首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
GTP hydrolysis by guinea pig liver transglutaminase   总被引:4,自引:0,他引:4  
Homogeneous guinea pig liver transglutaminase was purified from a commercially available enzyme preparation by affinity chromatography on GTP-agarose. The purified transglutaminase exhibited a single band of apparent Mr = 80,000 on sodium dodecyl sulfate polyacrylamide gel and Western blotting and had enzyme activity of both transglutaminase and GTPase. The guinea pig liver transglutaminase has an apparent Km value of 4.4 microM for GTPase activity. GTPase activity was inhibited by guanine nucleotides in order GTP-gamma-S greater than GDP, but not by GMP. These results demonstrate that purified guinea pig liver transglutaminase catalyzes GTP hydrolysis.  相似文献   

2.
Anion exchange chromatography of WEHI 265.1 cell homogenates resolved the lysophospholipase activity into three peaks, when assayed using lysophosphatidylcholine as a substrate. Peaks 1 and 2 were purified by sequential hydrophobic interaction and gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified peaks 1 and 2 indicated homogeneous proteins with apparent masses of 28 and 27 kDa, respectively. Peak 3 lysophospholipases was partially purified by hydrophobic, hydroxyapatite and gel filtration chromatography. Peak 3 lysophospholipase also had calcium-dependent phospholipase A2 activity, which further co-purified with the lysophospholipase activity. The three lysophospholipases were characterized with respect to substrate specificity, additional enzymatic activities and the effects of lipids, metal ions and other compounds on enzymatic activity. Peaks 1, 2 and 3 hydrolyzed lysophosphatidylcholine most readily, but lysophosphatidylethanolamine also served as substrate for each enzyme. Furthermore, all three enzymes hydrolyzed platelet activating factor and acetylated lysophosphatidylcholine. Each lysophospholipase was inhibited by free fatty acids and by palmitoyl carnitine, although the relative sensitivities to these agents differed among the enzymes. The lysophospholipase activities of peaks 1 and 2, but not peak 3, were inhibited by phenylmethylsulfonyl fluoride, diisopropyl fluorophosphate and N-ethylmaleimide. Although they had similar masses, the amino acid compositions of peaks 1 and 2 differed, indicating that these are distinct proteins rather than posttranslational modifications of the same gene product.  相似文献   

3.
Calcium-dependent phospholipases A2 are markedly inhibited in vitro by cis-unsaturated fatty acids (CUFAs) and to a much lesser extent by trans-unsaturated or saturated fatty acids. Thus, CUFAs may function as endogenous suppressors of lipolysis. To better understand the mechanism of inhibition, kinetic analysis, fluorescence spectroscopy and gel permeation chromatography were employed to demonstrate that CUFAs interact with a highly purified Ca(2+)-dependent phospholipase A2 from Naja mossambica mossambica venom. Arachidonate inhibited hydrolysis of both [1-14C]oleate-labelled, autoclaved Escherichia coli and [1-14C]linoleate-labelled phosphatidylethanolamine in an apparent competitive manner. When subjected to gel permeation chromatography, [3H]arachidonate, but not [3H]palmitate, comigrated with the enzyme. Arachidonic and other CUFAs increased the fluorescence intensity of the enzyme almost 2-fold in a dose-dependent fashion (50 microM = 180% of control); methyl arachidonate was without effect. Saturated fatty acids had only a modest effect on enzyme fluorescence (50 microM = 122% of control). Concentrations of arachidonate that inhibited in vitro enzymatic activity by almost 80% did not alter binding of phospholipase A2 to the E. coli substrate. Collectively, these data demonstrate that, while CUFAs selectively bind to the enzyme, they do not influence phospholipase A2-substrate interaction. Inhibition of in vitro phospholipase A2 activity by CUFAs may be mediated by the formation of an enzymatically inactive enzyme-substrate-inhibitor complex.  相似文献   

