首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The double-stranded (ds) RNA activated protein kinase PKR is an interferon (IFN)-inducible serine/threonine protein that regulates protein synthesis through the phosphorylation of the alpha subunit of translation initiation factor 2 (eIF-2alpha). PKR activation in cells is induced by virus infection or treatment with dsRNA and is modulated by a number of viral and cellular factors. To better understand the mechanisms of PKR action we have analyzed and compared the mode of PKR activation in a number of cell lines of different histological origin. Here we show that PKR activation and phosphorylation of eIF-2alpha are both diminished in various virus-transformed and nontransformed human T cells. Priming of T cells with IFN does not restore PKR activation. In vitro kinase assays show that the diminished PKR activation in T cells correlates with the presence of a 60-kDa (p60) phosphoprotein coimmunoprecipitated with PKR. P60 is absent from PKR immunoprecipitates from non T cells. Incubation of active PKR with T cell extracts results in inhibition of PKR autophosphorylation, which is proportional to the amount of phosphorylated p60 in the kinase reactions. Treatment of T cells with proteasome inhibitors or incubation of PKR immunoprecipitates with phosphatase inhibitors does not restore PKR activation. However, phosphorylation of p60 is enhanced upon treatment with the phosphatase inhibitor microcystin. These data show that the impaired activation capacity of PKR in human T cells is exerted at the post-translational levels in a manner that is independent of cell transformation or virus infection.  相似文献   

2.
The interferon induced double-stranded RNA-activated kinase, PKR, has been suggested to act as a tumor suppressor since expression of a dominant negative mutant of PKR causes malignant transformation. However, the mechanism of transformation has not been elucidated. PKR phosphorylates translation initiation factor eIF-2 alpha on Ser51, resulting in inhibition of protein synthesis and cell growth arrest. Consequently, it is possible that cell transformation by dominant negative PKR mutants is caused by inhibition of eIF-2 alpha phosphorylation. Here, we demonstrate that in NIH 3T3 cells transformed by the dominant negative PKR mutant (PKR delta 6), eIF-2 alpha phosphorylation is dramatically reduced. Furthermore, expression of a mutant form of eIF-2 alpha, which cannot be phosphorylated on Ser51 also caused malignant transformation of NIH 3T3 cells. These results are consistent with a critical role of phosphorylation of eIF-2 alpha in control of cell proliferation, and indicate that dominant negative PKR mutants transform cells by inhibition of eIF-2 alpha phosphorylation.  相似文献   

3.
Cheng G  Feng Z  He B 《Journal of virology》2005,79(3):1379-1388
The gamma(1)34.5 protein of herpes simplex virus (HSV) plays a crucial role in virus infection. Although the double-stranded RNA-dependent protein kinase (PKR) is activated during HSV infection, the gamma(1)34.5 protein inhibits the activity of PKR by mediating dephosphorylation of the translation initiation factor eIF-2alpha. Here we show that HSV infection also induces phosphorylation of an endoplasmic reticulum (ER) resident kinase PERK, a hallmark of ER stress response. The virus-induced phosphorylation of PERK is blocked by cycloheximide but not by phosphonoacetic acid, suggesting that the accumulation of viral proteins in the ER is essential. Notably, the maximal phosphorylation of PERK is delayed in PKR+/+ cells compared to that seen in PKR-/- cells. Further analysis indicates that hyperphosphorylation of eIF-2alpha caused by HSV is greater in PKR+/+ cells than in PKR-/- cells. However, expression of the gamma(1)34.5 protein suppresses the ER stress response caused by virus, dithiothreitol, and thapsigargin as measured by global protein synthesis. Interestingly, the expression of GADD34 stimulated by HSV infection parallels the status of eIF-2alpha phosphorylation. Together, these observations suggest that regulation of eIF-2alpha phosphorylation by the gamma(1)34.5 protein is an efficient way to antagonize the inhibitory activity of PKR as well as PERK during productive infection.  相似文献   

