首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme which converts 1-aminocyclo-propane-1-carboxylic acid (ACC) into ethylene, ACC oxidase, has been isolated from apple fruits (Malus x domestica Borkh. cv. Golden Delicious), and for the first time stabilized in vitro by 1,10-phenanthroline and purified 170-fold to homogeneity in a five-step procedure. The sodium dodecyl sulfate-denatured and native proteins have similar molecular weights (approx. 40 kDa) indicating that the enzyme is active in its monomeric form. Antibodies raised against a recombinant ACC oxidase over-produced in Escherichia coli from a tomato cDNA recognise the apple-fruit enzyme with high specificity in both crude extracts and purified form. Glycosylation appears to be absent because of (i) the lack of reactivity towards a mixture of seven different biotinylated lectins and (ii) the absence of N-linked substitution at a potential glycosylation site, in a sequenced peptide. Phenylhydrazine and 2-methyl-1-2-dipyridyl propane do not inhibit activity, indicating that ACC oxidase is not a prosthetic-heme iron protein. The partial amino-acid sequence of the native protein has strong homology to the predicted protein of a tomato fruit cDNA demonstrated to encode ACC oxidase.  相似文献   

2.
A simple and sensitive chemical assay was developed for 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene. The assay is based on the liberation of ethylene from ACC at pH 11.5 in the presence of pyridoxal phosphate, MnCl2 and H2O2. This assay was used to detect ACC in extracts of tomato fruits (Lycopersicon esculentum Mill.) and to measure the activity of a soluble enzyme from tomato fruit that converted S-adenosylmethionine (SAM) to ACC. The enzyme had a Km of 13 M for SAM, and conversion of SAM to ACC was competitively and reversibly inhibited by aminoethoxyvinylglycine (AVG), an analog of rhizobitoxine. The Ki value for AVG was 0.2 M. The level of the ACC-forming enzyme activity was positively correlated with the content of ACC and the rate of ethylene formation in wild-type tomatoes of different developmental stages. Mature fruits of the rin (non-ripening) mutant of tomato, which only produce low levels of ethylene, contained much lower levels of ACC and of the ACC-forming enzyme activity than wild-type tomato fruits of comparable age.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid - SAM S-adenosyl-L-methionine Michigan Agricultural Experiment Station No. 8876  相似文献   

3.
The localization of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase was examined in suspension-cultured cells of tomato (Lycopersicon esculentum Mill.), using cell-fractionation techniques, followed by immunoblot analysis with monospecific antibodies raised against a tomato ACC oxidase expressed in Escherichia coli. When assayed in vivo, ACC oxidase had a low activity in untreated tomato cells but was strongly induced when the cells were supplied with its substrate, ACC. Immunoblots showed that this induction was accompanied by the accumulation of a single protein corresponding to ACC oxidase, with an apparent molecular mass (Mr) of 36 kDa. The level of this protein in induced cells, estimated by immunoblotting, was compared with that in protoplasts and vacuoles, and with that in various particulate and soluble fractions obtained by differential centrifugation of cell homogenates. It was found that the ACC oxidase antigen was absent from the vacuole, and that most of it was localized in the cytoplasm of the protoplasts without being associated with membranes. Measurements of ACC oxidase activity in preparations of protoplasts and vacuoles supported these results.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid We thank Martin Regenass (Friedrich Miescher-Institut, Basel, Switzerland) for maintaining the cell cultures and Georg Felix (Friedrich Miescher-Institut, Basel, Switzerland) for helpful discussions. This work was supported, in part, by the Swiss National Science Foundation, Grant 31-26492.89.  相似文献   