4.
Purification and properties of glyoxysomal lipase from castor bean   总被引:5,自引:4,他引:1       下载免费PDF全文
The alkaline lipase in the glyoxysomes from the endosperm of young castor bean seedlings, an integral membrane component, was solubilized in deoxycholate:KCl and purified to apparent homogeneity. The molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 62,000 daltons. The enzyme reaction was markedly stimulated by salts and inhibited by detergents. Triricinolein, the endogenous storage lipid, was hydrolyzed by the purified enzyme which is therefore a true lipase. Treatment of intact glyoxysomes with trypsin strongly diminished the lipase activity but did not affect matrix enzymes. An antibody preparation raised in a rabbit against the purified enzyme inhibited the purified enzyme and that in glyoxysomal membranes.  相似文献   

5.
1. Phospholipase C [EC 3.1.4.3] found in the growth medium of Streptomyces hachijoensis was purified about sixty-fold by dialysis and column chromatography on Sephadex G-50. 2. The active fraction was separated by isoelectric focusing into two fractions, phospholipase C-I (pI 6.0) and phospholipase C-II (pI 5.6). 3. Both purified phospholipases C were homogeneous by immunodiffusion and were not differentiated as regards antigencity. 4. Phospholipase C-I had maximal activity at pH 8.0 and the optimal temperature was 50degree. Phospholipase C-I was stable at 50degrees for 30 min and was stable at neutral pH. 5. The activity of phospholipase C-I was inhibited by high concentrations of various detergents such as Triton X-100, sodium, cholate, SDS and was also inhibited by Ca2+, Ba2+, Al3+, and EDTA, but was stimulated by Mg2+, and ethyl ether. 6. The Km value of phospholipase C-I was 0.9 mM, using phosphatidylcholine as a substrate. 7. By the gel filtration procedure, the molecular weights of phospholipase C-I and -II were both determined to be 18,000. 8. Phosphatidylcholine, phosphatidylinositol, cardiolipin, sphingomyelin, and lysophosphatidylcholine were hydrolyzed by phospholipase C-I, but phosphatidylethanolamine and phosphatidylserine were hydrolyzed with difficulty under the same conditions, Phospholipase C-I also hydrolyzed phosphatidic acid.  相似文献   

6.
D Fice  Z Shen    D M Byers 《Journal of bacteriology》1993,175(7):1865-1870
A Vibrio harveyi enzyme which catalyzes the ATP-dependent ligation of fatty acids to acyl carrier protein (ACP) has been purified 6,000-fold to apparent homogeneity by anion-exchange, gel filtration, and ACP-Sepharose affinity chromatography. Purified acyl-ACP synthetase migrated as a single 62-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and as an 80-kDa protein by gel filtration under reducing conditions. Activity of the purified enzyme was lost within hours in the absence of glycerol and low concentrations of Triton X-100. Acyl-ACP synthetase exhibited Kms for myristic acid, ACP, and ATP of 7 microM, 18 microM, and 0.3 mM, respectively. The enzyme was specific for adenine-containing nucleotides, and AMP was the product of the reaction. No covalent acyl-enzyme intermediate was observed. Enzyme activity was stimulated up to 50% by iodoacetamide but inhibited > 80% by N-ethylmaleimide: inhibition by the latter was prevented by ATP and ACP but not myristic acid. Dithiothreitol and sulfhydryl-directed reagents also influenced enzyme size, activity, and elution pattern on anion-exchange resins. The function of acyl-ACP synthetase has not been established, but it may be related to the capacity of V. harveyi to elongate exogenous fatty acids by an ACP-dependent mechanism.  相似文献   

7.
Guinea pig alpha-macroglobulin was purified to apparent homogeneity by sequential chromatography on Sephacryl S-300, DEAE-cellulose, and hydroxyapatite. A molecular weight of 780,000 was obtained by equilibrium sedimentation. The preparation migrated as a single band of Mr = 180,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Rabbit antiserum raised against the final preparation partially cross-reacted with human and rat alpha-2-macroglobulins but not with rat alpha-1-macroglobulin. Guinea pig alpha-macroglobulin stimulated the amidolytic activity of trypsin towards a small substrate, but inhibited the proteolytic activity of trypsin towards remazol brilliant blue hide powder. When treated with trypsin or methylamine, four thiol groups per molecule were newly generated. The reaction with trypsin proceeded with at least at two different rates: half of the thiol groups were generated in a fast reaction and the remaining half in a slower reaction. On the other hand, such a two-step reaction was not detected in the reaction with methylamine. The methylamine-treated alpha-macroglobulin retained half the capacity to bind trypsin and its mobility in polyacrylamide gel under nondenaturing conditions remained virtually unchanged. These properties are in marked contrast to those reported for human alpha-2-macroglobulin, but resemble those of rat alpha-2- and mouse alpha-macroglobulins. The amidase activity of trypsin bound to guinea pig alpha-macroglobulin was impaired by soybean trypsin inhibitor to a much greater degree than that of trypsin bound to human or rat alpha-2-macroglobulin.  相似文献   

