首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the preceding paper (Paris, S., and Pouysségur J. (1987) J. Biol. Chem. 262, 1970-1976), AlF4- and vanadate have been shown to induce inositol phosphate formation in resting hamster fibroblasts (CCL39). In this study, we show that these two phosphate analogs are good tools to explore the causal relationship between phosphoinositide breakdown and early mitogenic events. AlF4- can activate, very similarly to the mitogen alpha-thrombin: the amiloride-sensitive Na+/H+ antiport, the bumetanide-sensitive Na+/K+/Cl- co-transport, and the expression of c-myc mRNA. The link between phospholipase C activation and these early events of the mitogenic response is demonstrated by the similarity of all dose-response curves for NaF and AlCl3 and by the common sensitivity of the four events to pertussis toxin. Vanadate likewise stimulates the Na+/H+ antiport through a pertussis toxin-sensitive pathway. On longer incubations, both fluoride and vanadate were found to be toxic and failed to induce DNA synthesis. Therefore, we have used pertussis toxin to investigate the link between phospholipase C activation and commitment to DNA synthesis. We show that pertussis toxin strikingly inhibits thrombin-induced reinitiation of DNA synthesis but does not affect the stimulation by the epidermal or fibroblast growth factors, two mitogens that do not stimulate phosphoinositide breakdown in CCL39 cells. In conclusion, these studies demonstrate that activation of phospholipase C, if not an obligatory step in the action of all growth factors, plays a crucial role in the mitogenic signaling pathway of alpha-thrombin.  相似文献   

2.
S Marc  D Leiber    S Harbon 《The Biochemical journal》1988,255(2):705-713
1. In the intact guinea-pig myometrium, carbachol and oxytocin stimulated a specific receptor-mediated phospholipase C activation, catalysing the breakdown of PtdIns(4,5)P2 with the sequential generation of InsP3, InsP2 and InsP. Stimulation of muscarinic receptors also triggered an inhibition of cyclic AMP accumulation caused by prostacyclin. 2. NaF plus AlCl3 mimicked the effects of carbachol and oxytocin by inducing, in a dose-dependent manner, the generation of all three inositol phosphates as well as uterine contractions. AlCl3 enhanced the fluoride effect, supporting the concept that A1F4- was the active species. Under similar conditions, fluoroaluminates activated the guanine nucleotide regulatory protein Gi, reproducing the inhibitory effect of carbachol on cyclic AMP concentrations. 3. Both carbachol- and oxytocin-mediated increases in inositol phosphates, as well as contractions, were insensitive to pertussis toxin, under conditions where the expression of Gi was totally prevented. Cholera toxin, which activates Gs and enhances cyclic AMP accumulation, failed to affect basal or oxytocin-evoked inositol phosphate generation, but induced a slight, though consistent, attenuation of the muscarinic inositol phosphate response, which was similarly evoked by forskolin. 4. The data provide evidence that, in the myometrium, (a) a G protein mediates the generation of inositol phosphates and the Ca2+-dependent contractile event, (b) the relevant G protein that most probably couples muscarinic and oxytocin receptors to phospholipase C is different from Gi and Gs, the proteins that couple receptors to adenylate cyclase, and (c) cyclic AMP does not seem to control the phosphoinositide cycle, but rather exerts a negative regulation at the muscarinic-receptor level.  相似文献   

3.
Activation of phospholipase C by angiotensin II in vascular smooth muscle has been postulated to be mediated by an unidentified GTP-binding protein (G-protein). Using a permeabilized preparation of myo-[3H]inositol-labelled cultured vascular smooth muscle cells, we examined the ability of a non-hydrolysable analogue of GTP, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to stimulate inositol phosphate formation. GTP[S] (5 min exposure) stimulated inositol polyphosphate release by up to 3.8-fold in a dose-dependent manner, with an EC50 (concn. producing half-maximal stimulation) of approx. 50 microM. Inositol bisphosphate (IP2) and inositol trisphosphate (IP3) accumulations were also stimulated by NaF (5-20 mM). Furthermore, angiotensin II-induced inositol phosphate formation could be potentiated by a submaximal concentration of GTP[S] (10 microM), and this treatment appeared to interfere with the normal termination mechanism of the initial hormonal signal. The G-protein mediating angiotensin II-stimulated phospholipase C activation was insensitive to pertussis toxin at an exposure time and concentration which were sufficient to completely ADP-ribosylate all available substrate (100 ng/ml, 16 h). In contrast, a similar incubation with cholera toxin markedly inhibited angiotensin II-stimulated IP2 and IP3 release by 67 +/- 6% and 62 +/- 6% respectively. Cholera toxin appeared to inhibit angiotensin II stimulation of phospholipase C by a dual mechanism: it caused a 45% decrease in angiotensin II receptor number, and also inhibited G-protein transduction as assessed by GTP[S]-stimulated IP2 formation. This latter inhibition may be secondary to an increase in cyclic AMP, since it could be simulated by addition of dibutyryl cyclic AMP. Thus angiotensin II-stimulated inositol phosphate formation is cholera-toxin-sensitive, and is mediated by a pertussis-toxin-insensitive G-protein, which may be involved directly in termination of early signal generation.  相似文献   