4.
The activity of the ethylene-forming enzyme (EFE) in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells was almost completely abolished within 10 min by 0.4 mM of the metal-chelating agent 1,10-phenanthroline. Subsequent addition of 0.4 mM FeSO4 immediately reversed this inhibition. A partial reversion was also obtained with 0.6 mM CuSO4 and ZnSO4, probably as a consequence of the release of iron ions from the 1,10-phenanthroline complex. The inhibition was not reversed by Mn2+ or Mg2+. Tomato cells starved of iron exhibited a very low EFE activity. Addition of Fe2+ to these cells caused a rapid recovery of EFE while Cu2+, Zn2+ and other bivalent cations were ineffective. The recovery of EFE activity in iron-starved cells was insensitive to cycloheximide and therefore does not appear to require synthesis of new protein. The EFE activity in tomato cells was induced by an elicitor derived from yeast extract. Throughout the course of induction, EFE activity was blocked within 10–20 min by 1,10-phenanthroline, and the induced level was equally rapidly restored after addition of iron. We conclude that iron is an essential cofactor for the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in vivo.  相似文献   

5.
The biosynthetic basis for the high rates of ethylene production by the apical region of etiolated pea (Pisum sativum L.) seedlings was investigated. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was quantified in extracts of various regions of seedlings by measuring isotopic dilution of a 2H-labelled internal standard using selected-ion-monitoring gas chromatography/mass spectrometry. The ACC levels in the apical hook and leaves were much higher than in the expanded internodes of the epicotyl. The capacity of excised tissue sections to convert exogenous ACC to ethylene was also much greater in the apical region, reflecting the distribution of soluble protein in the epicotyl.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - FW fresh weight - GC/MS coupled gas chromatography/mass spectrometry - HPLC high-performance liquid chromatography  相似文献   

6.
Tsu-Tsuen Wang  Shang Fa Yang 《Planta》1987,170(2):190-196
In order to understand the physiological significance of the in-vitro lipoxygenase (EC 1.13.11.12)-mediated ethylene-forming system (J.F. Bousquet and K.V. Thimann 1984, Proc. Natl. Acad. Sci. USA 81, 1724–1727), its characteristics were compared to those of an in-vivo ethylene-forming system. While oat (Avena sativa L.) leaves, as other plant tissues, preferentially converted only one of the 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC) isomers to 1-butene, the lipoxygenase system converted all four AEC isomers to 1-butene with nearly equal efficiencies. While the in-vivo ethylene-forming system of oat leaves was saturable with ACC with a Km of 16 M, the lipoxygenase system was not saturated with ACC even at 10 mM. In contrast to the in-vivo results, only 10% of the ACC consumed in the lipoxygenase system was converted to ethylene, indicating that the reaction is not specific for ethylene formation. Increased ACC-dependent ethylene production in oat leaves following pretreatment with linoleic acid has been inferred as evidence of the involvement of lipoxygenase in ethylene production. We found that pretreating oat leaves with linoleic acid resulted in increased ACC uptake and thereby increased ethylene production. A similar effect was observed with oleic acid, which is not a substrate of lipoxygenase. Since linoleic acid hydroperoxide can substitute for lipoxygenase and linoleic acid in this system, it is assumed that the alkoxy radicals generated during the decomposion of linoleic acid hydroperoxide are responsible for the degradation of ACC to ethylene. Our results collectively indicate that the reported lipoxygenase system is not the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - Epps N-(2-hydroxyethyl)-piperazine-N-3-propanesulfonic acid - LH linoleic acid - LOOH linoleic acid hydroperoxide - pyridoxal-P pyridoxal-phosphate This work was presented at the 12th International Conference on Plant Growth Substances, Heidelberg, FRG, August 1985 (Abstract No. PO 5-52)  相似文献   

7.
Jörg R. Konze  Hans Kende 《Planta》1979,146(3):293-301
Homogenates of etiolated pea (Pisum sativum L.) shoots formed ethylene upon incubation with 1-aminocyclopropane-1-carboxylic acid (ACC). In-vitro ethylene formation was not dependent upon prior treatment of the tissue with indole-3-acetic acid. When homogenates were passed through a Sephadex column, the excluded, high-molecular-weight fraction lost much of its ethylene-synthesizing capacity. This activity was largely restored when a heat-stable, low-molecular-weight factor, which was retarded on the Sephadex column, was added back to the high-molecular-weight fraction. The ethylene-synthesizing system appeared to be associated, at least in part, with the particulate fraction of the pea homogenate. Like ethylene synthesis in vivo, cell-free ethylene formation from ACC was oxygen dependent and inhibited by ethylenediamine tetraacetic acid, n-propyl gallate, cyanide, azide, CoCl3, and incubation at 40°C. It was also inhibited by catalase. In-vitro ethylene synthesis could only be saturated at very high ACC concentrations, if at all. Ethylene production in pea homogenates, and perhaps also in intact tissue, may be the result of the action of an enzyme that needs a heat-stable cofactor and has a very low affinity for its substrate, ACC, or it may be the result of a chemical reaction between ACC and the product of an enzyme reaction. Homogenates of etiolated pea shoots also formed ethylene with 2-keto-4-mercaptomethyl butyrate (KMB) as substrate. However, the mechanism by which KMB is converted to ethylene appears to be different from that by which ACC is converted.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - IAA indole-3-acetic acid - KMB 2-keto-4-mercaptomethyl butyrate - SAM S-adenosylmethionine  相似文献   

