首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The cytochrome P-450 (P-450sccII) and its reductase, NADPH-cytochrome reductase [EC 1.6.2.4], associated with conversion of progesterone to 4-androstene-3,17-dione, were extensively purified from pig testis microsomes. Higher lyase activity (turnover number of 15 mol of the product formed/min/mol of P-450) could be restored by mixing the P-450sccII, its reductase, pig liver cytochrome b5 and cytochrome b5-reductase [EC 1.6.2.2], and phospholipid in the presence of NADPH, NADH, and O2. Omission of either cytochrome b5 or NADH resulted in a significant loss of the lyase activity indicating actual participation of cytochrome b5 in this P-450-mediated steroidogenic system in the testis.  相似文献   

2.
When incorporated into phospholipid vesicles containing NADPH-cytochrome P-450 reductase and P-450LM2, cytochrome b5 enhanced the rate of NADPH-supported hydroxylation of 7-ethoxycoumarin or p-nitroanisole about 5-fold. Cytochrome b5 did not affect the rate of NADPH-oxidation, nor the rate of NADPH-supported formation of the ferrous CO-complex of cytochrome P-450. However, the cytochrome b5-mediated increase in product formation was found to be correlated with concomitant decreases in the production of H2O2 or O2? in the system, thus strongly indicating cytochrome b5 being a more efficient donor of the second electron to cytochrome P-450 than is NADPH-cytochrome P-450 reductase.  相似文献   

3.
Addition of p-nitroanisole to a reaction mixture containing phenobarbital-pretreated rabbit liver microsomes brings about an increase the reoxidation rate of NADH-reduced cytochrome b5. Addition of partially purified cytochrome b5 to a solution containing microsomes results in a marked increase in both NADH- and NADPH-dependent O-demethylation of p-nitroanisole. p-Nitroanisole also increases the rate of NADH mediated cytochrome P-450 reduction. From these and other results described in the Discussion section, we confirm that electrons required for NADH-dependent O-demethylation of p-nitroanisole is transfered from NADH to cytochrome P-450 via cytochrome b5 and that cytochrome P-450 is the enzyme which catalyzes p-nitroanisole O-demethylation.  相似文献   

4.
Both the cytochrome b5 level and NADH cytochrome b5 reductase activity in rat liver microsomes were increased 2-fold by repeated i.p. administration of 1.5 mmol/kg propylthiouracil (PTU) for 2 weeks, but neither the cytochrome P-450 level nor NADPH cytochrome P-450 reductase activity were affected by the treatment. Liver microsomes from PTU-treated rats showed a significant decrease in aminopyrine N-demethylation, but not in benzphetamine N-demethylation, aniline hydroxylation or 7-ethoxycoumarin O-deethylation. A single administration of the compound had no effect on any components of the system. In vitro, drug hydroxylation activities were not affected by PTU up to 1.0 mM. From the above evidence, repeated administration of PTU selectively induced cytochrome b5 and NADH cytochrome b5 reductase in rat liver microsomes.  相似文献   

5.
Binding of increasing amounts of detergent-purified cytochrome b5 to rabbit liver microsomes produces a progressive inhibition of NADPH-cytochrome P-450 reductase activity which is accompanied by a similar inhibition of NADPH-supported benzphetamine demethylation. In contrast, NADH-cytochrome P-450 reductase activity in the enriched microsomes is markedly enhanced and this stimulation is accompanied by a similar increase in NADH-peroxidase activity, suggesting that cytochrome b5 in these two reactions functions as an intermediate electron carrier to cytochrome P-450.  相似文献   

6.
Cytochrome P-450 was purified from phenobarbital-treated guinea pigs to a specific content of 19.8 nmoles per mg of protein, and was free of cytochrome b5 and NADPH-cytochrome c reductase. The purified cytochrome P-450 gave a single protein band on sodium dodecylsulfate-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 49,000 was estimated. Benzphetamine N-demethylation activity could be reconstituted by mixing the purified cytochrome, NADPH-cytochrome c reductase and phosphatidylcholine.  相似文献   

