首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The comparative study of the in vivo synthesis of thyroglobulin and proteins other than thyroglobulin was carried out in thyroid glands from animals submitted to different levels of TSH stimulation. The different levels of hormonal stimulation modify neither the rate of labeling after injection of the isotope, nor the level of the free labeled amino acid in the glands (percent of the total uptake), but they have a very significant effect on the level of incorporation of the isotope into total proteins. In hypostimulated thyroids the total protein synthesis is very much reduced, while in hyperstimulated glands it is significantly increased. In both hyper- and hypostimulated animals, the proportion of radioactivity bound to the particulate protein fraction is higher than in control rats. However, the solubilization by digitonine of these proteins is lower in hypostimulated and higher in hyperstimulated animals than in controls. Thyroglobulin synthesis is significantly modified qualitatively and quantitatively in both hypo- and hyperstimulated glands. Qualitative modifications are characterized by a changed ratio of 19 S/12 S molecules with respect to the controls. This is probably caused by a more important dissociation of 19S molecules, due to the lower level of halogenation in both hypo- and MTU treated glands. The quantitative modifications of thyroglobulin synthesis, expressed either in absolute values (DPM/mg of tissue), or relatively to the total proteins (percent of total newly formed proteins), are characterized by a very important inhibition of this synthesis in hypostimulated glands, and its stimulation in glands chronically submitted to the TSH action. The modifications of synthesis observed for the proteins other than thyroglobulin are less significant in both types of treated glands than are those observed for thyroglobulin. The level of hormonal stimulation has no effect on the distribution of these proteins between soluble and the particulate fraction, but seems to have a slight effect on the solubilization of the latter ones. Comparative evaluation of the TSH effect on the synthesis of different thyroidal proteins shows that it has a much more specific and significant action on thyroglobulin than on other proteins. The differential effect of TSH on the synthesis of thyroglobulin and proteins other than thyroglobulin suggests that different mechanisms may exist by which TSH regulates the synthesis of these two types of proteins.  相似文献   

2.
Thyroglobulin secreted in the medium by Fisher rat thyroid line-5 (FRTL-5) cells cultured in the presence of thyroid stimulating hormone (TSH) shows a slower electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a higher density position in a CsCl gradient than thyroglobulin secreted by FRTL-5 cells cultured in the absence of TSH for 5-7 days. Such a TSH effect is much less or not evident when secreted thyroglobulin is digested with peptide N-glycohydrolase F or when intracellular thyroglobulin is compared. Intracellular thyroglobulin migrates faster than thyroglobulin secreted either in the presence or in the absence of TSH. Evaluation of the mannose and galactose content of thyroglobulin demonstrates that intracellular thyroglobulin has more mannose and less galactose than extracellular thyroglobulin; it also shows that TSH decreases the mannose content of thyroglobulin while increasing its galactose content. Bio-Gel P6 chromatography shows that TSH increases the complex type carbohydrate chains while decreasing the high mannose chains in the secreted thyroglobulin. High mannose type oligosaccharides were characterized by fast atom bombardment-mass spectrometry analysis. Treatment with the calcium ionophore A23187 (5 microM) of FRTL-5 cells cultured with or without TSH causes the appearance of a "fast" migrating form of thyroglobulinin in the culture medium. Bio-Gel P6 chromatography shows that A23187 causes a dramatic decrease of the complex carbohydrate chains of the secreted thyroglobulin.  相似文献   

3.
Two aspects concerning the study of thyroglobulin synthesis and of the ultrastructure of thyroid glands in organotypic cultures have been studied: (1) the chronology of ultrastructural alterations in thyroid cultures leading to the loss of thyroglobulin synthesis; and (2) the role of TSH in the re-establishment of the characteristic features in the cultured cells following transplantation.Alterations of the endoplasmic reticulum start on the very first day of culture. The ribosomes detach themselves from the membranes which then disappear. On the third and fourth day, significant alterations are observed on mitochondria and nuclei. The lysosomes disappear, while the Golgi apparatus is hardly affected.All the above modifications are reversible, since it is possible to re-establish the characteristic features of the endoplasmic reticulum and the synthesis of thyroglobulin after transplantation of the cultured glands into normal animals.The reappearance of phenotypic traits of the thyroid cells can also be obtained after transplantation into hypophysectomized rats. However, the level of thyroglobulin synthesis in these transplants, which is similar to that in the host gland, is lower than in grafts into normal animals.This results shows that TSH is not required for differentiation and for manifestation of the phenotypic traits of the thyroid gland. It seems therefore that the role of TSH is not to stimulate differentiation, but to maintain and regulate the level of specific processes in the already differentiated thyroid cell.  相似文献   