4.
Stable expression of high levels of activated forms of Haras (T24) or v-Ki-ras by transfection of Chinese hamster lung fibroblasts (CCL39) yielded cells highly tumorigenic in nude mice. Two classes of transformed cells were distinguished, one with moderate p21 expression (10-fold increased) had retained growth factor dependency, the second with higher level of p21 (greater than 50-fold) appeared autonomous for growth. Neither class of transformants expressing Ki-ras or Ha-ras displayed a significant basal activity of polyphosphoinositide-specific phospholipase C, measured either in serum-starved cells or during exponential growth in the presence of growth factors of the tyrosine kinase family (EGF, FGF, insulin). In the growth-factor-dependent class of T24-Ha-ras-transfected cells (clone 39THaB), phospholipase C could be stimulated normally by serum, thrombin and AlF-4. In the more growth autonomous class (clones 39THaC and 39Ki9), release of inositol phosphates after stimulation with thrombin or serum was drastically reduced. This desensitization, apparently at the receptor level since the response to AlF-4 persisted, is, however, not specific to ras expression. We observed it to the same degree in polyoma virus-transformed CCL39 cells. Finally, expression of mutated forms of p21 ras did not abrogate the sensitivity of phospholipase C activation to pertussis toxin. We conclude that the transforming potential of activated forms of p21ras does not result from persistent activation of phospholipase C and that ras GTP-binding proteins cannot substitute for Gp.  相似文献   

5.
Treatment of intact human umbilical vein endothelial cells with NaF results in a dose-dependent biphasic response in both prostacyclin and inositol phosphate production: the stimulation observed with 10-20 mM NaF decreases with higher concentrations. High concentrations of NaF furthermore reduce thrombin- or A23187-stimulated prostacyclin production. Direct assay of phospholipase C activity in cell homogenates shows a similar biphasic response to NaF, also after chelation of Ca2+; addition of AlCl3 shifts the inhibition toward lower NaF concentrations. Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) also causes a dose-dependent biphasic response in inositol phosphate formation in permeabilized cells and homogenates; a higher inhibitory concentration of GTP gamma S abolishes the stimulation of inositol phosphate production by low NaF concentrations. A high concentration of NaF furthermore inhibits the non-G-protein-dependent activation of phospholipase C by deoxycholate. NaF also induces a dose-dependent biphasic response in cyclic AMP formation in intact cells, indicating that the inhibition of phospholipase C at higher NaF concentrations does not result from a rise in cyclic AMP. The data are compatible with the existence of a guanine nucleotide-dependent, cyclic AMP-independent, phospholipase C-inhibitory pathway in endothelial cells.  相似文献   