8.
A phospholipase A2 activity directed against phosphatidylcholine was previously described in brush-border membrane from guinea pig intestine (Diagne, A., Mitjavila, S., Fauvel, J., Chap, H., and Douste-Blazy, L. (1987) Lipids 22, 33-40). In the present study, this enzyme was solubilized either with Triton X-100 or upon papain treatment, suggesting a structural similarity with other intestinal hydrolases such as leucine aminopeptidase, sucrase, or trehalase. The papain-solubilized form, which is thought to lack the short hydrophobic tail responsible for membrane anchoring, was purified 1800-fold to about 90% purity by ion exchange chromatography on DEAE-Sephacel, gel filtration on Ultrogel AcA44, and hydrophobic chromatography on phenyl-Sepharose. Upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a main band with an apparent molecular mass of 97 kDa was detected under reducing and nonreducing conditions. In the latter case, phospholipase A2 activity could be recovered from the gel and was shown to coincide with the 97-kDa protein detected by silver staining. The enzyme activity was unaffected by EGTA and slightly inhibited by CaCl2. The purified enzyme displayed a similar activity against phosphatidylcholine and phosphatidylethanolamine, whereas 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine hydrolysis was reduced by 50% compared to diacylglycerophospholipids. Using phosphatidylcholine labeled with either [3H]palmitic acid or [14C]linoleic acid in the 1- or 2-positions, respectively, the purified enzyme catalyzed the removal of [3H]palmitic acid, although at a lower rate compared to [14C]linoleic acid. This resulted in the formation of sn-glycero-3-phosphocholine, but only 1-[3H]palmitoyl-sn-glycero-3-phosphocholine was detected as an intermediary product. In agreement with this, 1-acyl-2-lyso-sn-[14C]glycero-3-phosphocholine was deacylated at almost the same rate as the sn-2-position of phosphatidylcholine. Since upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the two hydrolytic activities were detected at the same position as 97-kDa protein, the enzyme is thus considered as a phospholipase A2 with lysophospholipase activity (phospholipase B), which might be involved in phospholipid digestion.  相似文献   

9.
A phospholipase C which hydrolyzes [14C]phosphatidylcholine has been purified 1782-fold from 70% ammonium sulfate extract of bull seminal plasma. Purification steps included acid precipitation, chromatography on DEAE-Sephacel, concanavalin A, octyl-Sepharose 4B and Ultrogel AcA 34. The final step provided homogeneous phospholipase C as determined by polyacrylamide gel electrophoresis. The enzyme comprised two subunits, Mr 69,000 and Mr 55,000, respectively. The enzyme had an optimum at pH 7.2 and pI 5.0. EDTA, Cd2+, Pb2+, Ni2+, Fe2+, and Zn2+ inhibited phospholipase C activity. Km and Vmax on p-nitrophenyl phosphorylcholine and phosphatidylcholine substrates were 20 mM and 17 mumol/min/mg of the purified enzyme and 100 microM and 18 mumol/min/mg of the purified enzyme, respectively. The enzyme appeared to be localized in the acrosome as judged by the binding of anti-phospholipase C to the acrosome. This phospholipase C, unlike other known phospholipases (C), did not hydrolyze [1-14C]phosphatidylinositol. The testicular extract of the guinea pig contained inactive phospholipase C which was activated on incubation with acrosin and trypsin but not chymotrypsin.  相似文献   