4.
This paper reports a comprehensive study of the biological stability of an immunoaffinity purified preparation of human thyroid stimulating hormone (TSH) and provides a reference against which future natural or synthetic preparations may be compared. The stability of the hormone preparation was investigated using the accelerated degradation method. The bioassay of the TSH was carried out in mice using a modified McKenzie method. Analysis of the results showed that the preparation was as stable as other TSH preparations purified by conventional methods.  相似文献   

5.
In the present study, we have investigated the potential regulation of thyroglobulin (Tg) and extracellular matrix components synthesis by thyroid-stimulating hormone (TSH) and tetradecanoyl phorbol-13-acetate (TPA) on thyroid cells. Porcine thyroid cells isolated by trypsin-EGTA digestion of thyroid glands were maintained in serum containing medium on poly (L-lysine)-coated dishes. Cells differentiated into follicular or vesicular-like structures were distinguished by their ability to organify Na[125l] and to respond to TSH stimulation. After an incubation of the cells with radiolabeled proline or methionine, two major proteins were identified, p450–480 and p290 (so named because of their molecular masses). Tg (p290) synthesis was demonstrated by the synthesis of [131l]-labeled polypeptides with electrophoretic properties identical to those of authentic Tg molecules. P450–480 resolved to Mr 190,000 under reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) conditions. It was identified as thrombospondin by its reactivity with a monoclonal anti-human thrombospondin and by peptide sequencing of some of its tryptic fragments that displayed identity to thrombospondin l. Collagen synthesis was demonstrated by the formation of radioactive hydroxyproline and by the synthesis of pepsin-resistant polypeptides ranging from Mrs 120,000 to 200,000. When the cells were cultured in the presence of 100 nM TPA, the culture medium contents of thrombospondin and collagen were increased by 2.7 and 1.6-fold, respectively, whereas Tg content was decreased by a factor 3.9. In contrast, the acute treatment of control cells with TPA induced a decrease in both Tg and collagen content by factors 3.0 and 1.5, respectively, and an increase in thrombospondin content by a factor 2.5. In the presence of 100 nM TPA, TSH (1 mU/ml) did not counteract the stimulating effect of TPA on extracellular matrix components synthesis. In contrast, when cells were cultured in the presence of TSH alone at concentrations higher than 0.1 mU/ml, collagen and thrombospondin in the medium were decreased by a factor 2.0 and 1.9, respectively, and TSH preferentially activated Tg synthesis. However, no acute response to TSH was observed in cells incubated for 2 days without effectors (control cells). On TSH differentiated cells, TPA decreased both collagen and Tg accumulation by factor 1.2 and 1.8, respectively, whereas it increased the one of thrombospondin by a factor 2. These results, together with the stimulating effect of TPA on TSH mediated cell proliferation, argue for a role of thrombospondin in cell adhesion and migration events within the thyroid epithelium. © 1994 Wiley-Liss, Inc.  相似文献   

6.
Biosynthesis of prolactin was studied in anterior pituitary glands from female rats, incubated in vitro. In this system [3H]leucine was incorporated into pituitary proteins, including somatotropin (growth hormone) and prolactin. The rate of uptake of label into prolactin (and to a lesser extent into total protein) slowed considerably during the first 2 h of incubation, although the rate of uptake into somatotropin was constant for 8 h. The most probable explanation for this apparent decrease in the rate of prolactin synthesis is degradation of prolactin in the gland. Degradation of this hormone was also demonstrated by incubating prelabelled pituitaries in unlabelled medium and following the content of labelled prolactin, and by studying the hormonal content of pituitary glands (by radioimmunoassay) before and after incubation. Degradation of prolactin appears to be much more rapid than that of somatotropin, and may represent a physiological mechanism whereby over-accumulation of prolactin is prevented when secretion of the hormone has been rapidly switched off.  相似文献   