6.
The bumetanide-sensitive component of pHi recovery from an NH4Cl-induced acute alkaline load was used as a measure of Na(+)-K(+)-2Cl- cotransport activity in rat parotid acini. Acinar treatment with NaF/AlCl3 (15 mM NaF plus 10 microM AlCl3) induced a 5-fold stimulation in the initial rate of bumetanide-sensitive pHi recovery. This effect was dependent on NaF concentration (K1/2 approximately 7 mM) and was blunted in the presence of the Al3+ chelator desferal mesylate suggesting that it might be due to the aluminofluoride ion, AlF-4. NaF/AlCl3 treatment did not increase acinar intracellular cAMP levels but did result in an increase in intracellular calcium concentration (from 87 +/- 5 to 181 +/- 2 nM) and in acinar cell shrinkage (12 +/- 1%). But the stimulation of the Na(+)-K(+)-2Cl- cotransporter by NaF/AlCl3 persisted in acini which had been depleted of their intracellular Ca2+ stores. In these acini no effect of NaF/AlCl3 on intracellular calcium or cell volume was observed, indicating that stimulation of the cotransporter was not secondary to either of these phenomena. The effect of NaF/AlCl3 on the cotransporter was blocked by the protein kinase inhibitor K252a indicating the involvement of a protein phosphorylation event. This result is consistent with either NaF/AlCl3-dependent protein kinase activation or phosphatase inhibition. The stimulation of the cotransporter by NaF/AlCl3 was mimicked by the protein phosphatase inhibitor calyculin A; however, this effect was not blocked by K252a suggesting that a different protein kinase from that associated with NaF/AlCl3 may be involved. The data indicate that the Na(+)-K(+)-2Cl- cotransporter in this tissue is under tight regulatory control, in all likelihood via multiple protein kinase/phosphatase systems. The physiological roles of these regulatory events in modulating acinar fluid secretion driven by the Na(+)-K(+)-2Cl- cotransporter remain to be elucidated.  相似文献   

7.
Basic fibroblast growth factor (FGF) and alpha-thrombin can stimulate DNA synthesis in Chinese hamster fibroblasts (CCL39) by two separate signaling pathways (Chambard, J.C., Paris, S., L'Allemain, G., and Pouysségur, J. (1987) Nature 326, 800-803) but can also act synergistically. We have examined whether this synergism might depend upon changes in inositol lipid metabolism. Indeed, FGF, which has no effect on its own on phosphoinositide hydrolysis, potentiates (by up to 2-fold) thrombin-induced formation of inositol phosphates. This enhancing effect is also observed upon direct activation by AIF4- of the GTP-binding protein coupled to phospholipase C, and is best revealed when phospholipase C is weakly stimulated. With low thrombin concentrations or with AIF4-, the formation of inositol phosphates is immediately increased with a marked reduction of the initial lag, whereas at high thrombin concentrations, the stimulation by FGF becomes pronounced only after desensitization of phospholipase C to thrombin. FGF-induced potentiation is not mimicked by calcium ionophores, but is likewise elicited by epidermal growth factor, platelet-derived growth factor, and to a lesser extent by insulin, other growth factors known to activate receptor tyrosine kinases. We therefore propose that the tyrosine kinase-activating growth factors enhance the coupling between GTP-binding protein and phospholipase C, presumably through the phosphorylation of one of these two proteins. Treatment of cells with pertussis toxin attenuates thrombin-induced phospholipase C activity but does not impede the potentiation by FGF. Comparison of the potentiating effects of FGF on inositol phosphate formation and on DNA synthesis suggests than an increased production of second messengers by the inositol lipid pathway in the first hours of stimulation might be, at least in part, responsible for the synergistic actions of FGF and thrombin on DNA synthesis.  相似文献   

8.
The initial response of many cells to 'Ca2+-mobilizing' agonists is phospholipase C-mediated hydrolysis of phosphatidylinositol bisphosphate to inositol trisphosphate (IP3) and diacylglycerol. It has been suggested, by analogy with receptor regulation of adenylate cyclase, that 'Ca2+-mobilizing' receptors may interact with a guanine nucleotide-binding protein (G protein) to regulate phospholipase C activity. Here we report increased accumulation of IP3 in response to caerulein or carbachol in electrically permeabilized rat pancreatic acinar cells. The stable analogues of GTP (guanosine 5'-[gamma-thio]trisphosphate and guanosine 5'-[beta, gamma-imido]triphosphate) stimulate IP3 accumulation and potentiate the effects of caerulein and carbachol. This synergism demonstrates an interaction between receptors, a G protein and phospholipase C. These responses are unaffected by pretreatment of the cells with pertussis or cholera toxins under conditions that produce substantial covalent modification of Gi and Gs, the proteins that couple receptors to adenylate cyclase. We therefore conclude that the G protein that couples receptors to phospholipase C in exocrine pancreas is probably neither Gi nor Gs; instead, we propose that a different G protein mediates this effect.  相似文献   