8.
Mitochondria were isolated from tomato (Lycopersicon esculentum L.) fruit at the mature green, orange-green and red stages and from fruit artificially suspended in their ripening stage. The specific activities of citrate synthase (EC 4.1.3.7), malate dehydrogenase (EC 1.1.1.37), NAD-linked isocitrate dehydrogenase (EC 1.1.1.41) and NAD-linked malic enzyme (EC 1.1.1.38) were determined. The specific activities of all these enzymes fell during ipening, although the mitochondria were fully functional as demonstrated by the uptake of oxygen. The fall in activity of mitochondrial malate dehydrogenase was accompanied by a similar fall in the activity of the cytosolic isoenzyme. Percoll-purified mitochondria isolated from mature green fruit remained intact for more than one week and at least one enzyme, citrate synthase, did not exhibit the fall in specific activity found in normal ripening fruit.  相似文献   

9.
Hans Kende  Thomas Boller 《Planta》1981,151(5):476-481
Ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) levels and ACC-synthase activity were compared in intact and wounded tomato fruits (Lycopersicon esculentum Mill.) at different ripening stages. Freshly cut and wounded pericarp discs produced relatively little ethylene and had low levels of ACC and of ACC-synthase activity. The rate of ethylene synthesis, the level of ACC and the activity of ACC synthase all increased manyfold within 2 h after wounding. The rate of wound-ethylene formation and the activity of wound-induced ACC synthase were positively correlated with the rate of ethylene production in the intact fruit. When pericarp discs were incubated overnight, wound ethylene synthesis subsided, but the activity of ACC synthase remained high, and ACC accumulated, especially in discs from ripe fruits. In freshly harvested tomato fruits, the level of ACC and the activity of ACC synthase were higher in the inside parts of the fruit than in the pericarp. When wounded pericarp tissue of green tomato fruits was treated with cycloheximide, the activity of ACC synthase declined with an apparent half life of 30–40 in. The activity of ACC synthase in cycloheximide-treated, wounded pericarp of ripening tomatoes declined more slowly.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

10.
Y. Liu  N. E. Hoffman  S. F. Yang 《Planta》1985,164(4):565-568
The increase in ethylene formation and in 1-aminocyclopropane-1-carboxylic acid (ACC) content in flavedo tissue of grapefruit (Citrus paradisi Macfad. cv. Ruby Red) in response to excision was markedly inhibited by exogenous ethylene. Ethylene treatment inhibited the synthesis of ACC, but increased the tissue's capability to malonylate ACC to N-malonyl-ACC, resulting in further reduction in the endogenous ACC content. The development of extractable ACC-malonyl-transferase activity in the tissue was markedly promoted by treatment with exogenous ethylene. These results indicate that the autoinhibition of ethylene production in this tissue results not only from suppression of ACC synthesis, but also from promotion of ACC malonylation; both processes reduce the availability of ACC for ethylene synthesis.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethyoxyvinylglycine (2-amino-4-(2-aminoexthoxy)-trans-3-butenoic acid) - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid  相似文献   

