首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to identify an in vitro culture system that would support intact porcine follicle growth from preantral follicle to antral stages, oocyte maturation, fertilization, and embryonic development; and to evaluate factors that influence porcine preantral follicle growth in vitro. Preantral follicles isolated from prepubertal porcine ovaries were cultured for 4 days in the presence of different concentrations of porcine serum and FSH, and with different numbers of follicles per well. A series of experiments showed that porcine antral follicles can be grown at a high frequency in vitro from healthy preantral follicles with intact theca when cultured in North Carolina State University 23 medium supplemented with 1.5 ng/ml FSH, 7.5% serum, and when cultured with three follicles per well. After 4 days of culture, 68% healthy cumulus-enclosed oocytes from these follicles were obtained, and 51% of the oocytes completed meiotic maturation to the metaphase II stage. Fifty-three percent of the mature oocytes underwent fertilization, 43% of the fertilized oocytes cleaved, and 13% developed to the blastocyst stage. The results show 1) that porcine preantral follicles can grow efficiently to the antral stage using these culture conditions, and 2) that oocytes from in vitro-matured porcine preantral follicles can acquire meiotic competence and undergo fertilization and embryonic development.  相似文献   

2.
The developmental requirements of ovarian follicles are dependent on the maturation stage of the follicle; in particular, elegant studies with genetic models have indicated that FSH is required for antral, but not preantral, follicle growth and maturation. To elucidate further the role of FSH and other regulatory molecules in preantral follicle development, in vitro culture systems are needed. We employed a biomaterials-based approach to follicle culture, in which follicles were encapsulated within matrices that were tailored to the specific developmental needs of the follicle. This three-dimensional system was used to examine the impact of increasing doses of FSH on follicle development for two-layered secondary (100-130 microm; two layers of granulosa cells surrounding the oocyte) and multilayered secondary (150-180 microm, several layers of granulosa cells surrounding the oocyte) follicles isolated from mice. Two-layered secondary follicles were FSH responsive when cultured in alginate-collagen I matrices, exhibiting FSH dose-dependent increases in follicle growth, lactate production, and steroid secretion. Multilayered secondary follicles were FSH dependent, with follicle survival, growth, steroid secretion, metabolism, and oocyte maturation all regulated by FSH. However, doses greater than 25 mIU/ml of FSH negatively impacted multilayered secondary follicle development (reduced follicle survival). The present results indicate that the hormonal and environmental needs of the follicular complex change during the maturation process. The culture system can be adapted to each stage of development, which will be especially critical for translation to human follicles that have a longer developmental period.  相似文献   

3.
Primary follicles retrieved from B6CBAF1 prepubertal mice were cultured in a stepwise manner in an alpha-minimum essential medium-based medium to generate viable embryos and embryonic stem cell (ESC)-like cells. A significant increase in follicle growth and oocyte maturation accompanied by increased secretion of 17beta-estradiol and progesterone was achieved by exposing primary follicles to 100 or 200 mIU of follicle-stimulating hormone (FSH) during culture. More oocytes developed into blastocysts following in vitro fertilization (IVF) or parthenogenetic activation after culture with 200 mIU of FSH during the entire culture period than with 100 mIU. Eleven ESC-like cell lines, consisting of four heterozygotic and seven homozygotic phenotypes, were established from 25 trials of primary follicle culture combined with IVF or parthenogenetic activation. In conclusion, primary follicles can potentially yield developmentally competent oocytes, which produce viable embryos and ESC-like cell lines following in vitro manipulation. We suggest a method to utilize immature follicles, which are most abundant in ovaries, to improve reproductive efficiency and for use in regenerative medicine.  相似文献   