9.
The suppressive effect of glucocorticoids (GC) upon antigen-induced phosphatidylinositol phospholipase C (PI-PLC) activity and inositol phosphate formation by rat basophilic leukemia cells (RBL-2H3) has been characterized. Addition of antigen for a period of 1-30 min enhanced production of [3H]inositol monophosphate (IP1), inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3) by about 5-10-fold. Pretreatment with hydrocortisone (HC) reduced formation of the various inositol phosphates (IPs) and degradation of phosphatidylinositol 4,5-bisphosphate (PIP2) by an average of 50%. Maximal inhibition of hydrolysis of PIP2 and reduction in stimulation of IP3 formation was reached after 4 h of preincubation with 2.10(-6) M of HC. Cycloheximide and RU486, a GC receptor antagonist, completely prevented the inhibitory effect of HC on IP formation. Other GC, dexamethasone (DEX) and triamcinolone (each at 2.10(-7) M) markedly suppressed antigen induced IP3 production, while aldosterone and sex steroids such as estradiol and progesterone (each at 2.10(-6) M) were virtually inactive. Antigen-stimulated phosphorylation of a 18 kDa and other proteins was inhibited by about 60% following pretreatment with the GC. This inhibition was in turn prevented by cycloheximide. DEX also doubled the activity of cellular acid phosphatase activity. The results suggest that the inhibitory effect of GC is specific, receptor-mediated, dependent on protein synthesis and possibly mediated by protein phosphatase activity.  相似文献   

10.
Thyrotropin-releasing hormone (TRH) stimulated a rapid rise in inositol trisphosphate (IP3) formation and prolactin release from 7315c tumor cells. The potencies (half-maximal) of TRH in stimulating IP3 formation and prolactin release were 100 +/- 30 and 140 +/- 30 mM, respectively. Pretreatment of the cells with pertussis toxin (for up to 24 h) had no effect on either process. Pretreatment of the cells with cholera toxin (30 nM for 24 h) also failed to affect basal or TRH-stimulated IP3 formation. TRH was also able to stimulate IP3 formation with a half-maximal potency of 118 +/- 10 nM in a lysed cell preparation of 7315c cells; the TRH-stimulated formation of IP3 was enhanced by GTP. 5'-Guanosine gamma-thiotriphosphate (GTP gamma S) and 5'-guanylyl imidodiphosphate (Gpp(NH)p), nonhydrolyzable analogs of GTP, stimulated IP3 formation in the absence of TRH with half-maximal potencies of 162 +/- 50 and 7500 +/- 4300 nM, respectively. In contrast to the lack of effect of pertussis toxin on the TRH receptor system, treatment of 7315c cells with pertussis toxin for 3 h or longer completely abolished the ability of morphine, an opiate agonist, to inhibit either adenylate cyclase activity or prolactin release. During this 3-h treatment, pertussis toxin was estimated to induce the endogenous ADP ribosylation of more than 70% of Ni, the inhibitory GTP-binding protein. GTP gamma S and Gpp(NH)p inhibited cholera toxin-stimulated adenylate cyclase activity (presumably by acting at Ni) with half-maximal potencies of 25 +/- 9 and 240 +/- 87 nM, respectively. Finally, Gpp(NH)p was also able to inhibit the [32P]ADP ribosylation of Ni with a half-maximal potency of 300 nM. These results suggest that a novel GTP-binding protein, distinct from Ni, couples the TRH receptor to the formation of IP3.  相似文献   

11.
Infection of cultured endothelial cells with Trypanosoma cruzi alters intracellular Ca2+ homeostasis. To help understand the biochemical basis for this phenomenon, we determined the influence of infection on inositol phosphate formation in a broken cell preparation. Inositol phosphates participate in the regulation of cytosolic Ca2+. In uninfected endothelial cells, bradykinin guanosine 5'-O-thiophosphate (GTP tau S), and calcium all stimulated inositol phosphate (IP1), inositol bisphosphate (IP2), and inositol trisphosphate (IP3) formation within 5 sec of incubation. At longer periods of incubation with GTP tau S and bradykinin, formation of IP1 was linear for 30 sec, whereas the rate of IP2 and IP3 generation was maximal at 20 and 5 sec, respectively. Second, infection markedly changed these aspects of inositol phosphate generation. First, unstimulated (basal) levels of IP1 and IP3 were markedly increased over those levels in membranes of uninfected cells. Infection decreased the rate of formation for the three inositol phosphates in response to GTP tau S and bradykinin. Finally, infection diminished the magnitude of inositol phosphate synthesis in response to Ca2+ for IP1, IP2, and IP3, respectively. Studies on G proteins using cholera and pertussis toxin were carried out to determine if the infection-associated changes in inositol phosphate generation could be attributed to functional changes in these regulatory proteins known to participate in the activation of phospholipase C. Infection markedly decreased the magnitude of cholera and pertussis toxin-dependent ADP ribosylation, as compared to control uninfected cells. Incubation of uninfected endothelial cells with cholera and pertussis toxin also decreased the magnitude of cholera and pertussis toxin ADP ribosylation. Despite the similar effects of infection and toxin treatment on subsequent toxin-catalyzed ADP ribosylation, toxin treatment did not influence inositol phosphate generation. Collectively, these results demonstrate an influence of infection on receptor-dependent and -independent synthesis of inositol phosphates, possibly by an action on phospholipase C. The results help to explain the apparent infection-associated increase in basal Ca2+ previously observed and suggest that interference with signal transduction may be a consequence of the presence of the parasite.  相似文献   