10.
We have isolated a lipolytic strain from palm fruit that was identified as a Rhizopus oryzae. Culture conditions were optimized and highest lipase production amounting to 120 U/ml was achieved after 4 days of cultivation. The extracellular lipase was purified 1200-fold by ammonium sulfate precipitation, sulphopropyl-Sepharose chromatography, Sephadex G 75 gel filtration and a second sulphopropyl-Sepharose chromatography. The specific activity of the purified enzyme was 8800 U/mg. The lipolytic enzyme has a molecular mass of 32 kDa by SDS-polyacrylamide gel electrophoresis and gel filtration. The enzyme exhibited a single band in active polyacrylamide gel electrophoresis and its isoelectric point was 7.6. Analysis of Rhizopus oryzae lipase by RP-HPLC confirmed the homogeneity of the enzyme preparation. Determination of the N-terminal sequence over 19 amino acid residues showed a high homology with lipases of the same genus. The optimum pH for enzyme activity was 7.5. Lipase was stable in the pH range from 4.5 to 7.5. The optimum temperature for lipase activity was 35 degrees C and about 65% of its activity was retained after incubation at 45 degrees C for 30 min. The lipolytic enzyme was inhibited by Triton X100, SDS, and metal ions such as Fe(3+), Cu(2+), Hg(2+) and Fe(2+). Lipase activity against triolein was enhanced by sodium cholate or taurocholate. The purified lipase had a preference for the hydrolysis of saturated fatty acid chains (C(8)-C(18)) and a 1, 3-position specificity. It showed a good stability in organic solvents and especially in long chain-fatty alcohol. The enzyme poorly hydrolyzed triacylglycerols containing n-3 polyunsaturated fatty acids, and appeared as a suitable biocatalyst for selective esterification of sardine free fatty acids with hexanol as substrate. About 76% of sardine free fatty acids were esterified after 30 h reaction whereas 90% of docosahexaenoic acid (DHA) was recovered in the unesterified fatty acids.  相似文献   

11.
A membrane-bound enkephalin-degrading aminopeptidase was purified from the longitudinal muscle layer of the guinea pig small intestine by four steps of column chromatography using L-tyrosine beta-naphthylamide. The molecular weight of the enzyme was estimated to be 105,000 by gel filtration. The maximum activity was observed between pH 6.5 and 7.0. The Km value for leucine-enkephalin was 137 microM. The aminopeptidase activity toward aminoacyl beta-naphthylamide substrates was restricted to basic, neutral, and aromatic aminoacyl derivatives. No action was detected on acidic amino acid and proline derivatives. The enzyme was potently inhibited by the aminopeptidase inhibitors actinonin, amastatin, and bestatin, and bioactive peptides such as angiotensin III, substance P, and Met-Lys-bradykinin. The enzyme activity was also inhibited by the antibody against the purified serum enkephalin-degrading aminopeptidase of guinea pig at concentrations similar to those at which activity was observed toward serum enkephalin-degrading aminopeptidase and renal aminopeptidase M. The enzyme rapidly hydrolyzed Leu-enkephalin and Met-enkephalin with the sequential removal of the N-terminal amino acid residues. The enzyme also hydrolyzed two enkephalin derivatives, angiotensin III and neurokinin A. However, neurotensin, substance P, and bradykinin were not cleaved. These properties indicated that the membrane-bound enkephalin-degrading aminopeptidase in the longitudinal muscle layer of the small intestine is similar to the serum enkephalin-degrading aminopeptidase and resembles aminopeptidase M. It is therefore suggested to play an important role in the metabolism of some bioactive peptides including enkephalin in peripheral nervous systems in vivo.  相似文献   

12.
Lee D  Won JH  Auh CK  Park YM 《Molecules and cells》2003,16(3):361-367
A cytosolic phospholipase A2 (PLA2) was purified 640-fold from rat liver by sequential anion-exchange chromatography, Ca2+-precipitation/KCl-solubilization, gel filtration chromatography, and affinity chromatography. A single peak of PLA2 activity was eluted at an apparent molecular mass of 197 kDa from a Superdex 200HR gel filtration column. In the presence of Ca2+, the purified enzyme catalyzed the hydrolysis of 81.8 nmol of phosphatidylethanolamine per hour per mg of protein. The apparent Km was 1.83 nM. The enzyme was inhibited by arachidonyl trifluoromethyl ketone (AACOCF3), an inhibitor of cPLA2. However, it was not inhibited by bromoenol lactone (BEL), an inhibitor of iPLA2, and p-bromophenacyl bromide (p-BPB), an inhibitor of sPLA2. These data suggest that the purified enzyme is a novel Ca2+-dependent cytosolic PLA2.  相似文献   