4.
Developing a culture system for preantral follicles has important biotechnological implications due to the potential to produce large number of oocytes for embryo production and transfer. As an initial step toward accomplishing this long-term goal, a study was conducted to determine the effects of culture medium, serum type, and different concentrations of FSH on preantral follicular development in vitro. Specific endpoints included follicular growth rate, antrum formation, recovery rate of cumulus cell-oocyte complexes (COCs) from follicles, and oocyte meiotic competence. Compared with the North Carolina State University medium 23 (NCSU23), preantral follicles cultured in TCM199 medium for 4 days grew faster (P < 0.02). However, more follicles cultured in NCSU23 differentiated to form an antrum than in TCM199 (P < 0.01). For this reason, NCSU23 was chosen to investigate the role of FSH and serum type in regulating preantral follicular growth. Compared with the 0 mIU/ml FSH control, addition of 2 mIU/ml FSH to the medium stimulated follicular growth and antrum formation and suppressed apoptosis of granulosa cells (P < 0.05), supporting the essential role of FSH in preantral follicular growth and development. Another experiment compared fetal calf serum (FCS) with prepubertal gilt serum (PGS) and studied different concentrations of FSH in the culture medium (0.5, 1, and 2 mIU/ml). The best follicular growth rate was obtained with 2 mIU/ml compared with 0.5 or 1 mIU/ml FSH. Compared with PGS, FCS supplementation increased the cumulative percentage of antral follicles and COC recovery rate (P < 0.04). None of the oocytes recovered from any of these experiments reached metaphase II stage after maturation in vitro. In summary, culture medium, serum type, and FSH concentration in the medium interacted to affect follicular growth and antrum formation in vitro. These results suggest that a longer term culture of preantral follicles (>4 days) may be needed to produce oocytes capable of undergoing meiosis in vitro.  相似文献   

5.
This study evaluated the expression of FSH receptors (FSHR) in the different stages of goat follicle development and investigated whether the addition of increasing concentrations of FSH throughout the culture period influences the survival, growth and antral formation of in vitro-cultured caprine preantral follicles. The expression of FSHR was analysed before and after culturing follicles using real-time RT-PCR. For the culture, preantral follicles (≥150 μm) were isolated from ovarian fragments and cultured for 18 days in α-MEM+ alone or associated with recombinant FSH (rFSH: 100 or 1000 ng/ml), or in α-MEM+ supplemented with increasing concentrations of FSH throughout culture periods as follows: (a) sequential medium 1: FSH 100 ng/ml (from day 0 to 6), FSH 500 ng/ml (from day 6 to 12) and FSH 1000 ng/ml (from day 12 to 18); and (b) sequential medium 2: FSH 500 ng/ml (from day 0 to 9) and 1000 ng/ml (from day 9 to 18). Follicle development was evaluated on the basis of antral cavity formation, follicular and oocyte growth, and cumulus-oocyte complex health. The expression of FSHR in isolated caprine follicles increased from the preantral to antral phase. Regarding the culture, after 18 days, sequential medium 1 promoted follicular survival, antrum formation and a reduction in oocyte extrusion. Both sequential media promoted a higher rate of meiotic resumption compared with the other treatments. In conclusion, the addition of increased concentrations of FSH (sequential medium) has a significant impact on the in vitro development of caprine preantral follicles.  相似文献   

6.
7.
The aim of the present study was to assess the role of follicle stimulating hormone (FSH), epidermal growth factor (EGF) or a combination of EGF and FSH on the in vitro growth of porcine preantral follicles, estradiol secretion, antrum formation, oocyte maturation and subsequent embryonic development. Porcine preantral follicles were cultured for 3 days in the absence or in the presence of FSH or EGF. Oocytes from these follicles were then matured, fertilized in vitro and embryos were cultured. Estradiol secretion and histological analysis of cultured follicles were also carried out. The results showed that when FSH, or a combination of EGF and FSH, was added to the culture medium, most of preantral follicles grew to antral follicles with high estradiol secretion and the oocytes from these antral follicles could mature, fertilize and develop to the blastocyst stage. Without FSH, or a combination of EGF and FSH, preantral follicles were unable to develop to the antral stage. Histology demonstrated that the resulting follicles were nonantral, estradiol production was reduced and none of their oocytes matured after in vitro maturation. The results indicate the essential role of FSH in promoting in vitro growth of porcine preantral follicle, estradiol secretion, antrum formation, oocyte maturation and subsequent embryonic development. EGF with FSH treatment of porcine preantral follicles improves the quality of oocytes, shown by a higher frequency of embryonic development.  相似文献   

