首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rates of synthesis of peptidoglycan and protein during the division cycle of Escherichia coli were measured by the membrane elution technique using cells differentially labelled with N-acetylglucosamine and leucine. During the first part of the division cycle the ratio of the rates of protein and peptidoglycan synthesis was constant. The rate of peptidoglycan synthesis, relative to the rate of protein synthesis, increased during the latter part of the division cycle. These results support a simple, bipartite model of cell surface increase in rod-shaped cells. Prior to the start of constriction the cell surface increases only by lateral wall extension. After cell constriction starts, the cell surface increases by both lateral wall and pole growth. The increase in surface area is partitioned between the lateral wall and the pole so that the volume of the cell increases exponentially. No variation in cell density occurs, because the increase in surface allows a continuous exponential increase in cell volume that accommodates the exponential increase in cell mass. The results are consistent with the constant density of the growing cell and the surface stress model for the regulation of cell surface synthesis. In addition, the elution pattern suggests that the membrane elution method does work by having the cells effectively bound to the membrane by their poles.  相似文献   

2.
The yeast cell surface provides space to display functional proteins. Heterologous proteins can be covalently anchored to the yeast cell wall by fusing them with the anchoring domain of glycosylphosphatidylinositol (GPI)-anchored cell wall proteins (GPI-CWPs). In the yeast cell-surface display system, the anchorage position of the target protein in the cell wall is an important factor that maximizes the capabilities of engineered yeast cells because the yeast cell wall consists of a 100- to 200-nm-thick microfibrillar array of glucan chains. However, knowledge is limited regarding the anchorage position of GPI-attached proteins in the yeast cell wall. Here, we report a comparative study on the effect of GPI-anchoring domain–heterologous protein fusions on yeast cell wall localization. GPI-anchoring domains derived from well-characterized GPI-CWPs, namely Sed1p and Sag1p, were used for the cell-surface display of heterologous proteins in the yeast Saccharomyces cerevisiae. Immunoelectron-microscopic analysis of enhanced green fluorescent protein (eGFP)-displaying cells revealed that the anchorage position of the GPI-attached protein in the cell wall could be controlled by changing the fused anchoring domain. eGFP fused with the Sed1-anchoring domain predominantly localized to the external surface of the cell wall, whereas the anchorage position of eGFP fused with the Sag1-anchoring domain was mainly inside the cell wall. We also demonstrate the application of the anchorage position control technique to improve the cellulolytic ability of cellulase-displaying yeast. The ethanol titer during the simultaneous saccharification and fermentation of hydrothermally-processed rice straw was improved by 30% after repositioning the exo- and endo-cellulases using Sed1- and Sag1-anchor domains. This novel anchorage position control strategy will enable the efficient utilization of the cell wall space in various fields of yeast cell-surface display technology.  相似文献   

3.
The plasma membrane proteins of a mutant of Neurospora crassa (FGSC No. 326) which lacks a cell wall were analyzed by two-dimensional polyacrylamide gel electrophoresis. Approximately 180 different proteins were detected in purified plasma membrane preparations. Nonpermeating labeling experiments indicated that approximately 40% of these proteins were exposed on the extra-cytoplasmic surface of the plasma membranes of these cells. The studies demonstrate the complexity of the protein composition of N. crassa 326 plasma membranes to be greater than has been suggested by previous investigations.  相似文献   

4.
In euechinoid sea urchin embryos, a subset of epithelial cells in the wall of the blastula become pulsatile, elongate, lose connections with their neighboring cells, and move into the blastocoel to form the primary mesenchyme cells. The Golgi apparatus and microtubule organizing center (MTOC) are located at the apical end of these epithelial cells. We show that as primary mesenchyme cells begin to move into the blastocoel, the Golgi apparatus and MTOC move to a new position adjacent to the apical side of the nucleus. They do not move to a position between the nucleus and the leading (i.e., basal) end of the cell as they do in cultured fibroblasts undergoing directed migration. In addition, we have inhibited the movement of membranous vesicles to the cell surface by incubating embryos in the ionophore monensin. We have used antibodies to msp130, a primary mesenchyme cell surface-specific glycoprotein, to demonstrate that monensin inhibits the movement of msp130-containing vesicles to the cell surface. Despite the inhibition of membrane shuttling by monensin, primary mesenchyme cells ingress on schedule and display normal cell-shape changes. We draw two conclusions from our data. First, the cellular elongation that characterizes ingression is not due to the local insertion of membrane at the leading (basal) end of the cell. Second, ingression does not depend upon establishment of the same cell polarity required for fibroblasts to carry out directed cell migration.  相似文献   