7.
Both thyrotropin (TSH) and epidermal growth factor (EGF) are potent mitogenic agents when added to dog thyroid cells in primary culture [Roger, P. P. and Dumont, J. E. (1984) Mol. Cell. Endocrinol. 36, 79-93]. The concomitant effect of these agents on the differentiation state of the cells was appreciated using cell morphology, iodide trapping, thyroglobulin synthesis and cytoplasmic thyroglobulin mRNA content as markers. Together with previous results [Mol. Cell. Endocrinol. 36, 79-93 (1984)] it is shown that cells cultured in the continuous presence of TSH maintain all the parameters at a near normal level. In the absence of TSH, thyroglobulin mRNA decreased to very low, though still detectable levels. Addition of TSH restored subnormal mRNA levels. Culture of cells in the presence of EGF for 4-6 days affected profoundly their morphology, abolished iodide trapping and decreased thyroglobulin synthesis and cytoplasmic mRNA content to undetectable levels. Addition of TSH to cells previously exposed to EGF reversed the growth factor effect on all four indexes. The redifferentiating effect of TSH was well observed within 3-4 days and was mimicked by the adenylate cyclase activators, forskolin and cholera toxin. When administered simultaneously, TSH and EGF achieved an intermediate situation, EGF antagonizing partially the effect of TSH on the expression of thyroglobulin gene. Another growth factor, fibroblast growth factor, while promoting thyroid cell proliferation also, did not interfere at all with TSH effects on cytoplasmic thyroglobulin mRNA content. Our results make the dog thyroid cell in primary culture an appropriate model to study the mechanisms involved in gene regulation by cyclic AMP and growth factors.  相似文献   

8.
We tested the hypothesis that histone mRNA turnover is accelerated in the presence of free histone proteins. In an in vitro mRNA decay system, histone mRNA was degraded four- to sixfold faster in reaction mixtures containing core histones and a cytoplasmic S130 fraction than in reaction mixtures lacking these components. The decay rate did not change significantly when histones or S130 was added separately, suggesting either that the histones were modified and thereby activated by S130 or that additional factors besides histones were required. RecA, SSB (single-stranded binding), and histone proteins all formed complexes with histone mRNA, but only histones induced accelerated histone mRNA turnover. Therefore, the effect was not the result of random RNA-protein interactions. Moreover, histone proteins did not induce increased degradation of gamma globin mRNA, c-myc mRNA, or total poly(A)- or poly(A)+ polysomal mRNAs. This autoregulatory mechanism is consistent with the observed accumulation of cytoplasmic histone proteins in cells after DNA synthesis stops, and it can account, in part, for the rapid disappearance of histone mRNA at the end of S phase.  相似文献   

9.
The distribution of radioactivity and protein-SH groups was studied in neonatal rats injected with 125-I- in the 15,000 g pellets of thyroid glands to obtain information about the colloid which undergoes phagocytosis by lysosomes. The 15,000 g pellet was solubilized in Triton X--100. The soluble portion was enhanced on the 16th day of age, whereas the portion of the insoluble fraction remained almost unchanged. The content of protein-SH groups in the insoluble fraction decreased with age and was increased in the soluble fraction. The concentration of immunoreactive thyroid stimulating hormone (TSH) in the pituitary and in the blood of rats during ontogenesis was higher on the first day after delivery, then decreased within the first seven days and again markedly increased during the third postnatal week. It was concluded that higher amounts of Triton soluble thyroglobulin occurring during the postnatal period in rats reflects the availability of more substrate, i.e. thyroglobulin for pinocytosis and partially depends upon the TSH level. These findings also support the suggestion on maturation of the pituitary-thyroid system during the postnatal period in rats.  相似文献   