12.
Rabbit platelets were labelled with [3H]inositol and a membrane fraction was isolated in the presence of ATP, MgCl2 and EGTA. Incubation of samples for 10 min with 0.1 microM-Ca2+free released [3H]inositol phosphates equivalent to about 2.0% of the membrane [3H]phosphoinositides. Addition of 10 microM-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) caused an additional formation of [3H]inositol phosphates equivalent to 6.6% of the [3H]phosphoinositides. A half-maximal effect was observed with 0.4 microM-GTP[S]. The [3H]inositol phosphates that accumulated consisted of 10% [3H]inositol monophosphate, 88% [3H]inositol bisphosphate ([3H]IP2) and 2% [3H]inositol trisphosphate ([3H]IP3). Omission of ATP and MgCl2 led to depletion of membrane [3H]polyphosphoinositides and marked decreases in the formation of [3H]inositol phosphates. Thrombin (2 units/ml) or GTP (4-100 microM) alone weakly stimulated [3H]IP2 formation, but together they acted synergistically to exert an effect comparable with that of 10 microM-GTP[S]. The action of thrombin was also potentiated by 0.1 microM-GTP[S]. Guanosine 5'-[beta-thio]diphosphate not only inhibited the effects of GTP[S], GTP and GTP with thrombin, but also blocked the action of thrombin alone, suggesting that this depended on residual GTP. Incubation with either GTP[S] or thrombin and GTP decreased membrane [3H]phosphatidylinositol 4-phosphate ([H]PIP) and prevented an increase in [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PIP2) observed in controls. Addition of unlabelled IP3 to trap [3H]IP3 before it was degraded to [3H]IP2 showed that only about 20% of the additional [3H]inositol phosphates that accumulated with GTP[S] or thrombin and GTP were derived from the action of phospholipase C on [3H]PIP2. The results provide further evidence that guanine-nucleotide-binding protein mediates signal transduction between the thrombin receptor and phospholipase C, and suggest that PIP may be a major substrate of this enzyme in the platelet.  相似文献   

13.
To investigate whether guanosine triphosphate-binding proteins (G proteins) are involved in T cell activation, tests were made of the effect of pertussis toxin, cholera toxin, guanosine 5'-(3-O-thio)-triphosphate, and fluoride ions on interleukin 2 (IL-2) synthesis in Jurkat cells. It was found: 1) that pertussis toxin interferes with the first pathway of T cell activation insofar as it can substitute for phytohemagglutinin or monoclonal antibodies directed against the CD3 surface proteins, suggesting that a G protein serves as transducer for signals via the T cell receptor-CD3 complex; and 2) that fluoride ions induce the release of diacylglycerol (DAG) from [3H] arachidonic acid or [3H]oleic acid-prelabeled cells. In [3H]inositol or 32P-prelabeled cells, the increase in DAG production was also found to be accompanied by a 280% increase of intracellular inositol phosphate (IP), without significant modification of IP2 and IP3. These results suggest that a G protein controls the activity of a phospholipase C in Jurkat cells that upon stimulation releases DAG but not IP3. Inasmuch as DAG, like the phorbol ester tetradecanoyl phorbol acetate, activates protein kinase C, it suggests that a G protein is also involved in the transduction of the second signal for lymphocyte activation. Fluoride ions were found to be as effective as tetradecanoyl phorbol acetate to stimulate IL-2 synthesis in Jurkat cells when used in combination with phytohemagglutinin. Finally, cholera toxin and guanosine 5'-(3-O-thio)-triphosphate were found to increase intracellular cyclic adenosine triphosphate and to inhibit IL-2 synthesis. All together these results suggest that several G proteins are involved in the transduction of the two signals necessary for T cell activation as well as in the negative regulation of IL-2 synthesis.  相似文献   