5.
The tapetal layer becomes distinct from the other layers of parietal cells about three days prior to the meiosis in the microspore mother cells. Differentiation of the tapetal cells includes an increased relative volume for dictyosomes, mitochondria and plas–tids, the appearance of autophagic vacuoles in the cytoplasm, and periplasmic spaces between the plasma membrane and the cell wall. About one day before the meiosis the basophilia in tapetal cells is elevated; there are numerous nonaggregated ribo–somes, nuclei are intensely stainable, and the rough ER is dilated. There is also a partial digestion of the cell walls around microspore mother cells and tapetal cells including the adaxial wall of the adjacent parietal cell layer. A wedge–shaped portion of the wall system between this parietal cell layer and tapetal cells is not lysed. A lamellation in the middle lamellar position is also spared. That lamellation remains prominent as the extratapetal lamellation. By the initiation of meiosis the surfaces of both tapetal and microspore mother cells are entirely free of cell walls. During that period the intense basophilia of tapetal cells recedes and there are many polyribosomes, an extensive system of rough ER, dictyosomes with vesicles containing fibrils, multivesicular bodies, and autophagic vacuoles. Microtubules occur close to the plasma membrane. The plasma membrane–glycocalyx differs in portions of the surface facing the extratapetal lamellation from the Iocular facing surface. We presume that the abaxial portion of tapetal cells with cavations containing glycocalyx–like filaments is a region of uptake and that the adaxial surface with detached glycocalyx is secretory.  相似文献   

6.
RADIOAUTOGRAPHIC STUDY OF CELL WALL DEPOSITION IN GROWING PLANT CELLS   总被引:15,自引:0,他引:15       下载免费PDF全文
Segments cut from growing oat coleoptiles and pea stems were fed glucose-3H in presence and absence of the growth hormone indoleacetic acid (IAA). By means of electron microscope radioautography it was demonstrated that new cell wall material is deposited both at the wall surface (apposition) and within the preexisting wall structure (internally). Quantitative profiles for the distribution of incorporation with position through the thickness of the wall were obtained for the thick outer wall of epidermal cells. With both oat coleoptile and pea stem epidermal outer walls, it was found that a larger proportion of the newly synthesized wall material appeared to become incorporated within the wall in the presence of IAA. Extraction experiments on coleoptile tissue showed that activity that had been incorporated into the cell wall interior represented noncellulosic constituents, mainly hemicelluloses, whereas cellulose was deposited largely or entirely by apposition. It seems possible that internal incorporation of hemicelluloses plays a role in the cell wall expansion process that is involved in cell growth.  相似文献   

7.
Electron microscopic study of the microbial cells of the I, II phases and the R-form was carried out. Intact cells were examined by negative contrasting, and morphological differences of various bacterial phases were shown: cells of the I phase had a relatively smooth surface, bacteria of the II phase had a smooth surface, but many cell wall fragments were split from them; the surface of the R-form cells was coarse, folded, and cell wall fragments were split from the majority of bacteria. Antigenic determinants responsible for phasic specificity in bacteria of the I and II phases were located at some distance from the external membrane of the cell wall; as to the R-form cells--they were localized on the wall.  相似文献   

8.
The cell envelope in Gram-negative bacteria comprises two distinct membranes with a cell wall between them. There has been a growing interest in understanding the mechanical adaptation of this cell envelope to the osmotic pressure (or turgor pressure), which is generated by the difference in the concentration of solutes between the cytoplasm and the external environment. However, it remains unexplored how the cell wall, the inner membrane (IM), and the outer membrane (OM) effectively protect the cell from this pressure by bearing the resulting surface tension, thus preventing the formation of inner membrane bulges, abnormal cell morphology, spheroplasts and cell lysis. In this study, we have used molecular dynamics (MD) simulations combined with experiments to resolve how and to what extent models of the IM, OM, and cell wall respond to changes in surface tension. We calculated the area compressibility modulus of all three components in simulations from tension-area isotherms. Experiments on monolayers mimicking individual leaflets of the IM and OM were also used to characterize their compressibility. While the membranes become softer as they expand, the cell wall exhibits significant strain stiffening at moderate to high tensions. We integrate these results into a model of the cell envelope in which the OM and cell wall share the tension at low turgor pressure (0.3 atm) but the tension in the cell wall dominates at high values (>1 atm).  相似文献   