7.
Sodium cholate, Emulgen 911, and (3-[(-cholamidopropyl)-dimethyl- ammonio]-1-propanesulfonate) (CHAPS) were selected to examine the effects of ionic, nonionic, and zwitterionic detergents on testosterone hydroxylation catalyzed by four purified isozymes of rat liver microsomal cytochrome P-450, namely P-450a, P-450b, P-450c, and P-450h, in reconstituted systems containing optimal amounts of dilauroylphosphatidylcholine and saturating amounts of NADPH- cytochrome P-450 reductase (reductase). The major phenobarbital-inducible form of rat liver microsomal cytochrome P-450, designated P-450b, was extremely sensitive to the inhibitory effects of Emulgen 911, which is used in several procedures to purify this and other forms of cytochrome P-450. In contrast, sodium cholate and CHAPS had little effect on the catalytic activity of cytochrome P-450b, even at ten times the concentration of Emulgen 911 effecting 50% inhibition (IC-50). By substituting the zwitterionic detergent CHAPS for Emulgen 911, we purified cytochrome P-450b without the use of nonionic detergent. The protein is designated cytochrome P-450b* to distinguish it from cytochrome P-450b purified with the use of Emulgen 911. NADPH-cytochrome P-450 reductase was also purified both with and without the use of nonionic detergent. The absolute spectra of cytochrome P-450b and P-450b* were indistinguishable, as were the carbon monoxide (CO)- and metyrapone-difference spectra of the dithionite-reduced hemoproteins. When reconstituted with NADPH-cytochrome P-450 reductase and dilauroylphosphatidylcholine, cytochromes P-450b and P-450b* catalyzed the N-demethylation of benzphetamine and aminopyrine, the 4-hydroxylation of aniline, the O-dealkylation of 7-ethoxycoumarin, the 3-hydroxylation of hexobarbital, and the 6-hydroxylation of zoxazolamine. Both hemo-proteins catalyzed the 16α- and 16β-hydroxylation of testosterone, as well as the 17-oxidation of testosterone to androstenedione. Both hemoproteins were poor catalysts of erythromycin demethylation and benzo[a]pyrene 3-/9-hydroxylation. The rate of biotransformation catalyzed by cytochrome P-450b* was up to 50% greater than the rate catalyzed by cytochrome P-450b when reconstituted with either reductase or reductase*. The activity of cytochrome P-450b and P-450b* increased up to 50% when reconstituted with reductase* instead of reductase. In addition to establishing the feasibility of purifying an isozyme of rat liver microsomal cytochrome P-450 without the use of nonionic detergent, these results indicate that the catalytic activity of cytochrome P-450 is not unduly compromised by residual contamination with the nonionic detergent Emulgen 911.  相似文献   

8.
Cytochrome P-450 from rat lung microsomes has been solubilized and purified 8-fold by using affinity chromatography on an ω-amino-n-octyl derivative of Sepharose 4B. The purified fraction was free of cytochrome b5 and NADPH-cytochrome c reductase and showed spectral characteristics similar to those of lung microsomal cytochrome P-450. When combined with NADPH-cytochrome c reductase partially purified from liver microsomes, the cytochrome P-450 fraction supported the hydroxylation of benzo (α)pyrene and the activity was proportional to the content of the hemoprotein. No absolute requirement for phosphatidylcholine was found.  相似文献   

9.
An enzyme system in rat liver microsomes which catalyzes the NADH-dependent hydroxylation of 3,4-benzpyrene has been reconstituted. The essential components of this NADH-mediated electron transport chain are cytochrome b5, NADH-cytochrome b5 reductase, lipid, and cytochrome P-448.  相似文献   

10.
In the presence of hepatic microsomes, vinyl chloride produces a ‘type I’ difference spectrum and stimulates carbon monoxide inhibitable NADPH consumption. A comparison of the binding and Michaelis parameters for the interaction of vinyl chloride with uninduced, phenobarbital and 3-methylcholanthrene induced microsomes indicates that the binding and metabolism of vinyl chloride is catalyzed by more than one type P-450 cytochrome, but predominantly by cytochrome P-450. Metabolites of vinyl chloride from this enzyme system decrease the levels of cytochrome P-450 and microsomal heme, but not cytochrome b5 or NADPH-cytochrome c reductase in vitro.  相似文献   

11.
Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼10- to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochrome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase.  相似文献   

12.
The purpose of this report is to review the current literature on cytochrome b5 in hepatic microsomes and to draw conclusions as to its role in microsomal electron transfer pathways. For details concerning the history of cytochrome b5 the reader is reffered to reviews by C. F. Strittmatter (1) and P. Strittmatter (2). For information on the chemistry of cytochrome b5 the reader is reffered to the papers by Ozols and Strittmatter (3), Kajihara and Hagihara (4), and Ehrenberg and Bois-Poltoratsky (5). For more recent studies on the isolation and properties of detergent solubilized cytochrome b5, which contains a hydrophobic peptide enabling reincorporation into membranes, the reader is referred to references 6-12.For simplicity, this minireview is divided into four parts, reflecting areas of study on the role of cytochrome b5 in the microsomes. One major area is in fatty acid 9 desaturation. Two other areas concern cytochrome b5 involvement in cytochrome P-450 mediated mixed function oxidations. The fourth section deals with other non-cytochrome P-450 pathways in which cytochrome b5 is suggested as being a component.  相似文献   

13.
NADPH:cytochrome P-450 (c) reductase is a microsomal enzyme which is involved in the cytochrome P-450-dependent biotransformation of many exogenous agents as well as of some endogenous molecules. Using cytochromec as a substrate, the kinetic parameters of this enzyme were determined in brain microsomes. The comparison of the NADPH:cytochrome P-450 reductase's Vmax values and cytochrome P-450 contents in both fractions, suggests a role of cerebral NADPH:cytochrome P-450 reductase in cytochrome P-450 independent pathways. This is also supported by the different developmental pattern of brain enzyme as compared to the liver enzyme, and by the presence of a relatively high NADPH:cytochrome P-450 reductase activity in immature rat brain and neuronal cultures, while cytochrome P-450 was hardly detectable in these preparations. The enzyme activity was not induced by a phenobarbital chronic treatment neither in the adult brain nor in cultured neurons, suggesting a different regulation of the brain enzyme expression.  相似文献   