11.
Stem and leaf tissues of Stellaria longipes Goldie (prairie ecotype) exhibit circadian rhythmicity in the activity and mRNA abundance for 1-aminocyclopropane-1-carboxylic acid oxidase (EC 1.4.3). The steady-state mRNA levels and enzymatic activity levels fluctuated with a period of approximately 24 h and reached their maxima by the middle of the light phase and minima by the middle of the dark phase. The oscillations showed damping under constant light, constant dark and constant temperature conditions, indicating that the rhythm is entrained by an external signal. The results indicate that light/dark cycles have greater entraining effects than temperature cycles. A 15-min red light pulse, but not a blue light pulse, could reset rhythm in continuous darkness, suggesting the possible role of a red-light signal transduction pathway in the circadian regulation of 1-aminocyclopropane-1-carboxylic acid oxidase.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - DD continuous dark - LD light-dark - LL continuous light - ZT Zeitgeber time (start of light period for circadian entrainment) This study was supported by operating grants to C.C.C., and D.M.R. from the Natural Sciences and Engineering Research Council of Canada.The authors gratefully acknowledge the award of a Bettina Bahlsen memorial Graduate Scholarship by University of Calgary to A.K. We are grateful to Dr. M.M. Moloney for allowing the use of his laboratory facilities.  相似文献   

12.
The final step in the biosynthesis of the plant hormone ethylene is catalyzed by the non-heme iron-containing enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO). ACC is oxidized at the expense of O(2) to yield ethylene, HCN, CO(2), and two waters. Continuous turnover of ACCO requires the presence of ascorbate and HCO(3)(-) (or an alternative form), but the roles played by these reagents, the order of substrate addition, and the mechanism of oxygen activation are controversial. Here these issues are addressed by development of the first functional single turnover system for ACCO. It is shown that 0.35 mol ethylene/mol Fe(II)ACCO is produced when the enzyme is combined with ACC and O(2) in the presence of HCO(3)(-) but in the absence of ascorbate. Thus, ascorbate is not required for O(2) activation or product formation. Little product is observed in the absence of HCO(3)(-), demonstrating the essential role of this reagent. By monitoring the EPR spectrum of the sample during single turnover, it is shown that the active site Fe(II) oxidizes to Fe(III) during the single turnover. This suggests that the electrons needed for catalysis can be derived from a fraction of the initial Fe(II)ACCO instead of ascorbate. Addition of ascorbate at 10% of its K(m) value significantly accelerates both iron oxidation and ethylene formation, suggesting a novel high-affinity effector role for this reagent. This role can be partially mimicked by a non-redox-active ascorbate analog. A mechanism is proposed that begins with ACC and O(2) binding, iron oxidation, and one-electron reduction to form a peroxy intermediate. Breakdown of this intermediate, perhaps by HCO(3)(-)-mediated proton transfer, is proposed to yield a high-valent iron species, which is the true oxidizing reagent for the bound ACC.  相似文献   

13.
Mayak  Shimon  Legge  Raymond L.  Thompson  John E. 《Planta》1981,153(1):49-55
Isolated membranes from the petals of senescing carnation flowers (Dianthus caryophyllus L. cv. White-Sim) catalyze the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. A microsomal membrane fraction obtained by centrifugation at 131,000 g for 1 h proved to be more active than the membrane pellet isolated by centrifugation at 10,000 g for 20 min. The ethylene-producing activity of the microsomal membranes is oxygen-dependent, heat-denaturable, sensitive to n-propyl gallate, and saturable with ACC. Corresponding cytosol fractions from the petals are incapable of converting ACC to ethylene. Moreover, the addition of soluble fraction back to the membrane fraction strongly inhibits the ACC to ethylene conversion activity of the membranes. The efficiency with which isolated membranes convert ACC to ethylene is lower than that exhibited by intact flowers based on the relative yield of membranes per flower. This may be due to the presence of the endogenous soluble inhibitor of the reaction, for residual soluble fraction inevitably remains trapped in membrane vesicles isolated from a homogenate.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminoxyacetic acid - AVG aminoethoxyvinylglycine - EPPS N-2-hydroxyethylpiperazine propane sulfonic acid  相似文献   

