首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The effects of exogenous administration of gonadotropin-releasing hormone (GnRH) analogues or of a partly purified salmon gonadotropin extract (GTH) on the duration of steroid and thyroid hormone levels were determined in female and male sea lampreys, Petromyzon marinus, tested under differing temperature and reproductive status. Plasma estradiol levels, but not androgens, were significantly elevated in response to the GnRH analogues or GTH injection compared to controls in female and male lampreys. Higher temperature and/or advance in time of maturation appeared to be inversely related to plasma estradiol levels. These data provide further evidence of hypothalamic control over reproductive function in lampreys. Plasma thyroxine was significantly elevated after female lampreys were treated with GTH, GnRHa (10 micrograms/lamprey) or GnRHa (1 microgram/lamprey) compared to controls. The present study is the first to demonstrate that the GnRH analogue stimulated in some way the pituitary-thyroid axis. These data suggest that a GnRH activity may activate both gonado- and thyrotropic secretion or that the endogenous hormone may itself have both functions in one of the most primitive vertebrates, the sea lamprey.  相似文献   

4.
Bryan MB  Scott AP  Cerný I  Young BA  Li W 《Steroids》2004,69(7):473-481
There is growing evidence that sea lampreys, Petromyzon marinus L., produce gonadal steroids differing from those of other vertebrates by possessing an additional hydroxyl group at the C15 position. Here we demonstrate that sea lamprey testes produce 15alpha-hydroxyprogesterone (15alpha-P) in vitro when incubated with tritiated progesterone, that 15alpha-P is present in the plasma of sea lampreys, and that plasma concentrations of immunoreactive (ir) 15alpha-P rise dramatically in response to injections of gonadotropin-releasing hormone (GnRH). The identity of the tritiated 15alpha-P produced in vitro was confirmed by co-elution with standard 15alpha-P on high performance liquid chromatography, co-elution with standard and acetylated 15alpha-P on thin layer chromatography, and specific binding to antibodies raised against standard 15alpha-P. The in vitro conversion was used to produce tritiated 15alpha-P label for a radioimmunoassay (RIA), which is able to detect 15alpha-P in amounts as low as 2 pg per tube. The RIA has been used to measure the plasma concentrations of 15alpha-P in males given two serial injections, 24 h apart, of either lamprey GnRH I or GnRH III (50, 100, or 200 microg/kg) or saline control, with plasma being sampled 8 and 24 h after the second injection. Plasma concentrations of ir-15alpha-P rose from < 1 to 36 ng/ml (mean of all treatments) 8 h after injection and declined within 24 h. This is the first time that an RIA has detected such high steroid concentrations in lampreys. This finding is suggestive of a role for 15alpha-P in control of reproduction in the sea lamprey.  相似文献   

5.
J Freitag  A Beck  G Ludwig  L von Buchholtz  H Breer 《Gene》1999,226(2):165-174
In vertebrates, recognition of odorous compounds is based on a large repertoire of receptor subtypes encoded by a multigene family. Towards an understanding of the phylogenetic origin of the vertebrate olfactory receptor family, attempts have been made to identify related receptor genes in the river lampreys (Lampetra fluviatilis), which are descendants of the earliest craniates and living representatives of the most ancient vertebrates. Employing molecular cloning approaches led to the discovery of four genes encoding heptahelical receptors, which share only a rather low overall sequence identity but several of the characteristic structural hallmarks with vertebrate olfactory receptors. Furthermore, in situ hybridization studies demonstrated that the identified genes are expressed in chemosensory cells of the singular lamprey olfactory organ. Molecular phylogenetic analysis confirmed a close relationship of the lamprey receptors to vertebrate olfactory receptors and in addition demonstrated that olfactory genes of the agnathostomes diverged from the gnathostome receptor genes before those split into class I and class II receptors. The data indicate that the lamprey receptors represent the most ancient family of the hitherto identified vertebrate olfactory receptors.  相似文献   