14.
In bovine adrenal chromaffin cells, prostaglandin E2 (PGE2) stimulates the formation of inositol phosphates and Ca2+ mobilization through its specific receptor [Yokohama, Tanaka, Ito, Negishi, Hayashi & Hayaishi (1988) J. Biol. Chem. 263, 1119-1122]. Here we show that PGE2-induced phosphoinositide metabolism was blocked by pretreatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). Using intact cells, we also examined the inhibitory effect of TPA on the individual steps of the activation process of phosphoinositide metabolism. The inhibition was observed within 1 min and complete by 10 min after addition of 1 microM-TPA, and half-maximal inhibition by TPA occurred at 20 nM. TPA prevented Ca2+ mobilization induced by PGE2, but not by the Ca2+ ionophore ionomycin. The inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not inhibit the formation of inositol phosphates and Ca2+ mobilization by PGE2. TPA treatment affected neither the high-affinity binding of [3H]PGE2 to intact cells and membrane fractions nor the ability of guanosine 5'-[gamma-thio]triphosphate to decrease the binding in membrane fractions. TPA also abolished phosphoinositide metabolism induced by muscarinic-receptor activation. NaF plus AlCl3 and ionomycin caused the accumulation of inositol phosphates, probably by directly activating a GTP-binding protein(s) and phospholipase C respectively; neither accumulation was inhibited by TPA treatment. These results suggest that protein kinase C serves as a feedback regulator for PGE2-induced phosphoinositide metabolism. The site of action of TPA appears to be distal to the coupling of the receptor to GTP-binding protein, but on a component(s) specific to the agonist-induced phosphoinositide metabolism.  相似文献   

15.
Binding of chemoattractants to specific cell surface receptors on polymorphonuclear leukocytes (PMNs) initiates a series of biochemical responses leading to cellular activation. A critical early biochemical event in chemoattractant (CTX) receptor-mediated signal transduction is the phosphodiesteric cleavage of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2), with concomitant production of the calcium mobilizing inositol-1,4,5-trisphosphate (IP3) isomer, and the protein kinase C activator, 1,2-diacylglycerol (DAG). The following lines of experimental evidence collectively suggest that CTX receptors are coupled to phospholipase C via a guanine nucleotide binding (G) protein. Receptor-mediated hydrolysis of PIP2 in PMN plasma membrane preparations requires both fMet-Leu-Phe and GTP, and incubation of intact PMNs with pertussis toxin (which ADP ribosylates and inactivates some G proteins) eliminates the ability of fMet-Leu-Phe plus GTP to promote PIP2 breakdown in isolated plasma membranes. Studies with both PMN particulate fractions and with partially purified fMet-Leu-Phe receptor preparations indicate that guanine nucleotides regulate CTX receptor affinity. Finally, fMet-Leu-Phe stimulates high-affinity binding of GTP gamma S to PMN membranes as well as GTPase activity. A G alpha subunit has been identified in phagocyte membranes which is different from other G alpha subunits on the basis of molecular weight and differential sensitivity to ribosylation by bacterial toxins. Thus, a novel G protein may be involved in coupling CTX receptors to phospholipase C. Studies in intact and sonicated PMNs demonstrate that metabolism of 1,4,5-IP3 proceeds via two distinct pathways: 1) sequential dephosphorylation to 1,4-IP2, 4-IP1 and inositol, or 2) ATP-dependent conversion to inositol 1,3,4,5-tetrakisphosphate (IP4) followed by sequential dephosphorylation to 1,3,4-IP3, 3,4-IP2, 3-IP1 and inositol. Receptor-mediated hydrolysis of PIP2 occurs at ambient intracellular Ca2+ levels; but metabolism of 1,4,5-IP3 via the IP4 pathway requires elevated cytosolic Ca2+ levels associated with cellular activation. Thus, the two pathways for 1,4,5-IP3 metabolism may serve different metabolic functions. Additionally, inositol phosphate production appears to be controlled by protein kinase C, as phorbol myristate acetate (PMA) abrogates PIP2 hydrolysis by interfering with the ability of the activated G protein to stimulate phospholipase C. This implies a physiologic mechanism for terminating biologic responses via protein kinase C mediated feedback inhibition of PIP2 hydrolysis.  相似文献   

