首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A striking example of the power of chromosome painting has been the resolution of the male platypus karyotype and the pairing relationships of the chain of ten sex chromosomes. We have extended our analysis to the nine sex chromosomes of the male echidna. Cross-species painting with platypus shows that the first five chromosomes in the chain are identical in both, but the order of the remainder are different and, in each species, a different autosome replaces one of the five X chromosomes. As the therian X is homologous mainly to platypus autosome 6 and echidna 16, and as SRY is absent in both, the sex determination mechanism in monotremes is currently unknown. Several of the X and Y chromosomes contain genes orthologous to those in the avian Z but the significance of this is also unknown. It seems likely that a novel testis determinant is carried by a Y chromosome common to platypus and echidna. We have searched for candidates for this determinant among the many genes known to be involved in vertebrate sex differentiation. So far fourteen such genes have been mapped, eleven are autosomal in platypus, two map to the differential regions of X chromosomes, and one maps to a pairing segment and is likewise excluded. Search for the platypus testis-determining gene continues, and the extension of comparative mapping between platypus and birds and reptiles may shed light on the ancestral origin of monotreme sex chromosomes.  相似文献   

2.
The identification of the sex chromosomes in the three extant species of Prototherian mammals (the monotremes) is complicated by their involvement in a multivalent translocation chain at the first division of male meiosis. The platypus X chromosome, identified by the presence of two copies in females and one in males, has been found to possess a suite of genes that have been mapped to the X chromosomes of all eutherian and metatherian mammals. We have extended gene mapping studies to a member of the only other extant monotreme family, the echidna, which has a G-band equivalent X1 chromosome, as well as a smaller X2. We find that the five human X-linked genes (G6PD, GDX, F9, AR and MCF2) map to the echidna X1 chromosome in locations equivalent to those on the platypus X. These results confirm that the echidna X1 is the original X chromosome in this species, and identify a conserved ancestral monotreme X chromosome.  相似文献   

3.
Sex chromosomes may provide a context for studying the local effects of mutation rate on molecular evolution, since the two types of sex chromosomes are generally exposed to different mutational environments in male and female germ lines. Importantly, recent studies of some vertebrates have provided evidence for a higher mutation rate among males than among females. Thus, in birds, the Z chromosome, which spends two thirds of its time in the male germ line, is exposed to more mutations than the female-specific W chromosome. We show here that levels of nucleotide diversity are drastically higher on the avian Z chromosome than in paralogous sequences on the W chromosome. In fact, no intraspecific polymorphism whatsoever was seen in about 3.4 kb of CHD1W intron sequence from a total of >150 W chromosome copies of seven different bird species. In contrast, the amount of genetic variability in paralogous sequences on the Z chromosome was significant, with an average pairwise nucleotide diversity (d) of 0.0020 between CHD1Z introns and with 37 segregating sites in a total of 3.8 kb of Z sequence. The contrasting levels of genetic variability on the avian sex chromosomes are thus in a direction predicted from a male-biased mutation rate. However, although a low gene number, as well as some other factors, argues against background selection and/or selective sweeps shaping the genetic variability of the avian W chromosome, we cannot completely exclude selection as a contributor to the low levels of variation on the W chromosome.  相似文献   

4.
Molecular evolution of the avian CHD1 genes on the Z and W sex chromosomes   总被引:5,自引:0,他引:5  
Fridolfsson AK  Ellegren H 《Genetics》2000,155(4):1903-1912
Genes shared between the nonrecombining parts of the two types of sex chromosomes offer a potential means to study the molecular evolution of the same gene exposed to different genomic environments. We have analyzed the molecular evolution of the coding sequence of the first pair of genes found to be shared by the avian Z (present in both sexes) and W (female-specific) sex chromosomes, CHD1Z and CHD1W. We show here that these two genes evolve independently but are highly conserved at nucleotide as well as amino acid levels, thus not indicating a female-specific role of the CHD1W gene. From comparisons of sequence data from three avian lineages, the frequency of nonsynonymous substitutions (K(a)) was found to be higher for CHD1W (1.55 per 100 sites) than for CHD1Z (0.81), while the opposite was found for synonymous substitutions (K(s), 13.5 vs. 22.7). We argue that the lower effective population size and the absence of recombination on the W chromosome will generally imply that nonsynonymous substitutions accumulate faster on this chromosome than on the Z chromosome. The same should be true for the Y chromosome relative to the X chromosome in XY systems. Our data are compatible with a male-biased mutation rate, manifested by the faster rate of neutral evolution (synonymous substitutions) on the Z chromosome than on the female-specific W chromosome.  相似文献   

