首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Arabidopsis four root-expressed AMT genes encode functional ammonium transporters, which raises the question of their role in primary ammonium uptake. After pre-culturing under nitrogen-deficiency conditions, we quantified the influx of (15)N-labeled ammonium in T-DNA insertion lines and observed that the loss of either AMT1;1 or AMT1;3 led to a decrease in the high-affinity ammonium influx of approximately 30%. Under nitrogen-sufficient conditions the ammonium influx was lower in Columbia glabra compared with Wassilewskija (WS), and AMT1;1 did not contribute significantly to the ammonium influx in Col-gl. Ectopic expression of AMT1;3 under the control of a 35S promoter in either of the insertion lines amt1;3-1 or amt1;1-1 increased the ammonium influx above the level of their corresponding wild types. In transgenic lines carrying AMT-promoter-GFP constructs, the promoter activities of AMT1;1 and AMT1;3 were both upregulated under nitrogen-deficiency conditions and were localized to the rhizodermis, including root hairs. AMT gene-GFP fusions that were stably expressed under the control of their own promoters were localized to the plasma membrane. The double insertion line amt1;1-1amt1;3-1 showed a decreased sensitivity to the toxic ammonium analog methylammonium and a decrease in the ammonium influx of up to 70% relative to wild-type plants. These results suggest an additive contribution of AMT1;1 and AMT1;3 to the overall ammonium uptake capacity in Arabidopsis roots under nitrogen-deficiency conditions.  相似文献   

2.
曹英萍  石金磊  李钟  明凤 《遗传》2010,32(8):839-847
植物中的不饱和脂肪酸由脂肪酸去饱和酶(Fatty acid desaturase, FAD)合成, 它在植物的生长发育以及植物非生物胁迫方面起着重要的作用。文章采用RT-PCR方法, 从水稻日本晴(Oryza sativa L.)中克隆了分别与FAD2、FAD6同源的脂肪酸脱氢酶序列, 命名为OsFAD2和OsFAD6。OsFAD2的ORF为1 167 bp, 推测其编码蛋白含有388个氨基酸, 等电点为8.17, 分子量为52.24 kDa, C端有内质网定位序列; OsFAD6的ORF长度为1 365 bp, 推测编码454个氨基酸的蛋白质序列, 分子量44.35 kDa, 等电点为9.24, 推测N端38个氨基酸为叶绿体导肽。两者都具有膜整合脂肪酸去饱和酶特有的3个组氨酸簇。RT-PCR分析表明, OsFAD2和OsFAD6在水稻所有器官中都表达, 在叶中表达量为最高。在水稻FAD基因家族中, 叶中OsFAD2、OsFAD6 的mRNA对低温不响应, 而OsFAD7和OsFAD8的 mRNA在低温下上升。水稻叶中OsFAD2、OsFAD6、OsFAD3和OsFAD7的mRNA表达具有昼夜节律性, 在光照下表达量低, 而在随后的黑暗中表达量高, OsFAD6和OsFAD7 mRNA表达的昼夜节律性可能与水稻幼苗叶片中NADPH量的改变有关。  相似文献   

