首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded) by an equally dramatic decline in malaria vector density, despite absence of organized vector control. As part of investigations into possible causes for the change in vector population density, the present study analysed the Anopheles gambiae s.l. sibling species composition in north-eastern Tanzania. METHODS: The study was in two parts. The first compared current species complex composition in freshly caught An. gambiae s.l. complex from three villages to the composition reported from previous studies carried out 2-4 decades ago in the same villages. The second took advantage of a sample of archived dried An. gambiae s.l. complex specimens collected regularly from a fourth study village since 2005. Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR. RESULTS: As in earlier studies, An. gambiae s.s., Anopheles merus and Anopheles arabiensis were identified as sibling species found in the area. However, both study parts indicated a marked change in sibling species composition over time. From being by far the most abundant in the past An. gambiae s.s. was now the most rare, whereas An. arabiensis had changed from being the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis) whereas W. bancrofti infection was prevalent and detected in all three sibling species. CONCLUSION: The study indicates that a major shift in An. gambiae s.l. sibling species composition has taken place in the study area in recent years. Combined with the earlier reported decline in overall malaria vector density, the study suggests that this decline has been most marked for An. gambiae s.s., and least for An. arabiensis, leading to current predominance of the latter. Due to differences in biology and vectorial capacity of the An. gambiae s.l. complex the change in sibling species composition will have important implications for the epidemiology and control of malaria and lymphatic filariasis in the study area.  相似文献   

2.
The species composition of malaria vector mosquitoes belonging to the Anopheles gambiae complex (Diptera: Culicidae) from >40 localities in Sudan, representing most ecological situations, was determined by analysis of ovarian polytene chromosomes. Of 2162 females, 93% were identified as An. arabiensis Patton and 7% were An. gambiae Giles sensu stricto. No hybrids were found between the two species. Anopheles arabiensis occurred in all but two sites, whereas An. gambiae s.s. was effectively limited to the southernmost, more humid localities. For chromosomal paracentric inversions, the degree of polymorphism was low in An. gambiae s.s. (inversions 2La, 2Rb and 2Rd), higher in An. arabiensis (inversions Xe, 2Ra, b, bc, d1, s; 3Ra, d). Anopheles gambiae samples from Sudan were all apparently panmictic, i.e. they did not show restricted gene flow such as observed among West African populations (interpreted as incipient speciation). Chromosomal inversion patterns of An. gambiae in southern Sudan showed characteristics of intergrading Savanna/Forest populations similar to those observed in comparable eco-climatic situations of West Africa. Anopheles arabiensis was polymorphic for inversion systems recorded in West Africa (2Ra, 2Rb, 2Rdl, 3Ra) and for a novel 2Rs polymorphism, overlapping with inversion systems 2Rb and 2Rd1. Samples carrying the 2Rs inversion were mostly from Khashm-el-Girba area in central-eastern Sudan. In the great majority of the samples all polymorphic inversions were found to be in Hardy-Weinberg equilibrium. Sudan populations of An. arabiensis should therefore be considered as generally panmictic. Anopheles arabiensis shows more inversion polymorphism in west than in east African populations. Sudan populations have more evident similarities with those from westwards than those from eastwards of the Great Rift Valley. The possible influence of the Rift on evolution of An. arabiensis is discussed.  相似文献   

3.
The analysis of chromosomal polymorphism of paracentric inversions in anopheline mosquitoes has often been instrumental to the discovery of sibling species complexes and intraspecific genetic heterogeneities associated with incipient speciation processes. To investigate the population structure of Anopheles funestus Giles (Diptera: Culicidae), one of the three most important vectors of human malaria in sub-Saharan Africa, a three-year survey of chromosomal polymorphism was carried out on 4,638 karyotyped females collected indoors and outdoors from two villages of central Burkina Faso. Large and temporally stable departures from Hardy-Weinberg equilibrium due to significant deficits of heterokaryotypes were found irrespective of the place of capture, and of the spatial and temporal units chosen for the analysis. Significant linkage disequilibrium was observed among inversion systems on independently assorting chromosomal arms, indicating the existence of assortative mating phenomena. Results were consistent with the existence of two chromosomal forms characterized by contrasting degrees of inversion polymorphism maintained by limitations to gene flow. This hypothesis was supported by the reestablishment of Hardy-Weinberg and linkage equilibria when individual specimens were assigned to each chromosomal form according to two different algorithms. This pattern of chromosomal variability is suggestive of an incipient speciation process in An. funestus populations from Burkina Faso.  相似文献   