10.
Porcine thyroid cells were cultured for 15 days on porous bottom chambers with or without different mixtures of hormones added to serum-free basal medium. Assays with 10% serum were also performed for comparison with previously published results. The effects of the hormones, particularly insulin, TSH and hydrocortisone, were studied on total RNA content, thyroglobulin mRNA level, the amount of thyroglobulin secreted into the apical medium and on glycosylation. Insulin and TSH similarly increased the total RNA content, and their effects were additive. Thyroglobulin mRNA content was increased twofold by insulin and threefold by TSH. When they were added simultaneously, the maximal level of thyroglobulin mRNA was reached, showing that TSH and insulin effects on thyroglobulin gene expression were additive. Hydrocortisone alone did not modify total RNA or thyroglobulin mRNA content but the hormone amplified total RNA when insulin and TSH were present together. The basal level of thyroglobulin secreted into the apical medium was increased threefold by insulin and fourfold by TSH. The effects of these two hormones added together appeared to be additive. Hydrocortisone had no effect alone or even when combined with insulin or TSH. However, when the three hormones were added together, the hormonal response was amplified. TSH effect and insulin effect on the incorporation of 3H-mannose into thyroglobulin as well as on the anionic residue content of the molecule were additive. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Thyroglobulin is an iodinated glycoprotein (m.w. 660 kD) required for the storage and formation of thyroid hormone. Thyroglobulin was digested by trypsin in distilled water and the resulting peptides were identified by TOF‐secondary ion mass spectrometry, using TFA as a matrix to catalyze the ionization of the peptides. Cryostate sections of pig thyroid glands were incubated with trypsin in distilled water, followed by deposition of TFA. The sections were analyzed with TOF‐secondary ion mass spectrometry, and the peptides formed were identified through comparison with the peptides of the thyroglobulin reference sample. The thyroglobulin fragments were localized in the thyroid follicle cells with a spatial resolution of 3 microns, a mass resolution mm of >6000 and a mass accuracy of <60 ppm. The thyroglobulin was found localized heterogeneously in the follicle cells. The heterogeneity may be due to thyroglobulin synthesis, uptake and degradation or globules representing insoluble polymers of thyroglobulin considered to be a mechanism for storing hormone at high concentrations.  相似文献   

12.
《Endocrine practice》2015,21(9):981-985
Objective: The Vps10p family member sortilin is expressed in thyroid epithelial cells where it contributes to recycling of the thyroid hormone precursor thyroglobulin (Tg), a process that is thought to render hormone release more effective. Here we investigated the functional impact of sortilin in the thyroid gland using sortilin-deficient mice.Methods: We measured free T4, thyroid-stimulating hormone (TSH) and Tg serum levels and studied thyroid morphology in 14 sortilin-deficient (Sort1)-/-and 12 wildtype (WT) mice.Results: Serum free T4 levels did not differ between Sort1-/-and WT females but were significantly lower in Sort1-/-males compared with WT (P = .0424). Neither serum TSH nor Tg levels differed between Sort1-/-and WT mice, regardless of sex. On the same line, no thyroid histology differences were observed.Conclusion: Our findings seem to exclude a role of sortilin in thyroid hormone secretion, although it is possible that the absence of sortilin may result in a thyroid phenotype if combined with other molecular defects of thyroid hormone synthesis and secretion or under iodine deficiency.Abbreviations: T4 = thyroxine Sort1 = Sortilin 1 Tg = thyroglobulin TSH = thyroid-stimulating hormone WT = wild type  相似文献   

13.
Suban D  Zajc T  Renko M  Turk B  Turk V  Dolenc I 《Biochimie》2012,94(3):719-726
The release of a thyroid hormone from thyroglobulin is controlled by a complex regulatory system. We focused on the extracellular action of two lysosomal enzymes, cathepsin C (catC, dipeptidyl peptidase I) and PGCP (lysosomal dipeptidase), on thyroglobulin, and their ability to liberate the hormone thyroxin. Cathepsin C, an exopeptidase, removes dipeptides from the N-terminus of substrates, and PGCP hydrolyses dipeptides to amino acids. In vitro experiments proved that cathepsin C removes up to 12 amino acids from the N-terminus of porcine thyroglobulin, including a dipeptide with thyroxin on position 5. The newly formed N-terminus, Arg-Pro-, was not hydrolysed further by cathepsin C. Cell culture experiments with FRTL-5 cell line showed localization of cathepsin C and PGCP and their secretion into the medium. Secretion of the active cathepsin C from FRTL-5 cells is stimulated by TSH, insulin, and/or somatostatin. The released enzymes liberate thyroxin from porcine thyroglobulin added to media. The hormone liberation can be reduced by synthetic inhibitors of cysteine proteinases and metalloproteinases. Additionally, we show that TSH, insulin, and/or somatostatin induce up-regulation of N-acetylglucosaminyltransferase 1, the enzyme responsible for the initiation of biosynthesis of hybrid and complex N-glycosylation of proteins.  相似文献   