4.
5.
6.
Replication of the human immunodeficiency virus type 1 (HIV-1) is inhibited by interferons (IFNs), in part through activity of the IFN-inducible protein kinase PKR. To escape this antiviral effect, HIV-1 has developed strategies for blocking PKR function. We have previously shown that the HIV-1 Tat protein can associate with PKR in vitro and in vivo and inhibit PKR activity. Here we present evidence that Tat can inhibit PKR activity by both RNA-dependent and RNA-independent mechanisms. Tat inhibited PKR activation by the non-RNA activator heparin, and also suppressed PKR basal level autophosphorylation in the absence of RNA. However, when Tat and dsRNA were preincubated, the amount of Tat required to inhibit PKR activation by dsRNA depended on the dsRNA concentration. In addition to its function in vitro, Tat can also reverse translation inhibition mediated by PKR in COS cells. The Tat amino acid sequence required for interaction with PKR was mapped to residues 40-58, overlapping the hydrophobic core and basic region of HIV-1 Tat. Alignment of amino acid sequences of Tat and eIF-2alpha indicates similarity between the Tat-PKR binding region and the residues around the eIF-2alpha phosphorylation site, suggesting that Tat and eIF-2alpha may bind to the same site on PKR.  相似文献   

7.
Earlier studies have shown that herpes simplex virus type 1 (HSV-1) activated protein kinase R (PKR) but that the product of the product of the gamma(1)34.5 gene binds and redirects the host phosphatase 1 to dephosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2alpha). In consequence, the gamma(1)34.5 gene product averts the threatened shutoff of protein synthesis caused by activated PKR. Serial passages of Deltagamma(1)34.5 mutants in human cells led to isolation of two classes of second-site, compensatory mutants. The first, reported earlier, resulted from the juxtaposition of the alpha promoter of the U(S)12 gene to the coding sequence of the U(S)11 gene. The mutant blocks the phosphorylation of eIF-2alpha but does not restore the virulence phenotype of the wild-type virus. We report another class of second-site, compensatory mutants that do not map to the U(S)10-12 domain of the HSV-1 genome. All mutants in this series exhibit sustained late protein synthesis, higher yields in human cells, and reduced phosphorylation of PKR that appears to be phosphatase dependent. Specific dephosphorylation of eIF-2alpha was not demonstrable. At least one mutant in this series exhibited a partial restoration of the virulence phenotype characteristic of the wild-type virus phenotype. The results suggest that the second-site mutations reflect activation of fossilized functions designed to block the interferon response pathways in cells infected with the progenitor of present HSV.  相似文献   

8.
Phosphorylation of eukaryotic translation initiation factor-2alpha (eIF-2alpha) is one of the key steps where protein synthesis is regulated in response to changes in environmental conditions. The phosphorylation is carried out in part by three distinct eIF-2alpha kinases including mammalian double-stranded RNA-dependent eIF-2alpha kinase (PKR) and heme-regulated inhibitor kinase (HRI), and yeast GCN2. We report the identification and characterization of a related kinase, PEK, which shares common features with other eIF-2alpha kinases including phosphorylation of eIF-2alpha in vitro. We show that human PEK is regulated by different mechanisms than PKR or HRI. In contrast to PKR or HRI, which are dependent on autophosphorylation for their kinase activity, a point mutation that replaced the conserved Lys-614 with an alanine completely abolished the eIF-2alpha kinase activity, whereas the mutant PEK was still autophosphorylated when expressed in Sf-9 cells. Northern blot analysis indicates that PEK mRNA was predominantly expressed in pancreas, though low expression was also present in several tissues. Consistent with the high levels of mRNA in pancreas, the PEK protein was only detected in human pancreatic islets, and the kinase co-localized with somatostatin, a pancreatic delta cell-specific hormone. Thus PEK is believed to play an important role in regulating protein synthesis in the pancreatic islet, especially in islet delta cells.  相似文献   