8.
In order to investigate the action of leptin on early follicular growth, preantral follicles, 95-115 microm in diameter were mechanically isolated from the ovaries of BDF1 hybrid immature (11-day-old) and adult (8-wk-old) mice, and cultured for 4 days in vitro. Follicular growth was assessed by daily changes in follicular diameter and by the amount of estradiol and immunoreactive (IR)-inhibin released into the culture medium at Day 4. Preantral follicles from immature mice showed a significant development in follicular growth as a result of stimulation by GH (1 mIU/ml), insulin-like growth factor (IGF)-I (100 ng/ml) + FSH (100 mIU/ml), and GH (1 mIU/ml) + FSH (100 mIU/ml). Although leptin at concentrations of 1-1000 ng/ml did not have any significant effect on follicular growth stimulated by IGF-I or GH, it significantly inhibited follicular growth in a dose-related manner when follicles were stimulated by IGF-I + FSH and GH + FSH, respectively, suggesting that leptin attenuated the additive effect of FSH. On the other hand, preantral follicles from adult mice were cultured in the presence of FSH, and FSH-dependent follicular growth was inhibited by leptin in a dose-related manner. Because FSH stimulates cAMP production, we investigated the involvement of cAMP in the inhibitory mechanisms of leptin. Preantral follicles from immature and adult mice were cultured in the presence of either 8-Br-cAMP or forskolin. Both 8-Br-cAMP and forskolin significantly increased follicular diameter and hormone secretion in both immature and adult mice. However, 8-Br-cAMP and forskolin-stimulated follicle growth and hormone secretion were significantly inhibited in immature mice by coadministration of leptin, whereas growth of preantral follicles from adult mice was not inhibited by addition of leptin to cultures. These results indicate that leptin causes an inhibitory effect on the early follicular development of both immature and adult mice, but the inhibitory mechanisms of leptin are different.  相似文献   

9.
The objective of this study was to examine the effects of follicular cells on the in vitro development of porcine preantral follicles. In Experiment 1, one preantral follicle alone (Trt 1) was cocultured with a follicle of the same size with oocytes (Trt 2) or without oocytes (Trt 3). Preantral follicles cultured alone in vitro for 12 days had greater follicle diameters (1017 +/- 96 microm versus 706 +/- 69 or 793 +/- 72 microm, P < 0.05), growth rates (201 +/- 0.3 versus 103 +/- 0.2 or 128 +/- 0.2, P < 0.05) and oocyte survival rates (73% versus 48, or 25%, P < 0.05) than other groups. The inhibitory effects of follicle cells on the growth of preantral follicles and oocyte survival rates were not enhanced by the addition of oocytectomized preantral follicles (Experiment 2). Follicles were cocultured with different sources of follicular cells in other experiments. Coculture with cumulus cells enhanced oocyte survival compared to the control (without coculture) and mural follicular cell groups (Experiment 3). The growth and survival rates of oocytes collected from the group of follicles cocultured with cumulus cells from large antral follicles (>3 mm) were greater (P < 0.05) than those from small antral follicles (<3 mm), or than the control group (without cumulus cells, experiment 4). No significant differences in the follicular diameters (674 +/- 30 microm versus 638 +/- 33 and 655 +/- 28 microm) and growth rate (105% versus 94 and 105%) were observed among the preantral follicles of the different treatments (P > 0.05). Taken together, coculture with the cells from large antral follicles (>3 mm) exerted a significant positive effect on oocyte survival. The growth and oocyte survival of preantral follicle cocultured with the same size of follicles (with or without oocyte) were inhibited. Growth and survival rates of preantral follicles and oocytes are improved by coculturing them with the cumulus cells derived from larger antral follicles.  相似文献   