13.
A triacylglycerol lipase (EC 3.1.1.3) from the conidia of Neurospora crassa was purified and characterized. The enzyme was purified by Sephadex G-100 column chromatography. Homogeneity was checked by PAGE, and isoelectric focusing gave a single band corresponding to a pI of 6.4. The enzyme had an apparent Mr 54000 +/- 1000 as determined by gel filtration. SDS-PAGE gave a single band of Mr 27000, suggesting the presence of two identical subunits. This lipase preferred triglycerides with C16- and C18-fatty acyl chains. It cleaved only the primary groups of triglycerides. The lipase also exhibited a marked preference for substrates containing endogenously occurring fatty acids and so may prove useful in detailed studies on the physiological relevance of fatty acyl specificity of lipases. The enzyme was not affected by detergents, or thiol-binding agents. Modification of free amino groups caused 90% inhibition, suggesting a role of these groups in the maintenance of lipase activity.  相似文献   

14.
We have characterized the structure of purified beta-adrenergic receptors by a combination of photoaffinity labeling, high performance liquid chromatography (HPLC)-tryptic mapping, CNBr fragmentation, target size analysis, and electron microscopy of purified receptor molecules. Guinea pig lung beta-adrenergic receptors purified by affinity chromatography, ion exchange chromatography, and HPLC size exclusion chromatography or photoaffinity labeled with [125]-iodocyanopindolol diazirine displayed mobilities on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) that corresponded to Mr = 68,000. Purified, radioiodinated guinea pig lung beta-receptors were subjected to complete trypsin digestion and subsequent reverse-phase HPLC analysis, which revealed nine peptides. Active site labeling and tryptic digestion of partially purified hamster lung beta-receptors produced one peptide, whereas CNBr digestion of the same material produced two labeled fragments, yielding information about the location of the active site within the primary sequence. Purified guinea pig lung receptors were examined with transmission electron microscopy. Electron micrographs revealed slightly asymmetric, rod-shaped structures with an average length of 13 nm and width of 3.4 nm. Many receptors were arranged as apparent dimeric structures. These findings confirm data obtained from target size analysis of guinea pig lung beta-receptors in situ which suggest that receptors may exist as oligomeric arrays in the native membrane. Taken together, these data provide information about putative functional domains of the beta-adrenergic receptor and its quaternary structure.  相似文献   

15.
The lipid mediators, platelet activating factor (PAF) and the eicosanoids, can be coordinately produced from the common phospholipid precursor, 1-O-alkyl-2-arachidonoylglycerophosphocholine (1-O-alkyl-2-arachidonoyl-GPC), through the initial action of a phospholipase A2 that cleaves arachidonic acid from the sn-2 position. The mouse macrophage cell line RAW 264.7, which was used as a model macrophage system to study the arachidonoyl-hydrolyzing phospholipase A2 enzyme(s), could be induced to release arachidonic acid in response to inflammatory stimuli. A phospholipase A2 that hydrolyzed 1-O-hexadecyl-2-[3H]arachidonoyl-GPC was identified in the cytosolic fraction of these macrophages. This phospholipase activity was optimal at pH 8 and dependent on calcium. Enzyme activity could be stimulated 3-fold by heparin, suggesting the presence of phospholipase inhibitory proteins in the macrophage cytosol. Compared to 1-alkyl-2-arachidonoyl-GPC, the enzyme hydrolyzed 1-acyl-2-arachidonoylglycerophosphoethanolamine (1-acyl-2-arachidonoyl-GPE) with similar activity but showed slightly greater activity against 1-acyl-2-arachidonoyl-GPC, suggesting no specificity for the sn-1 linkage or the phospholipid base group. Although comparable activity against 1-acyl-2-arachidonoylglycerophosphoinositol (1-acyl-2-arachidonoyl-GPI) could be achieved, the enzyme exhibited much lower affinity for the inositol-containing substrate. The enzyme did, however, show apparent specificity for arachidonic acid at the sn-2 position, since much lower activity was observed against choline-containing substrates with either linoleic or oleic acids at the sn-2 position. The cytosolic phospholipase A2 was purified by first precipitating the enzyme with ammonium sulfate followed by chromatography over Sephadex G150, where the phospholipase A2 eluted between molecular weight markers of 67,000 and 150,000. The active peak was then chromatographed over DEAE-cellulose, phenyl-Sepharose, Q-Sepharose, Sephadex G150 and finally hydroxylapatite. The purification scheme has resulted in over a 1000-fold increase in specific activity (2 mumol/min per mg protein). Under non-reducing conditions, a major band on SDS-polyacrylamide gels at 70 kDa was observed, which shifted to a lower molecular weight, 60,000, under reducing conditions. The properties of the purified enzyme including the specificity for sn-2-arachidonoyl-containing phospholipids was similar to that observed for the crude enzyme. The results demonstrate the presence of a phospholipase A2 in the macrophage cell line. RAW 264.7, that preferentially hydrolyzes arachidonoyl-containing phospholipid substrates.  相似文献   