4.
Emerging species within the primary malaria vector Anopheles gambiae show different ecological preferences and significant prezygotic reproductive isolation. They are defined by fixed sequence differences in X-linked rDNA, but most previous studies have failed to detect large and significant differentiation between these taxa elsewhere in the genome, except at two other loci on the X chromosome near the rDNA locus. Hypothesizing that this pericentromeric region of the X chromosome may be accumulating differences faster than other regions of the genome, we explored the pattern and extent of differentiation between A. gambiae incipient species and a sibling species, A. arabiensis, from Burkina Faso, West Africa, at 17 microsatellite loci spanning the X chromosome. Interspecific differentiation was large and significant across the entire X chromosome. Among A. gambiae incipient species, we found some of the highest levels of differentiation recorded in a large region including eight independent loci near the centromere of the X chromosome. Outside of this region, no significant differentiation was detected. This pattern suggests that selection is playing a role in the emergence of A. gambiae incipient species. This process, associated with efficient exploitation of anthropogenic modifications to the environment, has public health implications as it fosters the spread of malaria transmission both spatially and temporally.  相似文献   

5.
Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT.  相似文献   

6.
Chromosomal rearrangements abound in nature and can be studied in detail in organisms with polytene chromosomes. In Drosophila and in Anopheline mosquitoes most speciation processes seem to be associated with the establishment of chromosomal rearrangements, particularly of paracentric inversions. It is not known what triggers inversions in natural populations. In the laboratory inversions are commonly generated by X-rays, mutagens or after the activity of certain transposable elements (TEs). The Anopheles gambiae complex is comprised of six sibling species, each one characterized by the presence of fixed paracentric inversions on their chromosomes. Two of these, An. gambiae s.s. and An. arabiensis, are the most important vectors of human malaria and are structured into sub-populations, each carrying a characteristic set of polymorphic chromosomal inversions. We have cloned the breakpoints of the naturally occurring polymorphic inversion In(2R)d' of An. arabiensis. Analysis of the surrounding sequences demonstrated that adjacent to the distal breakpoint lies a transposable element that we called Odysseus. Characteristics of Odysseus' terminal region and its cytological distribution in different strains as well as within the same strain indicate that Odysseus is an actively transposing element. The presence of Odysseus at the junction of the naturally occurring inversion In(2R)d' suggests that the inversion may be the result of the TEs activity. Cytological evidence from Drosophila melanogaster has also implicated the hobo transposable element in the generation of certain Hawaiian endemic inversions. This picture supports the hypothesis of the important role of TEs in generating natural inversions.  相似文献   

7.
Anopheles funestus Giles is one of the major malaria vectors in Africa, but little is known about its genetics. Lack of a cytogenetic map characterized by regions has hindered the progress of genetic research with this important species. This study developed a cytogenetic map of An. funestus using ovarian nurse cell polytene chromosomes. We demonstrate an important application with the cytogenetic map for characterizing various chromosomal inversions for specimens collected from coastal Kenya. The linear and spatial organization of An. funestus polytene chromosomes was compared with the best-studied malaria mosquito, An. gambiae Giles. Comparisons of chromosome morphology between the two species have revealed that the most extensive chromosomal rearrangement occurs in pericentromeric heterochromatin of autosomes. Differences in pericentromeric heterochromatin types correlate with nuclear organization differences between An. funestus and An. gambiae. Attachments of chromosomes to the nuclear envelope strongly depend on the presence of diffusive beta-heterochromatin. Thus, An. funestus and An. gambiae exhibit species-specific characteristics in chromosome-linear and -spatial organizations.  相似文献   

8.
For differential identification of sibling species in the Anopheles gambiae Giles complex (Diptera: Culicidae), including simultaneous separation of M and S molecular forms within An. gambiae Giles sensu stricto, we describe a PCR-RFLP method. This procedure is more efficient, faster and cheaper than those used before, so is recommended for large-scale processing of field-collected larval and adult specimens to be identified in malaria vector studies.  相似文献   