6.
The jawless vertebrates (lamprey and hagfish) are the closest extant outgroups to all jawed vertebrates (gnathostomes) and can therefore provide critical insight into the evolution and basic biology of vertebrate genomes. As such, it is notable that the genomes of lamprey and hagfish possess a capacity for rearrangement that is beyond anything known from the gnathostomes. Like the jawed vertebrates, lamprey and hagfish undergo rearrangement of adaptive immune receptors. However, the receptors and the mechanisms for rearrangement that are utilized by jawless vertebrates clearly evolved independently of the gnathostome system. Unlike the jawed vertebrates, lamprey and hagfish also undergo extensive programmed rearrangements of the genome during embryonic development. By considering these fascinating genome biologies in the context of proposed (albeit contentious) phylogenetic relationships among lamprey, hagfish, and gnathostomes, we can begin to understand the evolutionary history of the vertebrate genome. Specifically, the deep shared ancestry and rapid divergence of lampreys, hagfish and gnathostomes is considered evidence that the two versions of programmed rearrangement present in lamprey and hagfish (embryonic and immune receptor) were present in an ancestral lineage that existed more than 400 million years ago and perhaps included the ancestor of the jawed vertebrates. Validating this premise will require better characterization of the genome sequence and mechanisms of rearrangement in lamprey and hagfish.  相似文献   

7.
Agnathan or jawless vertebrates, such as lampreys, occupy a critical phylogenetic position between the gnathostome or jawed vertebrates and the cephalochordates, represented by amphioxus. In order to gain insight into the evolution of the vertebrate head, we have cloned and characterized a homolog of the head-specific gene Otx from the lamprey Petromyzon marinus. This lamprey Otx gene is a clear phylogenetic outgroup to both the gnathostome Otx1 and Otx2 genes. Like its gnathostome counterparts, lamprey Otx is expressed throughout the presumptive forebrain and midbrain. Together, these results indicate that the divergence of Otx1 and Otx2 took place after the gnathostome/agnathan divergence and does not correlate with the origin of the vertebrate brain. Intriguingly, Otx is also expressed in the cephalic neural crest cells as well as mesenchymal and endodermal components of the first pharyngeal arch in lampreys, providing molecular evidence of homology with the gnathostome mandibular arch and insights into the evolution of the gnathostome jaw.  相似文献   

8.
Whether or not the vertebrate head is fundamentally segmented has been controversial for over 150 years. Beginning in the late 19th century, segmentalist theories proposed that the vertebrate head evolved from an amphioxus-like ancestor in which mesodermal somites extended the full length of the body with remnants of segmentation persisting as the mesodermal head cavities of sharks and lampreys. Antisegmentalists generally argued either that the vertebrate ancestors never had any mesodermal segmentation anteriorly or that they lost it before the origin of the vertebrates; in either case, the earliest vertebrates had an unsegmented head and the embryonic cranial mesoderm of vertebrates is at best pseudo-segmented, evolving independently of any pre-vertebrate segmental pattern. Recent morphologic studies have generally confirmed the accuracy of the major classical studies of head development in lampreys and sharks, yet disagree with their theoretical conclusions regarding the evolution of head segmentation. Studies of developmental genes in amphioxus and vertebrates, which have demonstrated conservation of the mechanisms of anterior-posterior patterning in the two groups, have shed new light on this controversy. Most pertinently, some homologs of genes expressed in the anterior amphioxus somites, which form as outpocketings of the gut, are also expressed in the walls of the head cavities of lampreys, which form similarly, and in their major derivatives (the velar muscles) as well as in the eye and jaw muscles of bony gnathostomes, which derive from unsegmented head mesoderm. These muscles share gene expression with the corresponding muscles of the shark, which derive from the walls of head cavities that form, not as outpocketings of the gut, but as secondary cavities within solid blocks of tissue. While molecular data that can be compared across all the relevant taxa remain limited, they are consistent with an evolutionary scenario in which the cranial paraxial mesoderm of the lamprey and shark evolved from the anterior somites of an amphioxus-like ancestor. Although, bony vertebrates have lost the mesodermal head segments present in the shark and lamprey, their remnants persist in the muscles of the eye and jaw.  相似文献   