14.
Bean leaves from Phaseolus vulgaris L. var. Pinto 111 react to mechanical wounding with the formation of ethylene. The substrate for wound ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC). It is not set free by decompartmentation but is newly synthesized. ACC synthesis starts 8 to 10 min after wounding at 28°C, and 15 to 20 min after wounding at 20°C. Aminoethoxyvinylglycine (AVG), a potent inhibitor of ethylene formation from methionine via ACC, inhibits wound ethylene synthesis by about 95% when applied directly after wounding (incubations at 20°C). AVG also inhibits the accumulation of ACC in wounded tissue. AVG does not inhibit conversion of ACC to ethylene. Wound ethylene production is also inhibited by cycloheximide, n-propyl gallate, and ethylenediaminetetraacetic acid.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine - EDTA ethylenediaminetetraacetic acid  相似文献   

15.
In preclimacteric apple fruits ( Malus × domestica Borkh. cv. Golden Delicious) ethylene production is controlled by the rates of 1-aminocyclopropane-1-carboxylic acid (ACC) synthesis, and by its metabolism to ethylene by the ethylene-forming enzyme and to 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) by malonyl CoA-ACC transferase. The onset of the climacteric in ethylene production is associated with an increase in the activity of the ethylene-forming enzyme in the pulp and with a rise in the activity of ACC synthase. Malonyl transferase activity is very high in the skin of immature fruit, decreases sharply before the onset of the climacteric, and remains nearly constant thereafter. More than 40% of the ACC synthesized in the skin and around 5% in the flesh, are diverted to MACC at early climacteric. At the climacteric peak there are substantial gradients in ethylene production between different portions of the tissue, the inner cortical tissues producing up to twice as much as the external tissues. This increased production is associated with, and apparently due to, increased content of ACC synthase. Less than 1% of the synthesized ACC is diverted to MACC in the flesh of climacteric apples. In contrast, the skin contains high activity of malonyl transferase, and correspondingly high levels [1000 nmol (g dry weight)−1] of MACC.  相似文献   

16.
Leonard Edelman  Hans Kende 《Planta》1990,182(4):635-638
We determined the time course of increases in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity in ripening tomato (Lycopersicon esculentum (L.) Mill.) pericarp discs following wounding and treatment with 75 mM LiCl. Over the course of 24 h, we detected oscillations in the amount of enzyme activity from an initial peak at 6 h to a subsequent, even higher level at 18 h. In-vitro translation products derived from poly(A)+ RNAs isolated at various times of treatment and in-vivo-labeled proteins were immunoprecipitated using antibodies specific for ACC synthase. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography showed that wounding and treatment with LiCl induced an accumulation of translatable ACC-synthase-specific mRNAs. In addition, single, prominent bands were apparent for both in-vivo and in-vitro samples but their molecular masses differed. It appears that the in-vitro translation product is a polypeptide of 56 kDa while the in-vivo-labeled enzyme has a molecular mass of 47 kDa. The authors greatly appreciate the skilled technical assistance of Renate deZacks and Gail Robinson. This research was supported by the National Science Foundation through Grant No. DCB-8718873 and by the Department of Energy through Contract No. DE-AC02-76ER-01338.  相似文献   

17.
Homogenates of hypocotyls of light-grown mung-bean (Vigna radiata (L.) Wilczek) seedlings catalyzed the formation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) from the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl-coenzyme A. Apparent Km values for ACC and malonyl-CoA were found to be 0.17 mM and 0.25 mM, respectively. Free coenzyme A was an uncompetitive inhibitor with respect to malonyl-CoA (apparent Ki=0.3 mM). Only malonyl-CoA served as an effective acyl donor in the reaction. The d-enantiomers of unpolar amino acids inhibited the malonylation of ACC. Inhibition by d-phenylalanine was competitive with respect to ACC (apparent Ki=1.2 mM). d-Phenylalanine and d-alanine were malonylated by the preparation, and their malonylation was inhibited by ACC. When hypocotyl segments were administered ACC in the presence of certain unpolar d-amino acids, the malonylation of ACC was inhibited while the production of ethylene was enhanced. Thus, a close-relationship appears to exist between the malonylation of ACC and d-amino acids. The cis- as well as the trans-diastereoisomers of 2-methyl- or 2-ethyl-substituted ACC were potent inhibitors of the malonyltransferase. Treatment of hypocotyl segments with indole-3-acetic acid or CdCl2 greatly increased their content of ACC and MACC, as well as their release of ethylene, but had little, or no, effect on their extractable ACC-malonylating activity.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

