首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
对某卫生防疫站委托本研究室分离病原菌的一份引起肉毒中毒的食品一"黄豆冬瓜酱"进行检测和病原菌的分离,从中再次检出了E型肉毒毒素并分离到一产毒菌种,对该菌种的生物学及生化学特性进行检查,并检测其毒素基因(PCR试验)。结果:该分离菌能产生E型肉毒毒素,PCR检测结果也证明其具有E型肉毒神经毒素基因,但其多项生化特性与E型肉毒梭菌有明显差异,而与酪酸梭菌完全一致。结果说明该分离菌系产生E型肉毒毒素的酪酸梭菌,而非E型肉毒梭菌。由酪酸梭菌引起的食物中毒型肉毒中毒并从中毒食品中分离到该病原菌,这在国际上尚属首次报告。  相似文献   

2.
A型肉毒毒素轻链基因的克隆及其结构分析   总被引:1,自引:0,他引:1  
以献报道的A型肉毒毒素基因全序列为标准,设计并合成一对引物,自肉毒梭菌基因组中扩增出肉毒毒素轻链基因片段,并将扩增产物与pGEM—T载体在体外连接,构建测序重组质粒,进行测序和基因结构分析。PCR扩增获得了产物为1 364bp的DNA片段,测序结果与DNA数据库对照检索分析证明,此基因片段与GenBank中的A型肉毒毒素LC基因的一致性达99.9%以上,可以认为克隆的基因为A型肉毒毒素LC基因。  相似文献   

3.
目的注射用A型肉毒毒素中加入明胶作为稳定剂,建立并验证定量检测注射用A型肉毒毒素中明胶含量的方法。方法通过苦味酸与明胶特异性作用,产生强的吸收,采用紫外-可见分光光度计用外标法来检测注射用A型肉毒毒素中的明胶含量。结果通过一定浓度苦味酸与明胶作用,用分光光度计在520 nm处测定吸光度,检测限可以达到2.5 mg/L,检测范围可以达到10~100 mg/L。结论该方法具有良好的特异性、准确度、精密度和灵敏度,对于测定注射用A型肉毒毒素中的明胶含量有较好的参考价值。  相似文献   

4.
目的:在大肠杆菌中表达、纯化A型肉毒毒素轻链(Bo NT/A LC),研究其生物学活性。方法:根据Gen Bank中报道的Bo NT/A LC基因序列设计特异引物,从肉毒梭菌中扩增Bo NT/A LC基因片段,构建重组大肠杆菌p ET-32a Bo NT/A LC/BL21(DE3)Rosetta,IPTG诱导目的蛋白高效表达,表达产物经Ni螯合亲和层析纯化,SDS-PAGE鉴定目的蛋白,并利用相应底物对纯化产物进行生物活性分析和酶活动力学测定。结果与结论:构建了重组大肠杆菌p ET-32a Bo NT/A LC/BL21(DE3)Rosetta,原核表达获得高水平可溶性重组Bo NT/A LC,纯化得到纯度较高的蛋白质,重组Bo NT/A LC的酶活略高于A型肉毒毒素全毒素,可作为试剂用于Bo NT/A LC抑制剂高通量体外检测方法研究。  相似文献   

5.
以重组制备的A型肉毒毒素保护性抗原为配体,对人源噬菌体免疫抗体文库进行体外定向亲和筛选,获得特异结合子,其中与抗原高亲和力结合的抗体克隆B17基因全长750bp,可编码250个氨基酸,抗体可变区基因同源分析表明,分属VH4和κchainⅡ家族,是一株人源特异单链抗体基因。人源单链抗体B17在大肠杆菌中获得了重组表达,表达产物可以竞争特异肉毒抗毒素马血清与抗原的结合,是国内首次获得的抗A型肉毒毒素保护性抗原的人源单链抗体,可以在肉毒毒素检测和治疗研究中发挥作用。  相似文献   