9.
Agnathan lampreys retain ancestral characteristics of vertebrates in the morphology of skeletal muscles derived from two mesodermal regions: trunk myotomes and unsegmented head mesoderm. During lamprey development, some populations of myoblasts migrate via pathways that differ from those of gnathostomes. To investigate the evolution of skeletal muscle differentiation in vertebrates, we characterize multiple contractile protein genes expressed in the muscle cells of the Japanese lamprey, Lethenteron japonicum. Lamprey actin gene LjMA2, and myosin heavy chain (MyHC) genes LjMyHC1 and LjMyHC2 are all expressed in the developing skeletal muscle cells of early embryos. However, LjMyHC1 and LjMyHC2 are expressed only in cells originating from myotomes, while LjMA2 is expressed in both myotomal and head musculature. Thus, in lampreys, myotomes and head mesoderm differ in the use of genes encoding contractile protein isoforms. Phylogenetic tree analyses including lamprey MyHCs suggest that the variety of muscle MyHC isoforms in different skeletal muscles may correspond to the morphological complexity of skeletal muscles of different vertebrate species. Another lamprey actin gene LjMA1 is likely to be the first smooth muscle actin gene isolated from non-tetrapods. We conclude that, in vertebrate evolution, the different regulatory systems for striated and smooth muscle-specific genes may have been established before the agnathan/gnathostome divergence.  相似文献   

10.
The sea lamprey is an important model organism for investigating the evolutionary origins of vertebrates. As more vertebrate genome sequences are obtained, evolutionary developmental biologists are becoming increasingly able to identify putative gene regulatory elements across the breadth of the vertebrate taxa. The identification of these regions makes it possible to address how changes at the genomic level have led to changes in developmental gene regulatory networks and ultimately to the evolution of morphological diversity. Comparative genomics approaches using sea lamprey have already predicted a number of such regulatory elements in the lamprey genome. Functional characterisation of these sequences and other similar elements requires efficient reporter assays in lamprey. In this report, we describe the development of a transient transgenesis method for lamprey embryos. Focusing on conserved non-coding elements (CNEs), we use this method to investigate their functional conservation across the vertebrate subphylum. We find instances of both functional conservation and lineage-specific functional evolution of CNEs across vertebrates, emphasising the utility of functionally testing homologous CNEs in their host species.  相似文献   

11.
12.
The family of trace amine-associated receptors (TAARs) is distantly related to G protein-coupled biogenic aminergic receptors. TAARs are found in the brain as well as in the olfactory epithelium where they detect biogenic amines. However, the functional relationship of receptors from distinct TAAR subfamilies and in different species is still uncertain. Here, we perform a thorough phylogenetic analysis of 702 TAAR-like (TARL) and TAAR sequences from 48 species. We show that a clade of Tarl genes has greatly expanded in lampreys, whereas the other Tarl clade consists of only one or two orthologs in jawed vertebrates and is lost in amniotes. We also identify two small clades of Taar genes in sharks related to the remaining Taar genes in bony vertebrates, which are divided into four major clades. We further identify ligands for 61 orphan TARLs and TAARs from sea lamprey, shark, ray-finned fishes, and mammals, as well as novel ligands for two 5-hydroxytryptamine receptor 4 orthologs, a serotonin receptor subtype closely related to TAARs. Our results reveal a pattern of functional convergence and segregation: TARLs from sea lamprey and bony vertebrate olfactory TAARs underwent independent expansions to function as chemosensory receptors, whereas TARLs from jawed vertebrates retain ancestral response profiles and may have similar functions to TAAR1 in the brain. Overall, our data provide a comprehensive understanding of the evolution and ligand recognition profiles of TAARs and TARLs.  相似文献   

13.
gamma-Aminobutyric acid (GABA) is a neurotransmitter with a demonstrated neuroregulatory role in reproduction in most representative species of vertebrate classes via the hypothalamus. The role of GABA on the hypothalamus-pituitary axis in lampreys has not been fully elucidated. Recent immunocytochemical and in situ hybridization studies suggest that there may be a neuroregulatory role of GABA on the gonadotropin-releasing hormone (GnRH) system in lampreys. To assess possible GABA-GnRH interactions, the effects of GABA and its analogs on lamprey GnRH in vitro and in vivo were studied in adult female sea lampreys (Petromyzon marinus). In vitro perfusion of GABA and its analogs at increasing concentrations (0.1-100 microM) was performed over a 3-h time course. There was a substantial increase of GnRH-I and GnRH-III following treatment of muscimol at 100 microM. In in vivo studies, GABA or muscimol injected at 200 microg/kg significantly increased lamprey GnRH concentration in the brain 0.5 h after treatment compared to controls in female sea lampreys. No significant change in lamprey GnRH-I or GnRH-III was observed following treatment with bicuculline. These data provide novel physiological data supporting the hypothesis that GABA may influence GnRH in the brain of sea lamprey.  相似文献   