9.
Nucellar projection transfer cells in the developing wheat grain   总被引:1,自引:0,他引:1  
Summary Transfer cells in the nucellar projection of wheat grains at 25 ±3 days after anthesis have been examined using light and electron microscopy. Within the nucellar tissue, a sequential increase in non-polarized wall ingrowth differentiation and cytoplasmic density was evident. Cells located near the pigment strand were the least differentiated. The degree of differentiation increased progressively in cells further removed from the pigment strand and the cells bordering the endosperm cavity had degenerated. Four stages of transfer cell development were identified at the light microscope level. Wall ingrowth differentiation followed a sequence from a papillate form through increased branching (antler-shaped ingrowths) which ultimately anastomosed to form a complex labyrinth. The final stage of wall ingrowth differentiation was compression which resulted in massive ingrowths. In parallel with wall ingrowth deposition cytoplasmic density increased. During wall deposition, paramural and multivesicular bodies were prominent and were in close association with the wall ingrowths. The degeneration phase involved infilling of cytoplasmic islets within the wall ingrowths. This was accompanied by complete loss of the protoplast. The significance of this transfer cell development for sucrose efflux to the endosperm cavity was assessed by computing potential sucrose fluxes across the plasma membrane surface areas of the nucellar projection cells. Transfer cell development amplified the total plasma membrane surface area by 22 fold. The potential sucrose flux, when compared with maximal rates of facilitated membrane transport of sugars, indicated spare capacity for sucrose efflux to the endosperm cavity. Indeed, when the total flux was partitioned between the nucellar projection cells at the three stages of transfer cell development, the fully differentiated stage III cells located proximally to the endosperm cavity alone exhibited spare transport capacity. Stage II cells could accommodate the total rate of sucrose transfer, but stage I cells could not. It is concluded that the nucellar projection tissue of wheat provides a unique opportunity to study transfer cell development and the functional role of these cells in supporting sucrose transport.Abbreviations CSPMSA cross sectional plasma membrane surface area - LPMSA longitudinal plasma membrane surface area - PTS tri-sodium 3-hydroxy-5,8,10-pyrenetrisulfonate  相似文献   

10.
Two polymorphic forms of an extracellular arabinogalactan protein (AGP1 and AGP2), obtained from the conditioned media of two carrot suspension-cultured cell lines, have been identified in terms of binding of the anti-plasma membrane antibodies JIM4 and MAC207. AGP1 and AGP2 have been used as immunogens to generate further anti-AGP monoclonal antibodies. JIM14 identified an epitope carried by AGP2 and also by glycoproteins of low molecular weight localized to the plant cell wall. In addition, further antibodies (JIM13 and JIM15) identified carbohydrate epitopes of the AGPs that also occur on plasma membrane glycoproteins and are expressed by patterns of cells that reflect cell position at the carrot root apex. Indirect immunofluorescence microscopy indicated that JIM13 recognized the surface of cells forming the epidermis and cells marking the region and axis of the future xylem. JIM15 recognized a pattern of cells directly complementary to the JIM13 pattern. The panel of anti-AGP monoclonal antibodies now available indicates groups of cells within the root meristem that may reflect an early pre-pattern of the tissues of the mature root structure and suggests extensive modulation of cell surface AGPs during cell development and the positioning of cells within the apex.  相似文献   

11.
The plasma membrane proteins of a mutant of Neurospora crassa (FGSC No. 326) which lacks a cell wall were analyzed by two-dimensional polyacrylamide gel electrophoresis. Approximately 180 different proteins were detected in purified plasma membrane preparations. Nonpermeant labeling experiments indicated that approximately 40% of these proteins were exposed on the extracytoplasmic surface of the plasma membranes of these cells. The studies demostrate the complexity of the protein composition of N. crassa 326 plasma membranes to be greater than has been suggested by previous investigations.  相似文献   

12.
The localization of acid and alkaline phosphatases in Staphylococcus aureus was studied by fractionation of cells after treatment with the L-11 enzyme and by electron microscopic histochemistry. The two enzyme activities were located in distinctly different positions at the surface of the cells. Acid phosphatase appeared to be localized around the cell membrane of the bacteria, because the enzyme was recovered exclusively in the membrane fraction and because deposition of lead phosphate was detected by electron microscopic histochemistry on the inner surface of the cell membrane of intact bacteria and spheroplasts. The highest specific activity of alkaline phosphatase was also associated with the membrane fraction. However, on electron microscopic histochemistry of intact cells, the deposition of lead phosphate was only seen on the outer surface of the cell wall.  相似文献   