6.
在A型肉毒毒素保护性抗原基因初步表达的基础上,为提高表达水平,依据EMBL的DNA数据库中A型肉毒毒素基因全序列,重新设计上游引物,通过修饰基因片段N端,保持氨基酸序列不变,从已获得的A型肉毒毒素与靶细胞起结合作用的重链C端基因中,扩增小的突变基因,克隆入pGEM-T载体进行测序,并以pBV220为表达载体构建重组表达质粒,在大肠杆菌中实现高效表达。结果表明,重组表达产物占全菌蛋白的40%,酶联检测重组表达产物具有特异结合活性。A型肉毒毒素保护性抗原基因的高效表达,为下一步基因工程抗毒素和疫苗的研制奠定了基础。  相似文献   

7.
以重组制备的A型肉毒毒素保护性抗原为配体,对人源噬菌体免疫抗体文库进行体外定向亲和筛选,获得特异结合子,其中与抗原高亲和力结合的抗体克隆B17基因全长750bp,可编码250个氨基酸,抗体可变区基因同源分析表明,分属VH4和κ chain Ⅱ家族,是一株人源特异单链抗体基因。人源单链抗体B17在大肠杆菌中获得了重组表达,表达产物可以竞争特异肉毒抗毒素马血清与抗原的结合,是国内首次获得的抗A型肉毒毒素保护性抗原的人源单链抗体,可以在肉毒毒素检测和治疗研究中发挥作用。  相似文献   

8.
为了解神经毒素原性酪酸梭菌在微山湖地区土壤的分布情况,我们采集了该地区的土壤样品进行调查。50份土样培养上清中,有18份(36%)检出了肉毒毒素,经中和试验证实均为E型。从其中的7份阳性样品中分离到产毒菌株,对分离菌株进行毒性测定、生化特性检查及其神经毒素基因的PCR检测,所有菌株均具有E型肉毒神经毒素基因并产生相应毒素,但其生化特性与E型肉毒梭菌不同,而与酪酸梭菌一致。结果说明沿微山湖地区土壤中确实存在神经毒素原性酪酸梭菌,而且阳性率很高。对神经毒素原性酪酸梭菌的分布进行流行病学调查并从土壤中分离到该病原菌,这在国际上尚属首次。  相似文献   

9.
E型肉毒毒素的分子生物学研究进展   总被引:1,自引:1,他引:0  
E型肉毒毒素不同于A型肉毒毒素及具有蛋白分解性的B、F型肉毒毒素,具有自身的特点。本文就E型肉毒毒素的结构、激活及作用机制、E型肉毒毒素的精制特点、基因结构及酪酸梭菌产生E型肉毒毒素的机制探讨等四个方面予以了介绍。  相似文献   

10.
E型肉毒毒素不同于A型肉毒毒素及具有蛋白分解性的B,F型肉毒毒素,具有自身的特点。本文就E型肉毒毒素的结构,激活及作用机制,E型肉毒毒素的精制特点,基因结构及酪酸梭菌产生E型肉毒毒素的机制探讨等四个方面予以介绍。  相似文献   

11.
The polymerase chain reaction (PCR) was used as the basis for the development of highly sensitive and specific diagnostic tests for organisms harboring botulinum neurotoxin type A through E genes. Synthetic DNA primers were selected from nucleic acid sequence data for Clostridium botulinum neurotoxins. Individual components of the PCR for each serotype (serotypes A through E) were adjusted for optimal amplification of the target fragment. Each PCR assay was tested with organisms expressing each of the botulinum neurotoxin types (types A through G), Clostridium tetani, genetically related nontoxigenic organisms, and unrelated strains. Each assay was specific for the intended target. The PCR reliably identified multiple strains having the same neurotoxin type. The sensitivity of the test was determined with different concentrations of genomic DNA from strains producing each toxin type. As little as 10 fg of DNA (approximately three clostridial cells) was detected. C. botulinum neurotoxin types A, B, and E, which are most commonly associated with human botulism, could be amplified from crude DNA extracts, from vegetative cells, and from spore preparations. This suggests that there is great potential for the PCR in the identification and detection of botulinum neurotoxin-producing strains.  相似文献   