9.
Studies on hepatitis C virus (HCV) replication have been greatly advanced by the development of cell culture models for HCV known as replicon systems. The prototype replicon consists of a subgenomic HCV RNA in which the HCV structural region is replaced by the neomycin phosphotransferase II (NPTII) gene, and translation of the HCV proteins NS3 to NS5 is directed by the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES). The interferon (IFN)-inducible protein kinase PKR plays an important role in cell defense against virus infection by impairing protein synthesis as a result of eIF-2alpha phosphorylation. Here, we show that expression of the viral nonstructural (NS) and PKR proteins and eIF-2alpha phosphorylation are all variably regulated in proliferating replicon Huh7 cells. In proliferating cells, induction of PKR protein by IFN-alpha is inversely proportional to viral RNA replication and NS protein expression, whereas eIF-2alpha phosphorylation is induced by IFN-alpha in proliferating but not in serum-starved replicon cells. The role of PKR and eIF-2alpha phosphorylation was further addressed in transient-expression assays in Huh7 cells. These experiments demonstrated that activation of PKR results in the inhibition of EMCV IRES-driven NS protein synthesis from the subgenomic viral clone through mechanisms that are independent of eIF-2alpha phosphorylation. Unlike NS proteins, HCV IRES-driven NPTII protein synthesis from the subgenomic clone was resistant to PKR activation. Interestingly, activation of PKR could induce HCV IRES-dependent mRNA translation from dicistronic constructs, but this stimulatory effect was mitigated by the presence of the viral 3' untranslated region. Thus, PKR may assume multiple roles in modulating HCV replication and protein synthesis, and tight control of PKR activity may play an important role in maintaining virus replication and allowing infection to evade the host's IFN system.  相似文献   

10.
We studied the effect of staurosporine on two well characterised mammalian eIF-2alpha kinases, the heme-regulated translational inhibitor (HRI), and interferon-inducible double-stranded RNA-activated protein kinase (PKR). Both pure eIF-2 and a synthetic peptide used to measure the activity of purified or immunoprecipitated enzymes (sequence ILLSELSRRRIRAI) were phosphorylated with purified enzymes and crude preparations of tissues or cells in the presence of the inhibitor. In the presence of 0.25 microM staurosporine (a concentration which completely inhibits a wide range of Ser/Thr protein kinases), the phosphorylation of eIF-2alpha by HRI and PKR was not inhibited. The lack of response of eIF-2alpha kinases to staurosporine allowed us to measure PKR activity in salt washed postmicrosomal supernatants without previous purification of the enzyme. In the presence of poly(I):poly(C), the PKR activator, we detected both an increased phosphorylation of eIF-2alpha and an increment in the autophosphorylation of PKR. We also confirmed an induction of PKR in cultured neuronal cells after treatment with interferon. The results obtained following phosphorylation of the synthetic peptide with crude extracts are less conclusive. Although its phosphorylation is specific because it displaces eIF-2 phosphorylation, and the presence of staurosporine prevents its phosphorylation by other serine/threonine kinases, it is a rather poor substrate for PKR.  相似文献   

11.
12.
13.
Vaccinia virus has evolved multiple mechanisms to counteract the interferon-induced antiviral host cell response. Recently, two vaccinia virus gene products were shown to interfere with the activity of the double-stranded RNA-dependent protein kinase (PKR): the K3L gene product and the E3L gene product. We have evaluated the efficiency by which these gene products inhibit PKR and whether they act in a synergistic manner. The effects of the two vaccinia virus gene products were compared in an in vivo system in which translation of a reporter gene (dihydrofolate reductase or eukaryotic translation initiation factor 2 alpha [eIF-2 alpha]) was inhibited because of the localized activation of PKR. In this system, the E3L gene product, and to a lesser extent the K3L gene product, potentiated translation of the reporter gene and inhibited eIF-2 alpha phosphorylation. Analysis in vitro demonstrated that the E3L gene product inhibited PKR approximately 50- to 100-fold more efficiently than the K3L gene product. However, further studies demonstrated that the mechanism of action of these two inhibitors was different. Whereas the E3L inhibitor interfered with the binding of the kinase to double-stranded RNA, the K3L inhibitor did not. We propose that the K3L inhibitor acts through its homology to eIF-2 alpha to interfere with the interaction of eIF-2 alpha with PKR. The two inhibitors did not display a synergistic effect on translation or eIF-2 alpha phosphorylation. In addition, neither K3L nor E3L expression detectably altered cellular protein synthesis.  相似文献   