5.
6.
The gastric mucosa of two monotremes: the duck-billed platypus and echidna   总被引:1,自引:0,他引:1  
The gastric mucosa of both the echidna and platypus is aglandular and the lining epithelium is stratified squamous. The latter exhibits three principle layers: stratum germinativum, stratum spinosum, and stratum corneum. The cytoplasm of cells composing the first two strata of both species shows bundles of tonofibrils and numerous free ribosomes. Cells of the stratum spinosum in the platypus also show numerous dense granules limited to the peripheral cytoplasm. The stratum spinosum of both species is comprised of fusiform-shaped cells whose adjacent cell membranes show extensive interlocking. The stratum spinosum of the echidna in addition shows numerous intercellular bridges. Cells of the stratum corneum become flattened and elongate and in the echidna nuclei near the surface appear to degenerate. Cells comprising the stratum corneum of the platypus exhibit well preserved nuclei and contain scattered large granules of varying electron density. Prior to sloughing, cells near the surface of both species show a separation of adjacent cell membranes. True keratinization is not found in the gastric lining epithelium of either species and the epithelium lining of the stomach of the echidna more closely represents a form of parakeratosis. Delicate papillae containing capillaries extend considerable distances into the overlying epithelium of both species and are thought to contribute to its nutrition.  相似文献   

7.
Evolution of the avian sex chromosomes and their role in sex determination   总被引:1,自引:0,他引:1  
Is it the female-specific W chromosome of birds that causes the avian embryo to develop a female phenotype, analogous to the dominance mode of genic sex differentiation seen in mammals? Or is it the number of Z chromosomes that triggers male development, similar to the balance mode of differentiation seen in Drosophila and Caenorhabditis elegans? Although definite answers to these questions cannot be given yet, some recent data have provided support for the latter hypothesis. Moreover, despite the potentially common features of sex determination in mammals and birds, comparative mapping shows that the avian sex chromosomes have a different autosomal origin than the mammalian X and Y chromosomes.  相似文献   

8.
A new look at the evolution of avian sex chromosomes   总被引:1,自引:0,他引:1  
Birds have a ubiquitous, female heterogametic, ZW sex chromosome system. The current model suggests that the Z chromosome and its degraded partner, the W chromosome, evolved from an ancestral pair of autosomes independently from the mammalian XY male heteromorphic sex chromosomes--which are similar in size, but not gene content (Graves, 1995; Fridolfsson et al., 1998). Furthermore the degradation of the W has been proposed to be progressive, with the basal clade of birds (the ratites) possessing virtually homomorphic sex chromosomes and the more recently derived birds (the carinates) possessing highly heteromorphic sex chromosomes (Ohno, 1967; Solari, 1993). Recent findings have suggested an alternative to independent evolution of bird and mammal chromosomes, in which an XY system took over directly from an ancestral ZW system. Here we examine recent research into avian sex chromosomes and offer alternative suggestions as to their evolution.  相似文献   

9.
10.
Ellegren H  Carmichael A 《Genetics》2001,158(1):325-331
Birds are characterized by female heterogamety; females carry the Z and W sex chromosomes, while males have two copies of the Z chromosome. We suggest here that full differentiation of the Z and W sex chromosomes of birds did not take place until after the split of major contemporary lineages, in the late Cretaceous. The ATP synthase alpha-subunit gene is now present in one copy each on the nonrecombining part of the W chromosome (ATP5A1W) and on the Z chromosome (ATP5A1Z). This gene seems to have evolved on several independent occasions, in different lineages, from a state of free recombination into two sex-specific and nonrecombining variants. ATP5A1W and ATP5A1Z are thus more similar within orders, relative to what W (or Z) are between orders. Moreover, this cessation of recombination apparently took place at different times in different lineages (estimated at 13, 40, and 65 million years ago in Ciconiiformes, Galliformes, and Anseriformes, respectively). We argue that these observations are the result of recent and traceable steps in the process where sex chromosomes gradually cease to recombine and become differentiated. Our data demonstrate that this process, once initiated, may occur independently in parallel in sister lineages.  相似文献   

11.
In mammals, chromosomes occupy defined positions in sperm, whereas previous work in chicken showed random chromosome distribution. Monotremes (platypus and echidnas) are the most basal group of living mammals. They have elongated sperm like chicken and a complex sex chromosome system with homology to chicken sex chromosomes. We used platypus and chicken genomic clones to investigate genome organization in sperm. In chicken sperm, about half of the chromosomes investigated are organized non-randomly, whereas in platypus chromosome organization in sperm is almost entirely non-random. The use of genomic clones allowed us to determine chromosome orientation and chromatin compaction in sperm. We found that in both species chromosomes maintain orientation of chromosomes in sperm independent of random or non-random positioning along the sperm nucleus. The distance of loci correlated with the total length of sperm nuclei, suggesting that chromatin extension depends on sperm elongation. In platypus, most sex chromosomes cluster in the posterior region of the sperm nucleus, presumably the result of postmeiotic association of sex chromosomes. Chicken and platypus autosomes sharing homology with the human X chromosome located centrally in both species suggesting that this is the ancestral position. This suggests that in some therian mammals a more anterior position of the X chromosome has evolved independently.  相似文献   