16.
Antibodies prepared against the phospholipase A2 stimulatory peptide melittin were used to identify and isolate a novel mammalian protein with similar functional and antigenic properties. The mammalian protein of Mr 28,000 was isolated from cell sonicates by high performance immunoaffinity chromatography and size exclusion chromatography. This stimulatory protein was stable for several months when frozen at -70 degrees C. The purified protein selectively stimulated phospholipase A2 when phosphatidylcholine was used as a substrate but had no effect on phospholipase A2 activity when phosphatidylethanolamine was used as a substrate. Furthermore, this protein had no effect on phospholipase C activity or on pancreatic or snake venom phospholipase A2. The stimulatory activity was unaffected by RNase or DNase treatment. However, boiling or trypsin digestion inactivated the phospholipase stimulatory activity. The mechanism of phospholipase A2 stimulation appeared to result from an increase in the apparent Vmax of the enzyme.  相似文献   

17.
Abstract The Neurospora crassa exo -1 mutant produced maximum extracellular glucoamylase activity in media supplemented with starch as the sole carbon source. The apparent molecular mass of the enzyme was 82 kDa (SDS-PAGE and gel filtration). The enzyme was a glycoprotein with 5.1 % carbohydrate content and exhibited a temperature optimum of 60 °C. The pH optima were 5.4 and 5.0 for glucoamylase and maltase activities, respectively. Cu2+ inhibited maltase activity while Mn2+ stimulated glucoamylase activity. The purified enzyme hydrolyzed branched substrates more efficiently than linear substrates. Starch was the best substrate utilized and amylose was hydrolyzed faster than maltose. Kinetic experiments suggested that maltose and starch were hydrolyzed at the same catalytic site.  相似文献   

18.
Two lysophospholipase activities (designated I and II) were identified in the macrophage-like cell line P388D1. Lysophospholipase I was purified (8,500-fold) to homogeneity by DEAE-Sephacel, Sephadex G-75, Blue-Sepharose, and chromatofocusing chromatography. Lysophospholipase II was separated from the lysophospholipase I in the Blue-Sepharose step. The apparent molecular mass of lysophospholipase I and II are 27,000 and 28,000 daltons, respectively, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Their pI values were 4.4 and 6.1 respectively, as determined by isoelectric focusing. Lysophospholipase I exhibited a broad pH optimum between 7.5-9.0. The double-reciprocal plot of the substrate dependence curve of the purified lysophospholipase I showed a break around the critical micelle concentration of the substrate (1-palmitoyl-sn-glycerol-3-phosphorylcholine). The apparent Km, determined from substrate concentrations above 10 microM was 22 microM, and the apparent Vmax was 1.3 mumol min-1mg-1. The purified enzyme did not have phospholipase A1, phospholipase A2, acyltransferase, or lysophospholipase-transacylase activity. No activity was detected toward triacylglycerol, diacylglycerol, p-nitrophenol acetate, p-nitrophenol palmitate, or cholesterol ester. The enzyme did, however, hydrolyze monoacylglycerol although at a rate 20-fold less than lysophospholipid, 0.06 mumol min-1mg-1. The lysophospholipase I was inhibited by fatty acids but not by glycerol-3-phosphorylcholine, glycerol-3-phosphorylethanolamine, or glyc-fjerol-3-phosphorylserine. A synthetic manoalide analogue 3(cis,cis,-7,10)hexadecadienyl-4-hydroxy-2-butenolide inhibited the enzyme with half-inhibition (IC50) at about 160 microM. Triton X-100 decreased the enzymatic activity, although this apparent inhibition can be explained by a "surface dilution" effect. The pure lysophospholipase I was stable for at least 5 months at -20 degrees C in the presence of glycerol and beta-mercaptoethanol. Lysophospholipid also demonstrated a protective effect during the later stage of purification.  相似文献   