14.
Phosphorylation of the alpha subunit of the eucaryotic translation initiation factor (eIF-2 alpha) by the double-stranded RNA-activated inhibitor (DAI) kinase correlates with inhibition of translation initiation. The importance of eIF-2 alpha phosphorylation in regulating translation was studied by expression of specific mutants of eIF-2 alpha in COS-1 cells. DNA transfection of certain plasmids could activate DAI kinase and result in poor translation of plasmid-derived mRNAs. In these cases, translation of the plasmid-derived mRNAs was improved by the presence of DAI kinase inhibitors or by the presence of a nonphosphorylatable mutant (serine to alanine) of eIF-2 alpha. The improved translation mediated by expression of the nonphosphorylatable eIF-2 alpha mutant was specific to plasmid-derived mRNA and did not affect global mRNA translation. Expression of a serine-to-aspartic acid mutant eIF-2 alpha, created to mimic the phosphorylated serine, inhibited translation of the mRNAs derived from the transfected plasmid. These results substantiate the hypothesis that DAI kinase activation reduces translation initiation through phosphorylation of eIF-2 alpha and reinforce the importance of phosphorylation of eIF-2 alpha as a way to control initiation of translation in intact cells.  相似文献   

15.
Double-stranded RNA-dependent protein kinase (PKR) is a participant in the cellular antiviral response and phosphorylates the alpha-subunit of eukaryotic translation initiation factor 2alpha (eIF-2alpha) to block protein synthesis. Treatment of human osteosarcoma cell line MG63 cells with a serine and threonine protein phosphatase inhibitor, okadaic acid, at the concentration of 100 nM, but not at 20 nM, induced apoptosis. To investigate the functional relationship between phosphatases and apoptosis, we examined the phosphorylation levels of PKR and eIF-2alpha by Western blot analysis. During treatment of cells with it at the higher concentration (100 nM), okadaic acid increased the level of phosphorylated PKR in MG63 cells, this kinase phosphorylating eIF-2alpha. However, at the lower concentration (20 nM), okadaic acid did not affect the level of phosphorylated PKR. In the cells treated with 100 nM okadaic acid, activation of NF-kappaB also occurred. Even though inhibition of translation occurred simultaneously in MG63 cells, the expression of pro-apoptotic proteins Fas and Bax was not affected by 100 nM okadaic acid in these cells. We concluded that the inhibition of translation decreased anti-apoptotic protein expression, thus resulting in apoptosis. Our results also suggest that the inhibition of the protein phosphatase activity by okadaic acid induced apoptosis in MG63 cells through PKR and eIF-2alpha.  相似文献   

16.
17.
PKR is a serine/threonine protein kinase induced by interferon treatment and activated by double-stranded RNAs. As a result of activation, PKR becomes autophosphorylated and catalyzes phosphorylation of the alpha subunit of protein synthesis eukaryotic initiation factor 2 (eIF-2). While studying the regulation of PKR in virus-infected cells, we found that a cellular 58-kDa protein (P58) was recruited by influenza virus to downregulate PKR and thus avoid the kinase's deleterious effects on viral protein synthesis and replication. We now report on the cloning, sequencing, expression, and structural analysis of the P58 PKR inhibitor, a 504-amino-acid hydrophilic protein. P58, expressed as a histidine fusion protein in Escherichia coli, blocked both the autophosphorylation of PKR and phosphorylation of the alpha subunit of eIF-2. Western blot (immunoblot) analysis showed that P58 is present not only in bovine cells but also in human, monkey, and mouse cells, suggesting the protein is highly conserved. Computer analysis revealed that P58 contains regions of homology to the DnaJ family of proteins and a much lesser degree of similarity to the PKR natural substrate, eIF-2 alpha. Finally, P58 contains nine tandemly arranged 34-amino-acid repeats, demonstrating that the PKR inhibitor is a member of the tetratricopeptide repeat family of proteins, the only member identified thus far with a known biochemical function.  相似文献   