3.
4.
5.
6.
7.
8.
《Plant and Soil》2000,220(1-2):175-187
Several studies have previously shown that shoot removal of forage species, either by cutting or herbivore grazing, results in a large decline in N uptake (60%) and/or N2 fixation (80%). The source of N used for initial shoot growth following defoliation relies mainly on mobilisation of N reserves from tissues remaining after defoliation. To date, most studies investigating N-mobilisation have been conducted, with isolated plants grown in controlled conditions. The objectives of this study were for Lolium perenne L., grown in a dense canopy in field conditions, to determine: 1) the contribution of N-mobilisation, NH4 + uptake and NO3 - uptake to growing shoots after defoliation, and 2) the contribution of the high (HATS) and low (LATS) affinity transport systems to the total plant uptake of NH4 + and NO3 -. During the first seven days following defoliation, decreases in biomass and N-content of roots (34% and 47%, respectively) and to a lesser extent stubble (18% and 43%, respectively) were observed, concomitant with mobilisation of N to shoots. The proportion and origin of N used by shoots (derived from reserves or uptake) was similar to data reported for isolated plants. Both HATS and LATS contributed to the total root uptake of NH4 + and NO3 -. The Vmax of both the NH4 + and NO3 - HATS increased as a function of time after defoliation, and both HATS systems were saturated by substrate concentrations in the soil at all times. The capacity of the LATS was reduced as soil NO3 - and NH4 + concentrations decreased following defoliation. Data from 15N uptake by field-grown plants, and uptake rates of NH4 + and NO3 - estimated by excised root bioassays, were significantly correlated, though uptake was over-estimated by the later method. The results are discussed in terms of putative mechanisms for regulating N uptake following severe defoliation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Being the crucial step for rice transgenic manipulation, callus culture from mature seeds is severely restricted by browning of induced calli, especially in the case of indica (Oryza Sativa L.) rice. Once this browning occurs, the callus will die and no embryonic calli can be obtained for regeneration. Here we report an induction procedure that overcomes callus browning was found. To clarify the inheritance pattern of callus browning, two reciprocal crosses F2 and two backcrosses BC1 were made between indica cultivar inbred lines 93-11 and YueTaiB (YTB) which produced normal and browning respectively in the same induction medium. The ratio of browning to normal in the reciprocal F2 and backcross (BC1) populations tested was approximately 1:3 and 1:1, respectively, these results indicate that callus browning is controlled by one single chromosomal locus which is tentatively named Ic1 (Induced callus 1). The genetic mapping of this locus was carried out using microsatellite markers (SSR) in a 216 extremely browning F2 seed callus. The analysis of genetic linkage indicated that one single locus that mapped to chromosome 1 was correlated to callus browning, and the closest marker in this study was mapped within 1.9 cM from the target locus.  相似文献   

10.
Cho JI  Ryoo N  Ko S  Lee SK  Lee J  Jung KH  Lee YH  Bhoo SH  Winderickx J  An G  Hahn TR  Jeon JS 《Planta》2006,224(3):598-611
Hexokinase (HXK) is a dual-function enzyme that both phosphorylates hexose to form hexose 6−phosphate and plays an important role in sugar sensing and signaling. To investigate the roles of hexokinases in rice growth and development, we analyzed rice sequence databases and isolated ten rice hexokinase cDNAs, OsHXK1 (Oryza sativa Hexokinase 1) through OsHXK10. With the exception of the single-exon gene OsHXK1, the OsHXKs all have a highly conserved genomic structure consisting of nine exons and eight introns. Gene expression profiling revealed that OsHXK2 through OsHXK9 are expressed ubiquitously in various organs, whereas OsHXK10 expression is pollen-specific. Sugars induced the expression of three OsHXKs, OsHXK2, OsHXK5, and OsHXK6, in excised leaves, while suppressing OsHXK7 expression in excised leaves and immature seeds. The hexokinase activity of the OsHXKs was confirmed by functional complementation of the hexokinase-deficient yeast strain YSH7.4-3C (hxk1, hxk2, glk1). OsHXK4 was able to complement this mutant only after the chloroplast-transit peptide was removed. The subcellular localization of OsHXK4 and OsHXK7, observed with green fluorescent protein (GFP) fusion constructs, indicated that OsHXK4 is a plastid-stroma-targeted hexokinase while OsHXK7 localizes to the cytosol.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
A chimeric CaHAK1–LeHAK5 transporter with only 15 amino acids of CaHAK1 in the N-terminus mediates high-affinity K+ uptake in yeast cells. Kinetic and expression analyses strongly suggest that LeHAK5 mediates a significant proportion of the high-affinity K+ uptake shown by K+-starved tomato (Solanum lycopersicum) plants. The development of high-affinity K+ uptake, putatively mediated by LeHAK5, was correlated with increased LeHAK5 mRNA levels and a more negative electrical potential difference across the plasma membrane of root epidermal and cortical cells. However, this increase in high-affinity K+ uptake was not correlated with the root K+ content. Thus, (i) growth conditions that result in a hyperpolarized root plasma membrane potential, such as K+ starvation or growth in the presence of NH4 +, but which do not decrease the K+ content, lead to increased LeHAK5 expression; (ii) the presence of NaCl in the growth solution, which prevents the hyperpolarization induced by K+ starvation, also prevents LeHAK5 expression. Moreover, once the gene is induced, depolarization of the plasma membrane potential then produces a decrease in the LeHAK5 mRNA. On the basis of these results, we propose that the plant membrane electrical potential plays a role in the regulation of the expression of this gene encoding a high-affinity K+ transporter.  相似文献   