12.
A specific and sensitive combined selection and enrichment PCR procedure was developed for the detection of Clostridium botulinum types B, E, and F in fecal samples from slaughtered pigs. Two enrichment PCR assays, using the DNA polymerase rTth, were constructed. One assay was specific for the type B neurotoxin gene, and the other assay was specific for the type E and F neurotoxin genes. Based on examination of 29 strains of C. botulinum, 16 strains of other Clostridium spp., and 48 non-Clostridium strains, it was concluded that the two PCR assays detect C. botulinum types B, E, and F specifically. Sample preparation prior to the PCR was based on heat treatment of feces homogenate at 70 degrees C for 10 min, enrichment in tryptone-peptone-glucose-yeast extract broth at 30 degrees C for 18 h, and DNA extraction. The detection limits after sample preparation were established as being 10 spores per g of fecal sample for nonproteolytic type B, and 3.0 x 10(3) spores per g of fecal sample for type E and nonproteolytic type F with a detection probability of 95%. Seventy-eight pig fecal samples collected from slaughter houses were analyzed according to the combined selection and enrichment PCR procedure, and 62% were found to be PCR positive with respect to the type B neurotoxin gene. No samples were positive regarding the type E and F neurotoxin genes, indicating a prevalence of less than 1.3%. Thirty-four (71%) of the positive fecal samples had a spore load of less than 4 spores per g. Statistical analysis showed that both rearing conditions (outdoors and indoors) and seasonal variation (summer and winter) had significant effects on the prevalence of C. botulinum type B, whereas the effects of geographical location (southern and central Sweden) were less significant.  相似文献   

13.
Botulism is diagnosed by detecting botulinum neurotoxin and Clostridium botulinum cells in the patient and in suspected food samples. In this study, a multiplex PCR assay for the detection of Clostridium botulinum types A, B, E, and F in food and fecal material was developed. The method employs four new primer pairs with equal melting temperatures, each being specific to botulinum neurotoxin gene type A, B, E, or F, and enables a simultaneous detection of the four serotypes. A total of 43 C. botulinum strains and 18 strains of other bacterial species were tested. DNA amplification fragments of 782 bp for C. botulinum type A alone, 205 bp for type B alone, 389 bp for type E alone, and 543 bp for type F alone were obtained. Other bacterial species, including C. sporogenes and the nontoxigenic nonproteolytic C. botulinum-like organisms, did not yield a PCR product. Sensitivity of the PCR for types A, E, and F was 10(2) cells and for type B was 10 cells per reaction mixture. With a two-step enrichment, the detection limit in food and fecal samples varied from 10(-2) spore/g for types A, B, and F to 10(-1) spore/g of sample material for type E. Of 72 natural food samples investigated, two were shown to contain C. botulinum type A, two contained type B, and one contained type E. The assay is sensitive and specific and provides a marked improvement in the PCR diagnostics of C. botulinum.  相似文献   

14.
Aims:  To develop a convenient and rapid detection method for toxigenic Clostridium botulinum types A and B using a loop-mediated isothermal amplification (LAMP) method.
Methods and results:  The LAMP primer sets for the type A or B botulinum neurotoxin gene, BoNT / A or BoNT / B , were designed. To determine the specificity of the LAMP assay, a total of 14 C. botulinum strains and 17 other Clostridium strains were tested. The assays for the BoNT/A or BoNT/B gene detected only type A or B C. botulinum strains, respectively, but not other types of C. botulinum or strains of other Clostridium species. Using purified chromosomal DNA, the sensitivity of LAMP for the BoNT/A or BoNT/B gene was 1 pg or 10 pg of DNA per assay, respectively. The assay times needed to detect 1 ng of DNA were only 23 and 22 min for types A and B, respectively. In food samples, the detection limit per reaction was one cell for type A and 10 cells for type B.
Conclusions:  The LAMP is a sensitive, specific and rapid detection method for C. botulinum types A and B.
Significance and Impact of the Study:  The LAMP assay would be useful for detection of C. botulinum in environmental samples.  相似文献   