9.
The role of male accessory gland (MAG) secretions in inducing refractoriness to further mating in mosquitoes (Diptera: Culicidae) was established in the late 1960s. In a set of simple experiments, MAG extract was injected intra-thoraxically into the hemocoel of virgin Aedes aegypti (L.), Culex pipiens pipiens (L.) and Anopheles quadrimaculatus Say females. This subsequently caused most females to remain unmated when exposed to males. For anophelines these findings were later challenged by a study involving intra-abdominal injections of MAG extracts into Anopheles gambiae Giles s.l. and Anopheles albimanus Wiedmann females, which failed to induce refractoriness to further mating. These findings led to controversy about the respective role of sperm and accessory gland peptides in inducing female monogamy in Anopheles and are at odds with our current understanding of the mating process in Drosophila spp. (Diptera: Drosophillidae) and other dipterans. Here we confirm the function of MAG secretions in anophelines experimentally by showing that intra-thoracic injections in Anopheles stephensi Liston and in the M and S molecular forms of An. gambiae s.s. result in the expected female monogamy. Cross-injections of MAG extracts between the M and S molecular forms of An. gambiae , two cryptic taxa within An. gambiae s.s. which are thought to be undergoing incipient speciation, also elicited effective refractoriness, suggesting that the two sub-taxa have not diverged with regard to sex peptides responsible for female monogamy. Importantly, this also suggests that the rare cases of re-mating following cross-mating observed in this species may not be a form of reproductive barrier between molecular forms.  相似文献   

10.
Cytological examination of a sample of Anopheles gambiae complex mosquitoes from Reunion island revealed the presence of An. arabiensis only. Chromosomal polymorphisms were observed only for inversion 3Ra, the standard homozygote form being predominant. Cross-mating experiments with laboratory specimens originating from continental Africa produced viable and fertile offspring with no chromosomal asynapsis observed in the F1 female progeny. There was no evidence for speciation of the Reunion island populations. The results are discussed with regard to the behaviour of the vector and its influence on the vectorial capacity of this species, and the history of malaria and malaria control in the South-West islands of the Indian Ocean and on Reunion island in particular.  相似文献   

11.
BACKGROUND: Members of the Anopheles gambiae complex are amongst the best malaria vectors in the world, but their vectorial capacities vary between species and populations. A large-scale sampling of An. gambiae sensu lato was carried out in various bioclimatic domains of Madagascar. Local abundance of an unexpected member of this complex raised questions regarding its role in malaria transmission. METHODS: Sampling took place at 38 sites and 2,067 females were collected. Species assessment was performed using a PCR targeting a sequence in the IGS of the rDNA. Analysis focused on the relative prevalence of the species per site, bioclimatic domain and altitude. Infectivity of Anopheles merus was assessed using an ELISA to detect the presence of malarial circumsporozoite protein in the head-thorax. RESULTS: Three species were identified: An. gambiae, Anopheles arabiensis and An. merus. The distribution of each species is mainly a function of bioclimatic domains and, to a lesser extent, altitude. An. arabiensis is present in all bioclimatic domains with highest prevalence in sub-humid, dry and sub-arid domains. An. gambiae has its highest prevalence in the humid domain, is in the minority in dry areas, rare in sub-humid and absent in sub-arid domains. An. merus is restricted to the coastal fringe in the south and west; it was in the majority in one southern village. The majority of sites were sympatric for at least two of the species (21/38) and two sites harboured all three species.The role of An. merus as malaria vector was confirmed in the case of two human-biting females, which were ELISA-positive for Plasmodium falciparum. CONCLUSION: Despite the huge environmental (mainly man-made) changes in Madagascar, the distribution of An. gambiae and An. arabiensis appears unchanged for the past 35 years. The distribution of An. merus is wider than was previously known, and its effectiveness as a malaria vector has been shown for the first time; this species is now on the list of Malagasy malaria vectors.  相似文献   