10.
The aim of this study was to establish a basic manipulation protocol of preantral follicles for deriving developmentally competent oocytes. Primary, early and late secondary follicles retrieved from the ovaries of 14-day-old F1 (C57BL/6 x DBA2) female mice mechanically or enzymatically were cultured singly and in vitro growth of the follicles and maturation of intrafollicular oocytes were subsequently monitored. A mechanical method retrieved more (p < 0.0001) follicles (339 +/- 48 vs. 202 +/- 28) than an enzymatic method. However, the enzymatic method collected more singly isolated follicles that could be provided for subsequent culture (102 +/- 26 vs. 202 +/- 28). When an enzymatic method was employed, early and late secondary follicles required 9 and 6 days for reaching the maximal incidence of the pseudoantral stage. However, primary follicles were not possible to develop into the pseudoantral stage. The optimal duration of oocyte maturation from the onset of follicle culture was 7 days and 5-7 days for early and late secondary follicles, respectively. A general decrease in oocyte diameter (65.2-65.53 microm vs. 75 microm) and zona thickness (5.41-5.74 microm vs. 7.76 microm) was detected in in vitro-derived compared with in vivo-derived matured oocytes. Pronuclear formation was detected in 86-94% of mature oocytes after parthenogenetic activation and no significant difference was detected among groups. These results showed that preantral follicles retrieved by an enzymatic method underwent step-by-step growth in vitro, which could yield mature oocytes.  相似文献   

11.
The aim of this study was to evaluate the influence of the number of follicles per drop (one or three) and antral follicles on in vitro development of isolated goat preantral follicles. Preantral follicles were isolated through microdissection and distributed individually (control) or in groups of three follicles (treatment) in microdroplets of α-MEM with or without 1000 ng/ml follicle stimulating hormone (FSH) for Experiments 1 and 2, respectively. Experiment 3 was divided into four treatments according to the presence of one or three preantral follicles, associated or not with antral follicles. After culture, oocytes were retrieved from morphologically normal follicles and submitted to in vitro maturation (IVM) and live/dead fluorescent labelling. Results of Experiment 1 (basic medium without FSH) showed that culture of preantral follicles in groups enhances viability, growth and antrum formation after 12 days. However, in the presence of FSH (Experiment 2), only the recovery rate of fully grown oocytes for IVM was significantly affected by grouping of follicles. In Experiment 3, in general, co-culture of preantral follicles with an early antral follicle had a detrimental effect on viability, antrum formation and production of oocytes for IVM. In conclusion, the performance of in vitro culture of goat preantral follicles is affected by the number of follicles per drop, the presence of an antral follicle and FSH.  相似文献   

12.
Prepubertal female rats were injected s.c. with 5.0 IU eCG, and ovaries were collected 24 and 48 h post-eCG, on Day 25, as well as from an untreated group also on Day 25. Large antral follicles were manually dissected, and the ovarian remnants were incubated with collagenase overnight to liberate preantral follicles from adhering stromal cells. The viability of the follicles was established by normal histology and lack of pyknotic granulosa cells (GCs) and by their ability to secrete steroids. After a 1-h baseline incubation, either 10 ng LH or 100 ng FSH was added for an additional hour, and the media-before and after gonadotropin administration-were used to measure progesterone, androstenedione, and estradiol by RIA. A distinct hierarchy existed in steroid synthesis, with the maximal production by the largest (700 microm) antral follicles. The major steroid that had accumulated after addition of LH at 48 h post-eCG was androstenedione (1099 pg/follicle per hour), followed by equal amounts of progesterone (155 pg/follicle per hour) and estradiol (191 pg/follicle per hour). There was a precipitous drop in steroid production by 550-microm and 400-microm antral follicles, especially in estradiol for the latter-sized follicles (0.08 pg/follicle per hour). Preantral follicles also produced progesterone and androstenedione after addition of LH. For example, follicles 222 microm in diameter with 4-5 layers of GCs and well-developed theca responded to LH at 48 h post-eCG by accumulating androstenedione (37 pg/follicle per hour) and progesterone (6 pg/follicle per hour) but negligible estradiol. The smallest follicles secreting steroids, 110-148 microm in diameter, had 2-4 layers of GCs. However, primary follicles (1 layer of GCs and no theca) did not synthesize appreciable amounts of any steroid. Although small preantral follicles were consistently stimulated by LH, FSH was ineffective. This result differs from findings in the hamster showing that intact preantral follicles with 1-4 layers of GCs and no theca respond to FSH by secreting progesterone in vitro (Roy and Greenwald, Biol Reprod 1987; 31:39-46). The technique developed to collect intact rat follicles should be useful for numerous investigations.  相似文献   