16.
Recently it was speculated that activation of GTP-binding proteins and of phospholipase is involved in the transmission of a signal from the insulin-receptor kinase to effector systems in the cell. To confirm this hypothesis, we have tested the effect of AlCl3, which has been recently used as an experimental tool to activate GTP-binding proteins, on glucose transport in fat-cells. We found that AlCl3 has a partial insulin-like effect on glucose transport activity (3-O-methylglucose uptake, expressed as % of equilibrium value per 4 s: basal 9.6 +/- 2, AlCl3 29.6 +/- 4, insulin 74.0 +/- 3). The AlCl3 effect is totally blocked by pertussis toxin, whereas the insulin effect was not altered. The effect starts at [AlCl3] greater than 1 fM and reaches its maximum at 0.1 nM. Addition of phospholipase C (PLC; 50 munits/ml) also stimulated glucose transport (maximal 53.0 +/- 5%). Both substances acted faster than insulin itself (maximal values within 1 min for PLC, 2 min for AlCl3 and 5-10 min for insulin). Using the cytochalasin-B-binding assay to determine the effects of AlCl3 and PLC on the distribution of glucose carrier sites in subcellular fractions, we found that their glucose-transport-stimulating effect does not occur through an increase in glucose carrier sites in the plasma-membrane fraction. When PLC was combined with the phorbol ester TPA (12-O-tetradecanoylphorbol 13-acetate), which increases glucose carrier sites in the plasma membrane, an additive effect on glucose transport was found [PLC (50 munits/ml), 53.0 +/- 5%, TPA (1 nM), 17.3 +/- 2%; PLC + TPA, 68.0 +/- 3%]. In conclusion: (1) the data show that AlCl3, probably through activation of a pertussis-toxin-inhibitable G protein, and PLC are able to modulate the intrinsic glucose carrier activity; (2) as pertussis toxin did not modify the effect of insulin, it seems unlikely that the insulin signal on glucose transport involves activation of this specific G protein.  相似文献   

17.
The action of carbamoylcholine (Cchol), NaF and other agonists on the generation of inositol phosphates (IPs) was studied in dog thyroid slices prelabelled with myo-[2-3H]inositol. The stimulation by Cchol (0.1 microM-0.1 mM) of IPs accumulation through activation of a muscarinic receptor [Graff, Mockel, Laurent, Erneux & Dumont (1987) FEBS Lett. 210, 204-210] was pertussis- and cholera-toxin insensitive. Ins(1,4,5)P3, Ins(1,3,4)P3 and InsP4 were generated. NaF (5-20 mM) also increased IPs generation (Graff et al., 1987); this effect was potentiated by AlCl3 (10 microM) and unaffected by pertussis toxin. Although phorbol dibutyrate (5 microM) abolished the cholinergic stimulation of IPs generation (Graff et al., 1987), it did not affect the fluoride-induced response. Cchol and NaF did not require extracellular Ca2+ to exert their effect, and neither KCl-induced membrane depolarization nor ionophore A23187 (10 microM) had any influence on basal IPs levels, or on cholinergic stimulation. However, more stringent Ca2+ depletion with EGTA (0.1 or 1 mM) decreased basal IPs levels as well as the amplitude of the stimulation by Cchol without abolishing it. Dibutyryl cyclic AMP, forskolin, cholera toxin and prostaglandin E1 had no effect on basal IPs levels and did not decrease the response to Cchol. Iodide (4 or 40 microM) also strongly decreased the cholinergic action on IPs, this inhibition being relieved by methimazole (1 mM). Our data suggest that Cchol activates a phospholipase C hydrolysing PtdIns(4,5)P2 in the dog thyroid cell in a cyclic AMP-independent manner. This activation requires no extracellular Ca2+ and depends on a GTP-binding protein insensitive to both cholera toxin and requires no extracellular Ca2+ and depends on a GTP-binding protein insensitive to both cholera toxin and pertussis toxin. The data are consistent with a rapid metabolism of Ins(1,4,5)P3 to Ins(1,3,4)P3 via the Ins(1,4,5)P3 3-kinase pathway, followed by dephosphorylation by a 5-phosphomonoesterase. Indeed, a Ca2+-sensitive InsP3 3-kinase activity was demonstrated in tissue homogenate. Stimulation of protein kinase C and an organified form of iodine inhibit the Cchol-induced IPs generation. The negative feedback of activated protein kinase C could be exerted at the level of the receptor or of the receptor-G-protein interaction.  相似文献   