14.
In most highly structured native proteins, as well as in thyroglobulin, the reactivity in vitro of the various tyrosyl residues toward iodine is widely different. The present work demonstrates that of nearly 70 tyrosyl residues present in rat thyroglobulin, there is one, residue number 5 from the NH2-terminal end, which has in vivo the highest affinity toward iodine, being the first one to be iodinated. In fact, when 6-(n-propyl)-2-thiouracil (PTU)-treated, iodine-deficient animals were injected with 125I and killed shortly after, we isolated from thyroid glands poorly iodinated thyroglobulin (about 1 iodine atom/thyroglobulin molecule), nearly 90% of the radioactivity of which was found as monoiodotyrosine. Although CNBr cleavage of this protein gave several fragments after gel electrophoresis only one of these, with apparent mass 27,000 Da, contained 125I. This fragment was isolated and fully characterized. Twelve cycles of automated Edman degradation were performed; the sequence found, i.e. N-I-F-E-X-Q-V-X-A-Q-X-L, indicated that the 27,000-Da fragment is the NH2 terminus of thyroglobulin. This portion of the polypeptide chain contains several tyrosyl residues which may well all be potentially involved in the early iodination of the protein. The observation that the removal of seven amino acids from the NH2 terminus is accompanied (at the fifth step) by the total disappearance of radioactivity in the resulting shortened peptide suggested that the fifth residue was the only one iodinated under these conditions. A second, more quantitative experiment was performed on thyroglobulin obtained from 6-(n-propyl)-2-thiouracil-treated animals whose death was postponed 24 h after the injection of 125I. In this case the radioactivity was found not only in a single CNBr fragment (27,000 Da) but also in other discrete species of lower molecular mass. The mixture of these peptides was subjected to seven steps of manual Edman degradation. Fragments before and after partial degradation were run in parallel on a polyacrylamide gel and the distribution of 125I compared. Besides some change in the background, the two profiles were identical except for the absence of the 27,000-Da species. This proves that all the 125I present in the 27,000-Da species was localized at the fifth residue, the same site at which the hormone molecule is preferentially synthesized under normal conditions. This result is not unexpected and is in accord with the known properties of thyroglobulin which has a polypeptide chain designed for efficient synthesis of the hormone even at low levels of iodination.  相似文献   

15.
The use of hormone replacement to support limb regeneration in hypophysectomized newts has been the subject of many investigations. Growth hormone, as well as prolactin (PL) in combination with exogenously supplied thyroxine, have all been shown to he effective. However, the bovine growth hormone used to support limb regeneration was contaminated by prolactin and thyroidstimulating hormone (TSH). The present investigation evaluates the significance of (1) prolactin contamination and (2) endogenous thyroxine synthesis resulting from TSH contamination on limb regeneration in hypophysectomized newts. The effect of supplying exogenous thyroxine was also evaluated. Our studies showed that when hypophysectomized newts were injected with contamination levels of PL and TSH, regeneration occurred, suggesting that the newt's thyroid synthesized sufficient thyroxine to support a prolactin-thyroxine synergism. The endogenous thyroxine was synthesized by thyroid glands that were indistinguishable from those of saline-injected, hypophysectomized controls.  相似文献   

16.
A girl aged 4 years with goiter and accelerated physical and skeletal growth was found to be hyperthyroid on the basis of elevated serum thyroid hormone level, nevertheless both the basal TSH and TSH responsiveness to TRH were maintained within the normal range. Serum TSH was suppressed by exogenous T3 and dexamethasone administration, but not significantly changed after propylthiouracil (PTU) treatment. The diurnal rhythmicity of anterior pituitary hormones was preserved with the high nocturnal peak of TSH and prolactin. Clinically, neither thyrotoxic signs nor evidences of pituitary tumor were observed. Her accelerated growth and elevated thyroid hormone level appeared to be induced by inappropriate secretion of TSH. In view of the literature, this is the first case of the syndrome of inappropriate secretion of TSH excluding the neoplastic origin in Japan.  相似文献   

17.
In pulse-chase experiments we compared the kinetics of early carbohydrate processing and subsequent secretion of thyroid-stimulating hormone (TSH) and free alpha subunit under control conditions and after treatment with 1-deoxynojirimycin, an inhibitor of glucosidases I and II. Under control conditions TSH achieved resistance to endo-beta-N-acetylglucosaminidase H (endo H) more rapidly than free alpha (t1/2 0.3 h versus 0.9 h); however, free alpha was secreted more rapidly than TSH (t1/2 2.2 h versus 3.4 h). With 1-deoxynojirimycin, oligosaccharides co-migrating with G3Man9GlcNAc and G2Man9GlcNAc were demonstrated on TSH for the first time, suggesting that previous pulse-chase studies did not disclose these intermediates due to rapid removal of glucose residues from the common G3Man9GlcNAc2 precursor. 1-Deoxynojirimycin delayed the rate of attainment of endo H resistance for both TSH and free alpha, but there was no effect on subunit combination. With 5 mM 1-deoxynojirimycin the amount of secreted free alpha was reduced to 65% of control; secreted TSH was reduced markedly to 17% of control without intracellular accumulation, suggesting increased intracellular degradation. There was no significant toxicity from these doses of 1-deoxynojirimycin on the production or secretion of the two major nonglycosylated pituitary proteins, growth hormone and prolactin, or on at least 10 other secretory proteins. Basal differences in the relative rates of TSH and free alpha processing and secretion as well as differential sensitivity to 1-deoxynojirimycin suggest separate secretory pathways for these two closely related proteins.  相似文献   