19.
The soluble Ca2+-dependent phospholipase A2 (EC 3.1.1.4) was purified 6500-fold with a yield of about 20% from human seminal plasma. The successive purification steps comprised gel filtration, affinity chromatographies and micropartition. The final preparation consisted of two proteins in about equal quantities with molecular weights of 12000 and 14000, according to SDS-polyacrylamide slab gel electrophoresis. As yet these two proteins can not be separated without complete loss of activity. Apparent kinetic parameters have been determined for the purified preparation with different substrates (Vmax = 494 U/mg, and Km = 1.25 X 10(-4) M long-chain phosphatidylethanolamine; Vmax = 7.4 U/mg, and Km = 2.5 X 10(-5) M long-chain phosphatidylcholine; Vmax = 7196 U/mg and Km = 8.32 X 10(-4) M dioctanoylphosphatidylcholine). The enzymatic activity was not affected by diisopropylfluorophosphate and thiol reagents but it was inhibited by higher concentrations of nonionic and ionic (except taurocholate) detergents and by the alkylating reagent p-bromophenacyl bromide. Although the seminal enzyme functionally strongly resembles the pancreatic phospholipase A2, no immunochemical relationship was observed; anti-pancreatic phospholipase A2 IgGs did not inhibit seminal phospholipase A2. Similarly, partially purified phospholipase A2 from horse seminal fluid was not affected by antibodies raised against horse pancreatic phospholipase A2.  相似文献   

20.
Aminopeptidase A (aspartate aminopeptidase, EC 3.4.11.7) was purified 2000-fold from pig kidney cortex. The essential step in the purification was chromatography on an immunoadsorbent column prepared from a rabbit antiserum raised against pig intestinal aminopeptidase A. Glutamyl and aspartyl substrate were attacked most rapidly and their hydrolyses were stimulated by Ca2+. The 2-naphthylamide derivatives of neutral and basic amino acids were also hydrolysed by aminopeptidase A, but at rates about two orders of magnitude lower, and Ca2+ was inhibitory. The possibility that these atypical substrates were hydrolysed by traces of aminopeptidase M (EC 3.4.11.2) contaminating the preparation could be excluded on several grounds. Aminopeptidase A was sensitive to inhibition by chelating agents and the inactive enzyme could be reactivated by Ca2+ or Mn2+. Atomic absorption spectrophotometry revealed 1 g-atom of Ca/143000 g of protein. Two forms of the enzyme were purified: an amphipathic form solubilized from the membrane by Triton X-100 (detergent form) and a hydrophilic form released by incubation with trypsin (proteinase form). The detergent form exhibited charge-shift in crossed immunoelectrophoresis when anionic or cationic detergents were present. On gel filtration, mol.wts. of 350000--400000 and 270000 were calculated for the detergent and proteinase forms. Electron microscopy after negative staining of the proteinase form revealed a dimeric structure. Electrophoresis of either form in the presence of sodium dodecyl sulphate revealed four polypeptides with mobilities corresponding to apparent mol.wts. of 155000, 110000, 90000 and 45000. All four bands stained positively for carbohydrate. Pig serum possesses weak aminopeptidase A activity; immunological experiments showed it to be a similar protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号