14.
The tetrameric lactate dehydrogenases (LDH) of vertebrates contain several different subunits that arose by gene duplication. While the A and B subunits occur in all classes of gnathostomes, the enzymes of agnathans appear to represent two stages in the evolution of vertebrate LDH. Lampreys of the family Petromyzontidae have a single enzyme classified as LDHA4, while hagfish possess both A and B subunits which form only the two homopolymers LDHA4 and LDHB4. It is generally assumed that the original vertebrate LDH was an A4 type, that duplication to give the B subunit occurred prior to the divergence of lampreys and hagfish, and that modern lampreys subsequently lost expression of the B gene. Lactate dehydrogenases were purified from representatives of all three lamprey families, and it was confirmed that members of the Mordaciidae and Geotriidae also possess single tetrameric LDH enzymes containing one subunit type. The kinetic properties of the lamprey LDH enzymes were compared with the LDH homopolymers of hagfish, skate, and sardine. These properties did not allow the lamprey enzymes to be unequivocally identified as either LDHA4 or LDHB4. Immunochemical titration using antisera against lamprey and hagfish LDH homopolymers demonstrated that the lamprey LDH enzymes showed greater immunochemical similarity to LDHB4 than to LDHA4 of hagfish. It is concluded that there is little evidence for the claim that the original vertebrate LDH was an A4 rather than B4 type.  相似文献   

15.
SUMMARY We have cloned and analyzed two Emx genes from the lamprey Petromyzon marinus and our findings provide insight into the patterns and developmental consequences of gene duplications during early vertebrate evolution. The Emx gene family presents an excellent case for addressing these issues as gnathostome vertebrates possess two or three Emx paralogs that are highly pleiotropic, functioning in or being expressed during the development of several vertebrate synapomorphies. Lampreys are the most primitive extant vertebrates and characterization of their development and genomic organization is critical for understanding vertebrate origins. We identified two Emx genes from P. marinus and analyzed their phylogeny and their embryological expression relative to other chordate Emx genes. Our phylogenetic analysis shows that the two lamprey Emx genes group independently from the gnathostome Emx1, Emx2 , and Emx3 paralogy groups. Our expression analysis shows that the two lamprey Emx genes are expressed in distinct spatial and temporal patterns that together broadly encompass the combined sites of expression of all gnathostome Emx genes. Our data support a model wherein large-scale regulatory evolution of a single Emx gene occurred after the protochordate/vertebrate divergence, but before the vertebrate radiation. Both the lamprey and gnathostome lineages then underwent independent gene duplications followed by extensive paralog subfunctionalization. Emx subfunctionalization in the telencephalon is remarkably convergent and refines our understanding of lamprey forebrain patterning. We also identify lamprey-specific sites of expression that indicate either neofunctionalization in lampreys or sites-specific nonfunctionalization of all gnathostome Emx genes. Overall, we see only very limited correlation between Emx gene duplications and the acquisition of novel expression domains.  相似文献   

16.
17.
All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates.  相似文献   

18.
A natural population of the brook lamprey, Lampetra planeri, was assayed for electrophoretically detectable variation at 30 enzyme loci. The mean heterozygosity per locus of this primitive vertebrate, a member of the Agnatha, was found to be 0.076 ± 0.031, a value similar to those recorded for other vertebrates. The high chromosome numbers recorded for this and related species have been attributed to polyploidy, but our studies do not indicate the existence of large numbers of duplicated loci. Indeed, several enzymes that are encoded by duplicate loci in other vertebrate species appear to be encoded by single loci in the lamprey. It is suggested that studies on the biology and taxonomy of lampreys will benefit greatly from an electrophoretic approach.  相似文献   

19.
Lamprey, the living jawless vertebrate, has been regarded as one of the most primitive groups of vertebrates. The evolutionary phylogenetic position of the lamprey promises to provide hints about the origin of the vertebrate genome as well as the origin of the body plan, a part of which may be written in the genome. Since the lamprey split from the gnathostome lineage early in the history of vertebrates, the shared developmental mechanisms in lampreys and gnathostomes can be regarded as possessed by the hypothetical common ancestor of these animals, whereas the gnathostome-specific developmental mechanisms that are absent from lampreys indicate that they are relatively new, added to the developmental program only after the split of gnathostomes. Thus, the sequential establishment of the gnathostome body plan is inherently related to the history of genomic duplication events. In this review, recent molecular developmental and evolutionary molecular research on the living lampreys are summarized and discussed, taking vertebrate comparative morphology and embryology into consideration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号