18.
In resting Chinese hamster fibroblasts (CCL39) alpha-thrombin rapidly induces the breakdown of phosphoinositides. Accumulation of inositol phosphates (IP), measured in the presence of Li+, is detectable within 5s (seconds) of thrombin stimulation. Formation of inositol tris- and bisphosphates slightly precedes that of inositol monophosphate, indicating that thrombin activates primarily the phospholipase C-mediated generation of inositol trisphosphate from phosphatidylinositol 4,5-bisphosphate. Initial rates of IP production increase with thrombin concentration, with no apparent saturability over the range 10(-4)-10 U/ml. Thrombin-induced phosphoinositide hydrolysis rapidly desensitizes (t1/2 less than 5 min), but a residual activity, corresponding to about 10% of the initial stimulation is sustained for at least 9 h, in contrast with the undetectable activity of G0-arrested cells. This apparent desensitization may be due to a feedback regulation by protein kinase C, since pretreatment with the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) markedly inhibits (by up to 70%) subsequent thrombin-induced inositol phosphate formation. Conversely, growth factor deprivation of CCL39 cells results in a progressive increase of thrombin-induced phosphoinositide hydrolysis, from the very low level of exponentially growing cells to the maximal level of G0-arrested cells. This "up regulation" was found maximal in A51, a very well growth-arrested CCL39 derivative, and reduced or virtually abolished in two tumoral and growth factor-relaxed derivatives of CCL39. Although preliminary, this observation suggests that a persistent activation of phosphatidyl inositol breakdown might operate in variants selected for autonomous growth.  相似文献   

19.
Membranes prepared from DMSO-differentiated HL60 cells labeled with [3H]inositol hydrolyze polyphosphoinositides in a Ca2+-dependent manner, generating inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3). Incubation of membranes with GTP or GTP gamma S reduces the concentration of Ca2+ required for activation. This nucleotide effect is potentiated by formyl-Met-Leu-Phe (FMLP). Pertussis toxin inhibits FMLP-induced augmentation, but not the induction of IP2/IP3 formation by GTP or GTP gamma S. These results suggest that differentiated HL60 cells contain a membrane-associated phospholipase C that degrades polyphosphoinositides and that activation of this enzyme is mediated by at least two guanine nucleotide binding proteins, one of which is linked to FMLP receptors and is pertussis toxin sensitive.  相似文献   

20.
Studies were performed to examine a potential role for a guanine nucleotide-binding protein in epidermal growth factor (EGF)-stimulated phospholipase A2 (PLA2) activity. EGF increased prostaglandin E2 (PGE2) production in intact or saponin-permeabilized rat inner medullary collecting tubule (RIMCT) cells. Incubation of permeabilized cells with guanosine 5'-O-(thiotriphosphate) (GTP gamma S) enhanced and with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) inhibited the response to EGF. GDP beta S had no effect on ionomycin-stimulated PGE2 production. Exposure of intact cells to 25 mM NaF + 10 microM AlCl3 enhanced both basal and EGF-stimulated PGE2 production. Pertussis toxin ADP-ribosylated a 41-kDa protein in RIMCT cell membranes. Pretreatment of cells with pertussis toxin (100 ng/ml for 16 h) eliminated the response to EGF in intact cells and the response to EGF + GTP gamma S in permeabilized cells. Pertussis toxin had no effect on the response to ionomycin. The effect of pertussis toxin was not due to alterations in cAMP as cellular cAMP levels were unaffected by pertussis toxin both in the basal state and in the presence of EGF. PGE2 production in response to EGF was not transduced by a G protein coupled to phospholipase C (PLC) as neomycin, which inhibited PLC, did not decrease EGF-stimulated PGE2 production. Also, PGE2 production was not increased by inositol trisphosphate and did not require the presence of extracellular Ca2+. In contrast to EGF-stimulated PLC activity, stimulation of PLA2 by EGF was not susceptible to inhibition by phorbol 12-myristate 13-acetate. These results clearly demonstrate the existence of a PLA2-specific pertussis toxin-inhibitable guanine nucleotide-binding protein coupled to the EGF receptor in RIMCT cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号