18.
Free diiosotyrosine exerts two opposite effects on the reactions catalyzed by thyroid peroxidase, thyroglobulin iodination and thyroid hormone formation. 1. Inhibition of thyroglobulin iodination catalyzed by thyroid peroxidase was observed when free diiodotyrosine concentration was higher than 5 muM. This inhibition was competitive, suggesting that free diiodotyrosine interacts with the substrate site(s) of thyroid peroxidase. Free diiodotyrosine also competively inhibited iodide peroxidation to I2. 2. Free diiodotyrosine, when incubated with thyroid peroxidase in the absence of iodide was recovered unmodified; in the presence of iodide an exchange reaction was observed between the iodine atoms present in the diiodotyrosine molecule and iodide present in the medium. Using 14C-labelled diiodotyrosine, 14C-labelled non-iodinated products were also observed, showing that deiodination occurred as a minor degradation pathway. However, no monoiodo[14C]tyrosine or E114C]tyrosine were observed. Exchange reaction between free diiototyrosine and iodide is therefore direct and does not imply deiodination-iodination intermediary steps. Thyroglobulin inhibits diiodotyrosine-iodide exchange and vice versa, again suggesting competition for both reactions. These results support, by a different experimental approach, the two-site model for peroxidase previously described by us in this journal. 3. Free diiodotyrosine when present at a very low concentration, 0.05 muM, exerts a stimulatory effect on throid hormones synthesis. The relationship between diiodotyrosine concentration and thyroid hormone synthesis give an S-shaped curve, suggesting that free diiodotyrosine acts as a regulatory ligand for thyroid peroxidase. Evidence is also presented that free diiodotyrosine is not incorporated into thyroid hormones. Therefore, thyroid peroxidase catalyzes only intra-molecular coupling between iodotyrosine hormonogenic residues. 4. Finally, although no direct proof exists that these free diiodotyrosine effects upon thyroglobulin iodination and thyroid hormone synthesis are physiologically significant, such a possibility deserves further investigation.  相似文献   

19.
The effect of exogenous dehydroepiandrosterone-sulfate (DHAS) on luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL) and thyroid-stimulating hormone (TSH) pituitary secretion was studied in 8 normal women during the early follicular phase. The plasma levels of these hormones were evaluated after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing hormone (TRH) stimulation performed after placebo or after 30 mg DHAS i.v. administration. The half-life of DHAS was also calculated on two subjects; two main components of decay were detected with half-times of 0.73-1.08 and 23.1-28.8 h. The results show an adequate response of all hormones to GnRH or TRH tests which was not significantly modified, in the case of LH, FSH and PRL, when performed in the presence of high levels of DHAS. However, the TSH response to TRH was significantly less suppressed (p less than 0.05) (39%) after DHAS administration than during repeated TRH stimulation without DHAS (51%). The data support the hypothesis that DHAS does not affect LH, FSH and PRL secretion, while TSH seemed to be partially influenced.  相似文献   

20.
The role of the carbohydrate moiety in thyrotropin action   总被引:2,自引:0,他引:2  
The relative binding affinity of deglycosylated human TSH was 6-fold higher than that of native TSH. Although deglycosylated human TSH significantly stimulated adenylate cyclase, it was less effective than the native hormone. When deglycosylated human TSH was added with bovine TSH, however, a dose-dependent antagonism was observed. In particular, submaximal and maximal concentrations of bovine TSH and deglycosylated human TSH resulted in cAMP values much lower than the sum of activities of the individual hormones. The data suggest that although the effects of TSH deglycosylation are not as dramatic as with the gonadotropins, the carbohydrates of TSH appear to be required for maximal activation of adenylate cyclase by the hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号