15.
Botulinum neurotoxin (BoNT) producing clostridia contain genes encoding a specific neurotoxin serotype (A-G) and nontoxic associated proteins that form the toxin complex. The nontoxic nonhemagglutinin (NTNH) is a conserved component of the toxin complex in all seven toxin types. A real-time PCR assay that utilizes a locked nucleic acid hydrolysis probe to target the NTNH gene was developed to detect bacterial strains harboring the botulinum neurotoxin gene cluster. The specificity of the assay for Clostridium botulinum types A-G, Clostridium butyricum type E and Clostridium baratii type F was demonstrated using a panel of 73 BoNT producing clostridia representing all seven toxin serotypes. In addition, exclusivity of the assay was demonstrated using non-botulinum toxin producing clostridia (7 strains) and various enteric bacterial strains (n=27). Using purified DNA, the assay had a sensitivity of 4-95 genome equivalents. C. botulinum type A was detected directly in spiked stool samples at 10(2)-10(3) CFU/ml. Stool spiked with 1 CFU/ml was detected when the sample was inoculated into enrichment broth and incubated for 24 h. These results indicate that the NTNH real-time PCR assay can be used to screen enrichment cultures of primary specimens at earlier time points (24 h) than by toxin detection of unknown culture supernatants (up to 5 days).  相似文献   

16.
Investigation of animal botulism outbreaks by PCR and standard methods   总被引:1,自引:0,他引:1  
Abstract A double PCR procedure is proposed for identification of Clostridium botulinum C and D. This method consists of a first PCR amplification with a degenerate primer pair able to amplify a 340 bp common DNA fragment from botulinum neurotoxin (BoNT) C1 and D genes, followed by two subsequent PCR amplifications with two primer pairs specific for BoNT/C1 and D respectively (198 bp DNA fragment). This method was found to be specific for C. botulinum C and D, amongst 81 strains of C. botulinum and 21 different species of other Clostridium and bacteria tested. The detection limit ranged from 10 to 103 bacteria in the reaction volume according to the C. botulinum C and D strains. In 160 naturally contaminated animal and food samples submitted to a 48 h enrichment culture, the double PCR showed an 89.4% correlation rate with the standard mouse bioassay. A clear distinction between botulism type C and D was obtained. The double PCR provides a reliable alternative for detection and identification of C. botulinum C and D in clinical and food samples.  相似文献   

17.
Botulism is diagnosed by detecting botulinum neurotoxin and Clostridium botulinum cells in the patient and in suspected food samples. In this study, a multiplex PCR assay for the detection of Clostridium botulinum types A, B, E, and F in food and fecal material was developed. The method employs four new primer pairs with equal melting temperatures, each being specific to botulinum neurotoxin gene type A, B, E, or F, and enables a simultaneous detection of the four serotypes. A total of 43 C. botulinum strains and 18 strains of other bacterial species were tested. DNA amplification fragments of 782 bp for C. botulinum type A alone, 205 bp for type B alone, 389 bp for type E alone, and 543 bp for type F alone were obtained. Other bacterial species, including C. sporogenes and the nontoxigenic nonproteolytic C. botulinum-like organisms, did not yield a PCR product. Sensitivity of the PCR for types A, E, and F was 102 cells and for type B was 10 cells per reaction mixture. With a two-step enrichment, the detection limit in food and fecal samples varied from 10−2 spore/g for types A, B, and F to 10−1 spore/g of sample material for type E. Of 72 natural food samples investigated, two were shown to contain C. botulinum type A, two contained type B, and one contained type E. The assay is sensitive and specific and provides a marked improvement in the PCR diagnostics of C. botulinum.  相似文献   