12.
Two ZIP (Zrt, Irt-like Protein) cDNAs were isolated from rice (Oryza sativa L.) by RT-PCR approach, and named as OsZIP7a and OsZIP8 respectively. The predicted proteins of OsZIP7a and OsZIP8 consist of 384 and 390 amino acid residues respectively, and display high similarity to other plant ZIP proteins. Each protein contains eight transmembrane (TM) domains and a highly conserved ZIP signature motif, with a histidine-rich region in the variable region between TM domains III and IV. By semi-quantitative RT-PCR approach, it was found that the expression of OsZIP7a was significantly induced in rice roots by iron-deficiency, while that of OsZIP8 induced in both rice roots and shoots by zinc-deficiency. When expressed in yeast cells, OsZIP7a and OsZIP8 could complement an iron-uptake-deficient yeast mutant and a zinc-uptake-deficient yeast mutant respectively. It suggested that the OsZIP7a and OsZIP8 might encode an iron and a zinc transporter protein in rice respectively. Xia Yang and Ji Huang are contributed equally to this work.  相似文献   

13.
14.
15.
16.
Herbicide-resistant rice cultivars allow selective weed control. A glufosinate indica rice has been developed locally. However, there is concern about weedy rice becoming herbicide resistant through gene flow. Therefore, assessment of gene flow from indica rice cultivars to weedy rice is crucial in Tropical America. A field trial mimicking crop–weed growing patterns was established to assess the rate of hybridization between a Costa Rican glufosinate-resistant rice line (PPT-R) and 58 weedy rice accessions belonging to six weedy rice morphotypes. The effects of overlapping anthesis, morphotype, weedy accession/PPT-R percentage, and the particular weedy accession on hybridization rates were evaluated. Weedy rice accessions with short overlapping anthesis (4–9 days) had lower average hybridization rates (0.1%) than long anthesis overlapping (10–14 days) accessions (0.3%). Hybridization also varied according to weedy rice morphotype and accession. Sativa-like morphotypes (WM-020, WM-120) hybridized more readily than intermediate (WM-023, WM-073, WM-121) and rufipogon-like (WM-329) morphotypes. No hybrids were identified in 11 of the 58 accessions analyzed, 21 accessions had hybridization rates from 0.01% to 0.09%, 21 had rates from 0.1% to 0.9%, and 5 had frequencies from 1% to 2.3%. Another field trial was established to compare the weedy rice-PPT-R F1 hybrids with their parental lines under noncompetitive conditions. F1 hybrids had a greater phenotypic variation. They had positive heterosis for vegetative trait and reproductive potential (number of spikelets and panicle length) traits, but negative heterosis for seed set. This study demonstrated the complexity of factors affecting hybridization rates in Tropical America and suggested that the phenotype of F1 hybrids facilitate their identification in the rice fields.  相似文献   

17.
18.
19.
We have examined the complexity of the phosphoenolpyruvate carboxylase kinase (PPCK) gene family in the C(4) monocots maize and sorghum. Maize contains at least four PPCK genes. The encoded proteins are similar to other phosphoenolpyruvate carboxylase (PEPC) kinases, in that they comprise a protein kinase domain with minimal extensions, except that two of the proteins contain unusual acidic insertions. The spatial and temporal expression patterns of the genes provide information about their presumed functions. Expression of ZmPPCK1 in leaves is mesophyll cell-specific and light-induced, indicating that it encodes the PEPC kinase that is responsible for the phosphorylation of leaf PEPC during C(4) photosynthesis. Surprisingly, ZmPPCK2 is expressed in leaf bundle sheath cells, preferentially in the dark. This suggests that a main function of the ZmPPCK2 gene product is to allow PEPC to function anaplerotically in bundle sheath cells in the dark without interfering with the C(4) cycle. ZmPPCK2, ZmPPCK3 and ZmPPCK4 are all induced by exposure of tissue to cycloheximide, whereas ZmPPCK1 is not. This suggests that the ZmPPCK2, ZmPPCK3 and ZmPPCK4 genes share the property that their expression is controlled by a rapidly turning over repressor. Sequence and expression data show that sorghum contains orthologues of ZmPPCK1 and ZmPPCK2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号