12.
Besansky NJ 《Parassitologia》1999,41(1-3):97-100
Grassi's discovery one hundred years ago brought to light the puzzle of anophelism without malaria in Europe. With the discovery of the European Anopheles maculipennis complex the puzzle was solved but the 'species problem' has not gone away. Meaningful epidemiologic studies and effective vector control programs depend upon efficient methods for discriminating among the major vectors, lesser vectors and non-vectors of ubiquitous anopheline sibling species complexes. We now have a variety of techniques for identifying cryptic species, ranging from crossing studies through morphological, cytogenetic, allozyme and repetitive DNA-based strategies. However, cytogenetic and molecular data can also be used to infer evolutionary relationships among cryptic taxa. This approach has been crucial to understanding the biology of the vector, and may illuminate the speciation process and the human impact upon this process. Nevertheless, the analysis of cryptic taxa has proven unexpectedly complex. Studies of An. funestus and An. gambiae reveal conflicts among classes of markers and between different genomic locations. The data are consistent with a model of speciation in which gene flow may still occur in parts of the genome, and they suggest that caution should be exercised in the interpretation of results from small numbers of loci, only one type of marker, and markers located in specific genomic regions such as chromosomal inversions.  相似文献   

13.
14.
Knowledge of population structure in a major vector species is fundamental to an understanding of malaria epidemiology and becomes crucial in the context of genetic control strategies that are being developed. Despite its epidemiological importance, the major African malaria vector Anopheles funestus has received far less attention than members of the Anopheles gambiae complex. Previous chromosomal data have shown a high degree of structuring within populations from West Africa and have led to the characterization of two chromosomal forms, "Kiribina" and "Folonzo." In Central Africa, few data were available. We thus undertook assessment of genetic structure of An. funestus populations from Cameroon using chromosomal inversions and microsatellite markers. Microsatellite markers revealed no particular departure from panmixia within each local population and a genetic structure consistent with isolation by distance. However, cytogenetic studies demonstrated high levels of chromosomal heterogeneity, both within and between populations. Distribution of chromosomal inversions was not random and a cline of frequency was observed, according to ecotypic conditions. Strong deficiency of heterokaryotypes was found in certain localities in the transition area, indicating a subdivision of An. funestus in chromosomal forms. An. funestus microsatellite genetic markers located within the breakpoints of inversions are not differentiated in populations, whereas in An. gambiae inversions can affect gene flow at marker loci. These results are relevant to strategies for control of malaria by introduction of transgenes into populations of vectors.  相似文献   

15.
Among the sibling species of the AfrotropicalAnopheles gambiae complex, the nominal taxon (An. gambiae s.str.) is the major malaria vector. Its bionomics suggest a man-dependent speciation process which involves, in West Africa, various incipient species chromosomally recognized by different combinations of 2R paracentric inversions. One of the most recent evolutionary steps of such a speciation process appears to be the chromosomal form Mopti, which is associated with dry season irrigation in arid zones, and is characterized by a remarkable ecological flexibility related to three 2R alternative arrangements, namelybc, u and +, whose expected karyotypes are found in Hardy-Weinberg equilibrium. The study of this chromosomal polymorphism in samples from a 16-locality transect in Mali shows wide variations and highly significant correlation with both temporal and spatial climatic differences. Mosquitoes homokaryotypic for 2Rbc are the actual dry season and arid areas breeders. The regular rise of 2Rbc frequency, up to fixation, during each dry season, corresponds to the South-North clinal increase of the same arrangement along the transect, from about 30% in the humid savanna to near fixation in the South-Saharan zone. This coherent ecological genetics case provides full support to the hypothesis of the adaptive nature of paracentric inversions. Moreover, the very peculiar system of combinations of contiguous 2R inversions, utilized by Mopti as well as by other chromosomal forms ofAn. gambiae, suggests a process of polygenic reorganization based on linkage disequilibria and involving the inversions as driving selection units.  相似文献   

16.
The Anopheles gambiae complex includes the major vectors of malaria in sub-Saharan Africa where >80% of all world-wide cases occur. These mosquitoes are characterized by chromosomal inversions associated to the speciation process and to intraspecific ecological and behavioral flexibility. It has been postulated that introgressive hybridization has selectively transferred inversions on the second chromosome between A. gambiae and A. arabiensis, the two most important vectors of malaria. Here we directly test this hypothesis with laboratory experiments in which hybrid populations were established and the fate of chromosomal inversions were followed. Consistent with the hypothesis, ``foreign' X chromosomes were eliminated within two generations, while some ``foreign' second chromosomes persisted for the duration of the experiments and, judging from the excess of heterozygotes, established stable heterotic polymorphisms. Only those second chromosome inversions found naturally in the species could be introgressed.  相似文献   