13.
Intact cells of Bacillus stearothermophilus PV72 revealed, after conventional thin-sectioning procedures, the typical cell wall profile of S-layer-carrying gram-positive eubacteria consisting of a ca. 10-nm-thick peptidoglycan-containing layer and a ca. 10-nm-thick S layer. Cell wall preparations obtained by breaking the cells and removing the cytoplasmic membrane by treatment with Triton X-100 revealed a triple-layer structure, with an additional S layer on the inner surface of the peptidoglycan. This profile is characteristic for cell wall preparations of many S-layer-carrying gram-positive eubacteria. Among several variants of strain PV72 obtained upon single colony isolation, we investigated the variant PV72 86-I, which does not exhibit an inner S layer on isolated cell walls but instead possesses a profile identical to that observed for intact cells. In the course of a controlled mild autolysis of isolated cell walls, S-layer subunits were released from the peptidoglycan of the variant and assembled into an additional S layer on the inner surface of the walls, leading to a three-layer cell wall profile as observed for cell wall preparations of the parent strain. In comparison to conventionally processed bacteria, freeze-substituted cells of strain PV72 and the variant strain revealed in thin sections a ca. 18-nm-wide electron-dense peptidoglycan-containing layer closely associated with the S layer. The demonstration of a pool of S-layer subunits in such a thin peptidoglycan layer in an amount at least sufficient for generating one coherent lattice on the cell surface indicated that the subunits must have occupied much of the free space in the wall fabric of both the parent strain and the variant. It can even be speculated that the rate of synthesis and translation of the S-layer protein is influenced by the packing density of the S-layer subunits in the periplasm of the cell wall delineated by the outer S layer and the cytoplasmic membrane. Our data indicate that the matrix of the rigid wall layer inhibits the assembly of the S-layer subunits which are in transit to the outside.  相似文献   

14.
The movement of cells and cell fragments in an electric field provided a means for determining the nature of cellular surface charges. We found that changes in ionic strength and particularly changes in Ca2+ and H+ in the bathing medium cause changes in the surface charges on the root cap cells in the absence of red light. Red light-induced charge changes are demonstrable only on root cap cells and are reversible with far red light. By osmotically separating the membrane from the wall, we demonstrated that both light-induced and ionically mediated charge changes are associated with the cell membrane and not the cell wall.  相似文献   

15.
Cell morphogenesis is a complex process that depends on cytoskeleton and membrane organization, intracellular signalling and vesicular trafficking. The rod shape of the fission yeast Schizosaccharomyces pombe and the availability of powerful genetic tools make this species an excellent model to study cell morphology. Here we have investigated the function of the conserved Kin1 kinase. Kin1‐GFP associates dynamically with the plasma membrane at sites of active cell surface remodelling and is present in the membrane fraction. Kin1Δ null cells show severe defects in cell wall structure and are unable to maintain a rod shape. To explore Kin1 primary function, we constructed an ATP analogue‐sensitive allele kin1‐as1. Kin1 inhibition primarily promotes delocalization of plasma membrane‐associated markers of actively growing cell surface regions. Kin1 itself is depolarized and its mobility is strongly reduced. Subsequently, amorphous cell wall material accumulates at the cell surface, a phenotype that is dependent on vesicular trafficking, and the cell wall integrity mitogen‐activated protein kinase pathway is activated. Deletion of cell wall integrity mitogen‐activated protein kinase components reduces kin1Δ hypersensitivity to stresses such as those induced by Calcofluor white and SDS. We propose that Kin1 is required for a tight link between the plasma membrane and the cell wall.  相似文献   

16.
We studied the perception of plant cells to osmotic stress that leads to the accumulation of abscisic acid (ABA) in stressed Arabidopsis thaliana L. cells. A significant difference was found between protoplasts and cells in terms of their responses to osmotic stress and ABA biosynthesis, implying that cell wall and/or cell wall-plasma membrane interaction are essential in identifying osmotic stress. Western blotting and immunofluorescence localization experiments, using polyclonal antibody against human integrin β1, revealed the existence of a protein similar to the integrin protein of animals in the suspension-cultured cells located in the plasma membrane fraction. Treatment with a synthetic pentapeptide, Gly-Arg-Gly-Asp-Ser (GRGDS), which contains an RGD domain and interacts specifically with integrin protein and thus blocks the cell wall-plasma membrane interaction, significantly inhibited osmotic stress-induced ABA biosynthesis in cells, but not in protoplasts. These results demonstrate that cell wall and/or cell wall-plasma membrane interaction mediated by integrin-Iike proteins played important roles in osmotic stress-induced ABA biosynthesis in Arabidopsis thaliana.  相似文献   