18.
White light inhibits the conversion of 1-amino-cyclopropane-1-carboxylic acid (ACC) in discs of green leaves of tobacco (Nicotiana tabacum L.) and segments of oat (Avena sativa L.) leaves by from 60 to 90%. Etiolated oat leaves do not show this effect. The general nature of the effect is shown by its presence in both a mono- and a dicotyledon. Since the leaves have been grown and pre-incubated in light, yet can produce from 2 to 9 times as much ethylene in the dark as in the light, it follows that the light inhibition is fully reversible. The inhibition by light is about equal to that exerted in the dark by CoCl2; it can be partly reversed by dithiothreitol and completely by mercaptoethanol. Thus the light is probably acting, via the photosynthetic system, on the SH group(s) of the enzyme system converting ACC to ethylene.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

19.
The cofactor of enzymatic, 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation was concentrated on cation exchange columns. When chelators of cations were added to the homogenates, cofactor activity was lost. Cofactor fractions were partly resistant to oxidation at 600° C. Mn2+ substituted for the cofactor in ethylene formation from 1-aminocyclopropane-1-carboxylic acid by a protein fraction isolated from etiolated pea shoots. In addition, Mn2+ enhanced the stimulatory effect of the concentrated cofactor. The elution volume for the cofactor on a Sephadex G-25 column was lower than that of MnCl2. In paper electrophoresis the cofactor migrated to the cathode at pH 10.8 and 2.2. The RF of cofactor on cellulose plates developed in butanol: acetic acid: H2O was 0.4. After cellulose chromatography, cofactor activity had to be reconstituted by the addition of MnCl2. Chelators, anti-oxidants, and catalase were inhibitors of Mn2+-cofactor-dependent ethylene formation. The protein necessary for 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation in vitro was seperated from 95–98% of the total protein in homogenates by DE-52 cellulose chromatography and (NH4)2SO4-fractionation.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EDTA ethylenediaminetetraacetic acid - DDTC diethyldithiocarbamate  相似文献   

20.
1-Aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) purified from apple (Malus sylvestris Mill.) fruit was subjected to trypsin digestion. Following separation by reversed-phase high-pressure liquid chromatography, ten tryptic peptides were sequenced. Based on the sequences of three tryptic peptides, three sets of mixed oligonucleotide probes were synthesized and used to screen a plasmid cDNA library prepared from poly(A)+ RNA of ripe apple fruit. A 1.5-kb (kilobase) cDNA clone which hybridized to all three probes were isolated. The clone contained an open reading frame of 1214 base pairs (bp) encoding a sequence of 404 amino acids. While the polyadenine tail at the 3-end was intact, it lacked a portion of sequence at the 5-end. Using the RNA-based polymerase chain reaction, an additional sequence of 148 bp was obtained at the 5-end. Thus, 1362 bp were sequenced and they encode 454 amino acids. The deduced amino-acid sequence contained peptide sequences corresponding to all ten tryptic fragments, confirming the identity of the cDNA clone. Comparison of the deduced amino-acid sequence between ACC synthase from apple fruit and those from tomato (Lycopersicon esculentum Mill.) and winter squash (Cucurbita maxima Duch.) fruits demonstrated the presence of seven highly conserved regions, including the previously identified region for the active site. The size of the translation product of ACC-synthase mRNA was similar to that of the mature protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicating that apple ACC-synthase undergoes only minor, if any, post-translational proteolytic processing. Analysis of ACC-synthase mRNA by in-vitro translation-immunoprecipitation, and by Northern blotting indicates that the ACC-synthase mRNA was undetectable in unripe fruit, but was accumulated massively during the ripening proccess. These data demonstrate that the expression of the ACC-synthase gene is developmentally regulated.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AdoMet S-adenosyl-l-methionine - HPLC high-pressure liquid chromatography - kDa kilodalton - kb kilobase - mAb monoclonal antibody - Met methionine - PCR polymerase chain reaction - poly(A)+ RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis This work was supported by grants DCB-9004129 and INT-8915155 from the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号