13.
Female cancer patients who seek fertility preservation but cannot undergo ovarian stimulation and embryo preservation may consider 1) retrieval of immature oocytes followed by in vitro maturation (IVM) or 2) ovarian tissue cryopreservation followed by transplantation or in vitro follicle culture. Conventional IVM is carried out during the follicular phase of menstrual cycle. There is limited evidence demonstrating that immature oocyte retrieved during the luteal phase can mature in vitro and be fertilized to produce viable embryos. While in vitro follicle culture is successful in rodents, its application in nonhuman primates has made limited progress. The objective of this study was to investigate the competence of immature luteal-phase oocytes from baboon and to determine the effect of follicle-stimulating hormone (FSH) on baboon preantral follicle culture and oocyte maturation in vitro. Oocytes from small antral follicle cumulus-oocyte complexes (COCs) with multiple cumulus layers (42%) were more likely to resume meiosis and progress to metaphase II (MII) than oocytes with a single layer of cumulus cells or less (23% vs. 3%, respectively). Twenty-four percent of mature oocytes were successfully fertilized by intracytoplasmic sperm injection, and 25% of these developed to morula-stage embryos. Preantral follicles were encapsulated in fibrin-alginate-matrigel matrices and cultured to small antral stage in an FSH-independent manner. FSH negatively impacted follicle health by disrupting the integrity of oocyte and cumulus cells contact. Follicles grown in the absence of FSH produced MII oocytes with normal spindle structure. In conclusion, baboon luteal-phase COCs and oocytes from cultured preantral follicles can be matured in vitro. Oocyte meiotic competence correlated positively with the number of cumulus cell layers. This study clarifies the parameters of the follicle culture system in nonhuman primates and provides foundational data for future clinical development as a fertility preservation option for women with cancer.  相似文献   

14.
The hypothesis was tested that bovine preantral follicles can be stimulated to grow in vitro by FSH and by the mitogens, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), but not by transforming growth factor-beta (TGFbeta), which generally inhibits EGF and bFGF action. Preantral follicles, 60 to 179 mum in diameter, were isolated from fetal ovaries by treatment with collagenase and DNase and cultured for 6 d in serum-free medium, with or without FSH and growth factors. Basic FGF (50 ng/ml), and to a lesser extent FSH (100 ng/ml) and EGF (50 ng/ml), stimulated thymidine incorporation by granulosa cells in bovine preantral follicles compared to control cultures (8-, 4- and 2.5-fold the labeling index of the controls; P < 0.05). Alone TGFbeta (10 ng/ml) had no effect on (3)H-thymidine incorporation, but it completely inhibited the bFGF- but not the FSH-stimulated increase in the labeling index and mean follicular diameter of preantral follicles (P < 0.05). By the end of the culture period oocytes in most treatments had degenerated, and the few surviving oocytes were in preantral follicles cultured with FSH or bFGF. Progesterone accumulation was greater (P < 0.05) in the presence of FSH (100 ng/ml) or EGF (50 ng/ml) than with bFGF, TGFbeta or control medium. Basic FGF strongly inhibited the effect of FSH on progesterone secretion (P < 0.05). Only FSH stimulated the conversion of exogenous testosterone to estradiol and both bFGF and TGFbeta markedly inhibited FSH-stimulated estradiol accumulation. These results indicate that proliferation of granulosa cells of bovine preantral follicles can be stimulated by bFGF, FSH and EGF, whereas TGFbeta inhibits growth, and that they are steroidogenically active in culture. Basic FGF and TGFbeta antagonize FSH-stimulated steroid production by granulosa cells of cultured bovine preantral follicles.  相似文献   