17.
Anopheles melas is a brackish water mosquito found in coastal West Africa where it is a dominant malaria vector locally. In order to facilitate genetic studies of this species, 45 microsatellite loci originally developed for Anopheles gambiae were sequenced in An. melas. Those that were suitable based on repeat number and flanking regions were examined in 2 natural populations from Equatorial Guinea. Only 15 loci were eventually deemed suitable as polymorphic markers in An. melas populations. These loci were screened in 4 populations from a wider geographic range. Heterozygosity estimates ranged from 0.18 to 0.79, and 2.5-15 average alleles were observed per locus, yielding 13 highly polymorphic markers and 2 loci with lower variability. To examine the usefulness of microsatellite markers when applied in a sibling species, the original An. gambiae specific markers were used to amplify 5 loci in An. melas. Null alleles were found for 1 An. gambiae marker. We discuss the pitfalls of using microsatellite loci across closely related species and conclude that in addition to the problem of null alleles associated with this practice, many loci may prove to be of very limited use as polymorphic markers even when used in a sibling species.  相似文献   

18.
Abstract.Laboratory colonies of the human malaria vectors Anopheles gambiae Giles and An. arabiensis Patton have distinct flight tones. If flight tone similarly distinguishes natural populations of these sympatric sibling species, it may play a role in reproductive isolation of swarms that are otherwise behaviourally identical. To assess the fidelity of flight tone differences in natural populations, flight tone was measured in the F1 progeny of mosquitoes of both species captured in western Kenya. Flight tone distributions of wild An . gambiae and An. arabiensis were similar to their laboratory conspecifics. However, interspecies comparisons of flight tone of wild mosquitoes revealed significantly different but overlapping distributions for both sexes. Furthermore, when the effect of body size on flight tone was determined, there was a positive correlation between wing length and flight tone for both sexes of An. gambiae and An. arabiensis , suggesting that mosquito size is a significant variable affecting flight tone. Although these findings diminish any practical benefit of flight tone as a diagnostic tool in species identification, its potential role in pre‐mating species recognition needs further investigation.  相似文献   

19.
Mark–release–recapture experiments with Anopheles gambiae s.l. were performed during the wet seasons of 1993 and 1994 in Banambani, Mali. All recaptured mosquitoes were identified to species by PCR analysis and, when possible, by chromosomal analysis to chromosomal form. Two species of the An. gambiae complex were present: An. gambiae s.s. and An. arabiensis ; their ratio differed greatly from one year to the next. Three chromosomal forms of An. gambiae s.s. were found – Bamako, Savanna and Mopti. The drier 1993 was characterized by a high frequency of An. arabiensis and of the Mopti chromosomal forms of An. gambiae s.s. These trends were consistent with large-scale geographical patterns of abundance along a precipitation gradient. We observed no difference in dispersal between the two species, nor among the chromosomal forms of An. gambiae s.s. Therefore, in this situation at least, it is reasonable to group such data on the An. gambiae complex as a whole for analysis. Population size of An. gambiae s.l. females in the village was estimated to be 9000–11 000 in 1993 and 28 000 in 1994. The corresponding numbers were somewhat higher when independently-derived values of daily survival were used. These were consistent with estimates of effective population size obtained from patterns of gene frequency change.  相似文献   

20.
The 3-hydroxykynurenine transaminase (3-HKT) gene plays a vital role in the development of malaria parasites by participating in the synthesis of xanthurenic acid, which is involved in the exflagellation of microgametocytes in the midgut of malaria vector species. The 3-HKT enzyme is involved in the tryptophan metabolism of Anophelines. The gene had been studied in the important global malaria vector, Anopheles gambiae. In this report, we have conducted a preliminary investigation to characterize this gene in the two important vector species of malaria in India, Anopheles culicifacies and Anopheles stephensi. The analysis of the genetic structure of this gene in these species revealed high homology with the An. gambiae gene. However, four non-synonymous mutations in An. stephensi and seven in An. culicifacies sequences were noted in the exons 1 and 2 of the gene; the implication of these mutations on enzyme structure remains to be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号