12.
13.
Sex determination in major vertebrate groups appears to be very variable, including systems of male heterogamety, female heterogamety and a variety of genetic and environmental sex determining systems. Yet comparative studies of sex chromosomes and sex determining genes now suggest that these differences are more apparent than real. The sex chromosomes of even widely divergent groups now appear to have changed very little over the last 300+ million years, and even independently derived sex chromosomes seem to have followed the same set of evolutionary rules. The sex determining pathway seems to be extremely conserved, although the control of the genes in this pathway is vested in different elements. We present a scenario for the independent evolution of XY male heterogamety in mammals and ZW female heterogamety in birds and some reptiles. We suggest that sex determining genes can be made redundant, and replaced by control at another step of a conserved sex determining pathway, and how choice of a gene as a sex switch has led to the evolution of new sex chromosome systems. J. Exp. Zool. 290:449-462, 2001.  相似文献   

14.
15.
Human and mouse amelogenin gene loci are on the sex chromosomes   总被引:19,自引:0,他引:19  
Enamel is the outermost covering of teeth and is the hardest tissue in the vertebrate body. The enamel matrix is composed of enamelin and amelogenin classes of protein. We have determined the chromosomal locations for the human and mouse amelogenin (AMEL) loci using Southern blot analyses of DNA from human, mouse, or somatic cell hybrids by hybridization to a characterized mouse amelogenin cDNA. We have determined that human AMEL sequences are located on the distal short arm of the X chromosome in the p22.1----p22.3 region and near the centromere on the Y chromosome, possibly at the proximal long arm (Yq11) region. These chromosomal assignments are consistent with the hypothesis that perturbation of the amelogenin gene is involved in X-linked types of amelogenesis imperfecta, as well as with the Y-chromosomal locations for genes that participate in regulating tooth size and shape. Unlike the locus in humans, the mouse AMEL locus appears to be assigned solely to the X chromosome. Finally, together with the data on other X and Y chromosome sequences, these data for AMEL mapping support the notion of a pericentric inversion occurring in the human Y chromosome during primate evolution.  相似文献   

16.
17.
Since the discovery of SRY/SRY as a testis-determining gene on the mammalian Y chromosome in 1990, extensive studies have been carried out on the immediate target of SRY/SRY and genes functioning in the course of testis development. Comparative studies in non-mammalian vertebrates including birds have failed to find a gene equivalent to SRY/SRY, whereas they have suggested that most of the downstream factors found in mammals including SOX9 are also involved in the process of gonadal differentiation. Although a gene whose function is to trigger the cascade of gene expression toward gonadal differentiation has not been identified yet on either W or Z chromosomes of birds, a few interesting genes have been found recently on the sex chromosomes of chickens and their possible roles in sex determination or sex differentiation are being investigated. It is the purpose of this review to summarize the present knowledge of these sex chromosome-linked genes in chickens and to give perspectives and point out questions concerning the mechanisms of avian sex determination.  相似文献   

18.
《Genomics》2022,114(2):110277
Sexual reproduction is a diverse and widespread process. In gonochoristic species, the differentiation of sexes occurs through diverse mechanisms, influenced by environmental and genetic factors. In most vertebrates, a master-switch gene is responsible for triggering a sex determination network. However, only a few genes have acquired master-switch functions, and this process is associated with the evolution of sex-chromosomes, which have a significant influence in evolution. Additionally, their highly repetitive regions impose challenges for high-quality sequencing, even using high-throughput, state-of-the-art techniques. Here, we review the mechanisms involved in sex determination and their role in the evolution of species, particularly vertebrates, focusing on sex chromosomes and the challenges involved in sequencing these genomic elements. We also address the improvements provided by the growth of sequencing projects, by generating a massive number of near-gapless, telomere-to-telomere, chromosome-level, phased assemblies, increasing the number and quality of sex-chromosome sequences available for further studies.  相似文献   

19.
Summary Hybridization of restriction enzymedigested genomic guppy (Poecilia reticulata, Poeciliidae) DNA with the oligonucleotide probe (GACA)4 revealed a male-specific simple tandem repeat locus, which defines the Y chromosome in outbred populations. The related (GATA)4 probe identifies certain males with the red color phenotype. In contrast only in two out of eight laboratory guppy strains was the typical (GACA)4 band observed. By specific staining of the constitutive heterochromatin one pair of chromosomes could also be identified as the sex chromosomes, confirming the XX/XY mechanism of sex determination. All males exhibit Y chromosomes with a large region of telomeric heterochromatin. Hybridization in situ with nonradioactively labeled oligonucleotide probes localized the (GACA)n repeats to this heterochromatic portion. Together these results may be regarded as a recent paradigm for the differentiation of heteromorphic sex chromosomes from a pair of autosomes during the course of evolution. According to the fish model system, this may have happened in several independent consecutive steps.  相似文献   

20.
The sequences of both of the human sex chromosomes and of a substantial part of the chimpanzee Y chromosome have now been determined, and most of the protein-coding genes have been identified. The X chromosome codes for more than 800 proteins but the Y chromosome for only approximately 60, illustrating their very different evolutionary histories since their origin from an autosomal pair approximately 300 million years ago and explaining their differential importance in disease. These sequences have provided the basis for understanding normal patterns of variation, such as the distribution of SNPs, and patterns of linkage disequilibrium. In addition, they have been useful for identifying variants associated with simple Mendelian disorders such as microphthalmia or mental retardation, and more complex disorders such as osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号