15.
16.
Although it is known that LH receptors are present from the time of thecal differentiation, the role of LH during early follicle development is not yet clear. The effect of LH on preantral follicle development has therefore been investigated in vitro using a culture system that supports the development of intact follicles. We have previously shown that although preantral follicles 150 micrometer in diameter (2-3 granulosa cell layers) do not require LH to proceed through antral development, smaller follicles (1-2 granulosa cell layers, 85-110 micrometer in diameter) do not develop beyond the large preantral stage in the presence of only FSH and 5% mouse serum. Follicles of this size were therefore used to determine the effects of LH and serum on their development in vitro. The results showed that although FSH must be continuously present, a low concentration of LH together with a slight increase in serum concentration was necessary, specifically during the primary stage of follicle development (from 85 micrometer in diameter until the follicles had reached 150 micrometer in diameter) to induce the capacity for subsequent LH-independent rapid growth and antral development. The in vitro development of maturable oocytes with normal spindle and chromatin morphology was also supported. These results indicate that LH probably induces changes in the early differentiating thecal cells, which are critical for the completion of subsequent follicular and oocyte development.  相似文献   

17.
In this study we evaluated whether mouse oocytes derived from early antral or preovulatory follicles could affect the ability of preantral granulosa cells to sustain oocyte growth in vitro. We found that early antral oocytes with a diameter > or =75 microm did not grow any further during 3 days of culture on preantral granulosa cell monolayers in vitro, while most of the oocytes with a smaller diameter increased significantly in size. Similarly, about 65% of growing oocytes isolated from preantral follicles grew when cultured on preantral granulosa cells. By coculturing with growing oocytes fully grown early antral or preovulatory oocytes, a small proportion (about 10%) of growing oocytes increased in diameter, and changes in granulosa cell morphology were observed. Such effects occurred as a function of the fully grown oocyte number seeded and were not associated with a decrease in coupling index values. By avoiding physical contact between antral oocytes and granulosa cells, the proportion of growing oocytes undergoing a significant increase in diameter was about 36%. These results indicate that fully grown mouse oocytes can control preantral granulosa cell growth-promoting activity through the production of a soluble factor(s) and the maintenance of functional communications with surrounding granulosa cells.  相似文献   

18.
The objective of this work was to examine the effect of various growth factors including epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I), either individually or in association, in the presence of follicle stimulating hormone (FSH) on the in vitro growth and viability of caprine preantral follicle oocytes. Preantral follicles were disassociated enzymatically and mechanically from prepuberal caprine ovaries after the animals were anesthetically ovariectomized. In experiment, caprine preantral follicles in groups 1–4 were cultured in growth culture medium, growth culture medium + EGF, growth culture medium + IGF-I and growth culture medium + IGF-I + EGF, respectively, for 9 days. The results indicated that EGF (50 mg/l) increased the survival rate of oocytes, but decreased the growth rate of oocytes; IGF-I (100 mg/l) effectively maintained the survival of oocytes and stimulated their growth; IGF-I (100 mg/l) and EGF (50 mg/l) in combination produced a higher effect on both of the survival and the growth rate of oocytes than IGF-I or EGF alone. Conclusively, the growth factors can effectively maintain the survival of caprine preantral follicle oocytes and regulated their growth in culture. EGF and IGF-I in association could synergically meliorate the culture system of caprine preantral follicle oocytes.  相似文献   

19.
In vitro development of sheep preantral follicles   总被引:13,自引:0,他引:13  
Preantral ovarian follicles isolated from prepubertal sheep ovaries were individually cultured for 6 days in the presence of increasing doses of FSH (ranging from 0.01 to 1 microg/ml) and under two different oxygen concentrations, 20% and 5% O2. Follicle development was evaluated on the basis of antral cavity formation as well as the presence of healthy cumulus oocyte complexes. Follicle growth was enhanced by FSH addition to culture medium, while the use of a low oxygen concentration slightly stimulated this process. However, when follicles were cultured in the presence of high doses of FSH (1 microgram/ml) and under low oxygen concentration, a high proportion of them showed the presence of an antral cavity and of a healthy cumulus-oocyte complex. In addition, under this specific culture condition sheep preantral follicles released higher levels of estradiol as compared to those secreted at lower FSH concentrations or under 20% O2. When the meiotic competence of oocytes derived from follicles cultured at 1 microgram/ml FSH was assessed, no significant difference was recorded between the two oxygen groups. These results show that the culture conditions here identified are beneficial to in vitro growth and differentiation of sheep preantral follicles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号