and an atractophore-like structure seem to duplicate and polarize during metaphase. In conclusion, T. vaginalis mitosis involves five mitotic phases in which the chromatin undergoes different degrees of condensation, from chromosomes to decondensed chromatin, and two hemispindles that are observed only in the metaphase stage.  相似文献   

18.
Video microscopy and conventional or Confocal Laser Scanning Microscopy after DAPI staining and anti-α-tubulin labelling were used to study the asymmetrical division of the generative cell (GC) inGagea lutea. Pollen was cultured for up to 8 hr in a medium containing 10% poly (ethylene glycol), 3.0% to 3.8% sucrose, 0.03% casein acid hydrolysate, 15 mM 2-(N-morpholinoethane)-sulphonic acid-KOH buffer (pH 5.9) and salts. In the pollen grain, the GC had a spherical or ovoid shape and contained a fine network of intermingled microtubules. As the GC entered into the pollen tube, it assumed a cylindrical shape with a length often exceeding 250 μm. A cage of microtubules then developed around the nucleus. The presence of dense and thick microtubular bundles in front of the generative nucleus within the GC coincided with the translocation of the nucleus to the leading end of the GC. No pre-prophase band was ever detected, but a distinct prophase spindle of microtubules was formed. In some GCs a tubulin-rich dot became visible at each pole of the spindle. After nuclear envelope breakdown, the bundles of microtubules spread between the chromosomes and became oriented into parallel arrays. The spindle became shorter at metaphase, and there was no tubulin labelling at the site of the metaphase plate. At anaphase, the microtubular apparatus lost its spindle-shape and a bridge of prominent bundles of microtubules connected the two daughter nuclei. At telophase, the site of the cell plate remained unstained by the anti-α-tubulin antibody, but a distinct phragmoplast of microtubules was formed more closely to the leading nucleus, resulting in the formation of unequal sperm cells (SCs). The leading SC was up to 2.5 times smaller than the following SC and it contained a smaller or equal number of nucleoli.  相似文献   

19.
Cell division is described in the octaflagellate prasinophyte Pyramimonas amylifera Conrad and is compared in related genera. Basal bodies replicate at preprophase and move toward the poles. Cells remain motile throughout division. The nuclear envelope disperses and chromosomes begin to condense at prophase. Pairs of multilayered kinetochores are evident on the chromosomes of the metaphase plate. Spindle microtubules extending from the region of the basal bodies and rhizoplasts attach to the kinetochores or extend from pole to pole. Numerous vesicles and ribosomes have entered the nuclear region and the incipient cleavage furrow invaginates. The chromosomes move toward the poles at anaphase leaving a broad interzonal spindle between the two chromosomal plates. The nuclear envelope reforms first around the chromatin on the side adjacent to the spindle poles and later on the interzonal side. The cleavage furrow progresses into the interzonal spindle at telophase. By late telophase the nucleoli have reformed and the chromosomes have decondensed. The interzonal spindle has not been observed late in telophase. As the cleavage furrow nears completion the cells begin to twist and contort, ultimately separating the two cells.  相似文献   

20.
This work focuses on the assembly and transformation of the spindle during the progression through the meiotic cell cycle. For this purpose, immunofluorescent confocal microscopy was used in comparative studies to determine the spatial distribution of alpha- and gamma-tubulin and nuclear mitotic apparatus protein (NuMA) from late G2 to the end of M phase in both meiosis and mitosis. In pig endothelial cells, consistent with previous reports, gamma-tubulin was localized at the centrosomes in both interphase and M phase, and NuMA was localized in the interphase nucleus and at mitotic spindle poles. During meiotic progression in pig oocytes, gamma-tubulin and NuMA were initially detected in a uniform distribution across the nucleus. In early diakinesis and just before germinal vesicle breakdown, microtubules were first detected around the periphery of the germinal vesicle and cell cortex. At late diakinesis, a mass of multi-arrayed microtubules was formed around chromosomes. In parallel, NuMA localization changed from an amorphous to a highly aggregated form in the vicinity of the chromosomes, but gamma-tubulin localization remained in an amorphous form surrounding the chromosomes. Then the NuMA foci moved away from the condensed chromosomes and aligned at both poles of a barrel-shaped metaphase I spindle while gamma-tubulin was localized along the spindle microtubules, suggesting that pig meiotic spindle poles are formed by the bundling of microtubules at the minus ends by NuMA. Interestingly, in mouse oocytes, the meiotic spindle pole was composed of several gamma-tubulin foci rather than NuMA. Further, nocodazole, an inhibitor of microtubule polymerization, induced disappearance of the pole staining of NuMA in pig metaphase II oocytes, whereas the mouse meiotic spindle pole has been reported to be resistant to the treatment. These results suggest that the nature of the meiotic spindle differs between species. The axis of the pig meiotic spindle rotated from a perpendicular to a parallel position relative to the cell surface during telophase I. Further, in contrast to the stable localization of NuMA and gamma-tubulin at the spindle poles in mitosis, NuMA and gamma-tubulin became relocalized to the spindle midzone during anaphase I and telophase I in pig oocytes. We postulate that in the centrosome-free meiotic spindle, NuMA aggregates the spindle microtubules at the midzone during anaphase and telophase and that the polarity of meiotic spindle microtubules might become inverted during spindle elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号