18.
A poliovirus type 2 Lansing mutant was constructed by inserting 6 base pairs into the 2Apro region of an infectious cDNA clone, resulting in the addition of a leucine and threonine into the polypeptide sequence. The resulting small-plaque mutant, 2A-2, had a reduced viral yield in HeLa cells and synthesized viral proteins inefficiently. Infection with the mutant did not lead to specific inhibition of host cell protein synthesis early in infection, and this defect was attributed to a failure to induce cleavage of the cap-binding complex protein p220. At late times after infection with the mutant virus, both cellular and viral protein syntheses were severely inhibited. To explain this global inhibition of protein synthesis, the phosphorylation state of the alpha subunit of eucaryotic initiation factor 2 (eIF-2 alpha) was examined. eIF-2 alpha was phosphorylated in both R2-2A-2- and wild-type-virus-infected cells, indicating that poliovirus does not encode a function that blocks phosphorylation of eIF-2 alpha. The kinetics and extent of eIF-2 alpha phosphorylation correlated with the production of double-stranded RNA in infected cells, suggesting that eIF-2 alpha is phosphorylated by P1/eIF-2 alpha kinase. When HeLa cells were infected with R2-2A-2 in the presence of 2-aminopurine, a protein kinase inhibitor, much higher virus titers were produced, cleavage of p220 occurred, and host cell protein synthesis was specifically inhibited. Since phosphorylation of eIF-2 alpha was not inhibited by 2-aminopurine, we propose that 2-aminopurine rescues the ability of R2-2A-2 to induce cleavage of p220 by inhibition of a second as yet unidentified kinase.  相似文献   

19.
20.
Ethanol exposure inhibits protein synthesis and causes cell death in the developing central nervous system. The double-stranded RNA (dsRNA)-activated protein kinase (PKR), a serine/threonine protein kinase, plays an important role in translational regulation and cell survival. PKR has been well known for its anti-viral response. Upon activation by viral infection or dsRNA, PKR phosphorylates its substrate, the alpha-subunit of eukaryotic translation initiation factor-2 (eIF2alpha) leading to inhibition of translation initiation. It has recently been shown that, in the absence of a virus or dsRNA, PKR can be activated by direct interactions with its protein activators, PACT, or its mouse homologue, RAX. We have demonstrated that exposure to ethanol increased the phosphorylation of PKR and eIF2alpha in the developing cerebellum. The effect of ethanol on PKR/eIF2alpha phosphorylation positively correlated to the expression of PACT/RAX in cultured neuronal cells. Using PKR inhibitors and PKR null mouse fibroblasts, we verified that ethanol-induced eIF2alpha phosphorylation was mediated by PKR. Overexpression of a wild-type RAX dramatically enhanced sensitivity to ethanol-induced PKR/eIF2alpha phosphorylation, as well as translational inhibition and cell death. In contrast, overexpression of a mutant (S18A) RAX inhibited ethanol-mediated PKR/eIF2alpha activation. Ethanol promoted PKR and RAX association in cells expressing wild-type RAX but not in cells expressing S18A RAX. S18A RAX functioned as a dominant negative protein and blocked ethanol-induced inhibition of protein synthesis and cell death. Our results suggest that the interactions between PKR and PACT/RAX modulate the effect of ethanol on protein synthesis and cell survival in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号