18.
Neurotoxins produced by strains of Clostridium sp. are belonging to the most toxic biological substances. In the study phenotypes and genotypes of C. botulinum strains in animal studies in vivo and on the DNA level were evaluated, respectively. Additionally, the presence of genes encoding BoNT toxins of A, B, and E types among strains of Clostridium sp. were identified. In case of C. botulinum DNA was isolated from vegetative bacterial cells and from spores. Two different genes encoding two different neurotoxins harboured by three strains of Ae biotype/ae genotype, and by two strains of B biotype/be genotype were detected. Additionally, above E type C. botulinum strains, the presence of gene encoding E type neurotoxin, was found in genome of two C. baratii, two C. butyricum, and C. bifidobacterium, and C. oedematicum strains. C. bifidobacterium and C. oedematicum strains positive for presence of gene encoding E type neurotoxin, were found negative for E neurotoxin production in vivo in TN test. The study indicates that genes encoding BoNT/E neurotoxins are very common among Clostridium species. Phenotype and genotype analysis indicated co-presence of B phenotype together with be genotype and A phenotype together with ae genotype among C. botulinum strains.  相似文献   

19.
A Gram positive, motile, rod-shaped, strictly anaerobic bacterium isolated from intestine of decaying fish was identified as Clostridium sp. RKD and produced a botulinum type B-like neurotoxin as suggested by mouse bioassay and protection with anti botulinum antibodies. The neurotoxicity was functionally characterized by the phrenic nerve hemi-diaphragm assay. Phylogenetic analysis based on 16S rDNA sequence, placed it at a different position from the reported strains of Clostridium botulinum. The strain exhibited differences from both Clostridium botulinum and Clostridium tetani with respect to morphological, biochemical and chemotaxonomic characteristics. Botulinum group specific and serotype specific primers amplified the DNA fragments of 260 and 727 bp, respectively, indicating presence of botulinum type 'B' toxin gene. Sequence of nearly 700 bp amplified using primers specific for botulinum neurotoxin type B gene, did not show any significant match in the database when subjected to BLAST search.  相似文献   

20.
A specific and sensitive combined selection and enrichment PCR procedure was developed for the detection of Clostridium botulinum types B, E, and F in fecal samples from slaughtered pigs. Two enrichment PCR assays, using the DNA polymerase rTth, were constructed. One assay was specific for the type B neurotoxin gene, and the other assay was specific for the type E and F neurotoxin genes. Based on examination of 29 strains of C. botulinum, 16 strains of other Clostridium spp., and 48 non-Clostridium strains, it was concluded that the two PCR assays detect C. botulinum types B, E, and F specifically. Sample preparation prior to the PCR was based on heat treatment of feces homogenate at 70°C for 10 min, enrichment in tryptone-peptone-glucose-yeast extract broth at 30°C for 18 h, and DNA extraction. The detection limits after sample preparation were established as being 10 spores per g of fecal sample for nonproteolytic type B, and 3.0 × 103 spores per g of fecal sample for type E and nonproteolytic type F with a detection probability of 95%. Seventy-eight pig fecal samples collected from slaughter houses were analyzed according to the combined selection and enrichment PCR procedure, and 62% were found to be PCR positive with respect to the type B neurotoxin gene. No samples were positive regarding the type E and F neurotoxin genes, indicating a prevalence of less than 1.3%. Thirty-four (71%) of the positive fecal samples had a spore load of less than 4 spores per g. Statistical analysis showed that both rearing conditions (outdoors and indoors) and seasonal variation (summer and winter) had significant effects on the prevalence of C. botulinum type B, whereas the effects of geographical location (southern and central Sweden) were less significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号