17.
1. The extent to which the cytoplasmic membrane of the Gram-positive bacterium Bacillus licheniformis formed inside-out vesicles was studied with the freeze-fracture technique. The membrane orientation appeared to be dependent on the buffer compositon as well as on the lysis procedure used. 2. By manipulating these conditions, membrane preparations were obtained with the percentage of inside-out vesicles varying from 15 to 80%. 3. More vesicles had the opposite orientation when the cells were lysed in potassium phosphate buffer than when they were lysed in sodium phosphate buffer. Tris-HCl buffer favoured the formation of inside-out vesicles more than phosphate buffer. 4. Lysis of protoplasts in hypotonic buffers resulted in more inside-out vesicles than did direct lysis of cells in hypotonic media. 5. In an attempt to explain the observed differences, experiments were performed in which the morphology of thin-sectioned lysing cells in sodium phosphate buffer was compared with that in potassium phosphate buffer. The results from these experiments indicate that the formation of inside-out vesicles is brought about by an effect on the membrane itself rather than on the cell wall, on the cell wall membrane association, or on the cytoplasm.  相似文献   

18.
The interaction between the outer hair cell (OHC) lateral wall plasma membrane and the underlying cortical lattice was examined by a morphometric analysis of cell images during cell deformation. Vesiculation of the plasma membrane was produced by micropipette aspiration in control cells and cells exposed to ionic amphipaths that alter membrane mechanics. An increase of total cell and vesicle surface area suggests that the plasma membrane possesses a membrane reservoir. Chlorpromazine (CPZ) decreased the pressure required for vesiculation, whereas salicylate (Sal) had no effect. The time required for vesiculation was decreased by CPZ, indicating that CPZ decreases the energy barrier required for vesiculation. An increase in total volume is observed during micropipette aspiration. A deformation-induced increase in hydraulic conductivity is also seen in response to micropipette-applied fluid jet deformation of the lateral wall. Application of CPZ and/or Sal decreased this strain-induced hydraulic conductivity. The impact of ionic amphipaths on OHC plasma membrane and lateral wall mechanics may contribute to their effects on OHC electromotility and hearing.  相似文献   

19.
Since its discovery in follicular lymphoma cells at the breakpoint t(14;18), Bcl-2 has been studied extensively in many basic and clinical science settings. Bcl-2 can locate as an integral mitochondrial membrane component, where its primary role is to block apoptosis by maintaining membrane integrity. Here we show that Bcl-2 also can position on the outer cell surface membrane of B cells from patients with chronic lymphocytic leukemia (B-CLL) and certain other leukemias that do not classically possess the chromosomal breakpoint t(14;18). Although low levels of Bcl-2 can be detected on the surface membrane of apparently healthy leukemic and normal B cells, expression of Bcl-2 correlates best with spontaneous or induced apoptosis. Notably, upon induction of apoptosis, B-CLL cells were much more efficient in upregulating surface Bcl-2 than normal B cells. It is not clear if this surface membrane expression is a passive consequence of the apoptotic process or an active attempt by the B cell to abort cell death by stabilizing the plasma membrane.  相似文献   

20.
The cell surface of Corynebacterium glutamicum grown on solid medium was totally covered with a highly ordered, hexagonal surface layer. Also, freeze-fracture revealed two fracture surfaces which were totally covered with ordered arrays displaying an hexagonal arrangement and the same unit cell dimension as the surface layer. The ordered arrays on the concave fracture surface, closest to the cell surface, were due to the presence of particles while those on the convex fracture surface were their imprints. The same cells grown on liquid medium displayed a cell surface and fracture surfaces only partially covered with ordered arrays. In this case, the ordered regions had the same relative position on the cell surface and on the fracture surfaces. All ordered arrays were totally absent in a mutant for cspB, the gene encoding PS2, one of the two major cell wall proteins. Treatment of the cells with proteinase K caused the gradual alteration of PS2 into a slightly lower molecular mass form. This was accompanied by a concomitant disappearance of the ordered fracture surfaces followed by the detachment of the ordered surface layer from the cell as large ordered patches displaying the same lattice symmetry and dimension as those of the surface layer. The ordered patches were isolated. They contained the totality of PS2 initially associated with the cell. We conclude that the highly ordered surface layer of the intact cell was composed of PS2 interacting strongly with some cell wall material leading to its organization. This organized cell wall material produced the ordered fracture surfaces. We show that in the absence of intact PS2 protein on the cell wall, the same cell wall material was not organized and formed a structureless smooth layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号