14.
Compound 102804 isolated from Bacillus cereus has been found to be a potent inhibitor of the N5-methyltetrahydrofolate-homocysteine transmethylase isolated from Escherichia coli B. This inhibition was noted when 102804 was added to the enzyme reaction mixture after the reaction started or concurrently with the preparation of the mixture. Chemically inactivated 102804 has no activity as an inhibitor of this enzyme system.  相似文献   

15.
The role of NADH-cytochrome b5 reductase and cytochrome b5 as electron carriers in NADH-supported electron transport reactions in rat liver microsomes has been examined by measuring three enzyme activities: NADH-cytochrome P-450 reductase, NADH-peroxidase, and NADH-cytochrome c reductase. The first two reactions are known to involve the participation of an NADH-specific reductase and cytochrome P-450 whereas the third requires the reductase and cytochrome b5. Antibody prepared against NADH-cytochrome b5 reductase markedly inhibited the NADH-peroxidase and NADH-cytochrome c reductase activities suggesting the involvement of this NADH-specific reductase in these reactions. Liver microsomes prepared from phenobarbital-pretreated rats were digested with subtilisin to remove cytochrome b5 and the submicrosomal particles were collected by centrifugation. The specific content of cytochrome b5 in the digested particles was about 5% of that originally present in liver microsomes and all three enzyme activities showed similar decreases whereas NADH-ferricyanide reductase activity (an activity associated with the flavoenzyme NADH-cytochrome b5 reductase) remained virtually unchanged. Binding of an excess of detergent-purified cytochrome b5 to the submicrosomal particles at 37 °C for 20 min followed by centrifugation and enzymic measurements revealed a striking increase in the three enzyme activities. Further evidence for cytochrome b5 involvement in the NADH-peroxidase reaction was the marked inhibition by antibody prepared against the hemoprotein. These results suggest that in microsomal NADH-supported cytochrome P-450-dependent electron transport reactions, cytochrome b5 functions as an intermediate electron carrier between NADH-cytochrome b5 reductase and cytochrome P-450.  相似文献   

16.
In order to define the site of bioactivation of CCl4, CHCl3 and CBrCl3 in the NADPH cytochrome c reductase-cytochrome P-450 coupled systems of liver microsomes, the 14C-labeled hepatotoxins were incubated invitro with isolated rat liver microsomes and a NADPH-generating system. The covalent binding of radiolabel to microsomal protein was used as a measure of the conversion of the hepatotoxins to reactive intermediates. Omission of NADPH, incubation under CO:O2 (8:2) and addition of a cytochrome c reductase specific antisera mardedly reduced the covalent binding of all three compounds. When cytochrome P-450 was reduced to less than 25% of normal by pretreatment of rats with allylisopropylacetamide (AIA), but cytochrome c reductase activity was unchanged, the covalent binding of CCl4, CHCl3, and CBrCl3 was decreased by 63, 83, 70%, respectively. Incubation under an atmosphere of N2 enhanced the binding of CCl4, inhibited the binding of CHCl3 and did not influence the binding of CBrCl3. It is concluded that cytochrome P-450 is the site of bioactivation of these three compounds rather than NADPH cytochrome c reductase and that CCl4 bioactivation proceeds by cytochrome P-450 dependent reductive pathways, while CHCl3 activation proceeds by cytochrome P-450 dependent oxidative pathways.  相似文献   

17.
Hydroxylation of aniline, catalyzed by rabbit liver microsomal cytochromes P-450 in reconstituted systems, was inhibited by catalase, superoxide dismutase, catechol, mannitol, hydroquinone, dimethylsulfoxide and benzoate, whereas the cytochrome P-450-catalyzed O-demethylation of paranitroanisole, measured under the same conditions, was unaffected by these agents. A similar inhibition profile of the hydroxylation reaction was observed in reconstituted systems where cytochrome P-450 had been replaced by hemoglobin. The results indicate that aniline hydroxylation is mediated by hydroxyl radicals generated in an iron-catalyzed Haber-Weiss reaction between O2? and H2O2 and may explain some of the special properties of this reaction previously described.  相似文献   

18.
Cytochrome P-450 was purified to a content of over 17 nmoles per mg of protein from liver microsomes of phenobarbital-treated rabbits by fractionation with polyethylene glycol 6000, DEAE-cellulose column chromatography, and hydroxylapatite column chromatography in the presence of Renex 690, a nonionic detergent. The purified preparation exhibited a single polypeptide band (molecular weight, 49,000 daltons) when submitted to SDS-polyacrylamide gel electrophoresis. Cytochromes P-420 and b5 and NADPH-cytochrome c reductase were absent. The reconstituted system containing purified cytochrome P-450, reductase, and phosphatidylcholine catalyzed the hydroxylation of benzphetamine, cyclohexane, aniline, and laurate.  相似文献   

19.
Stopped flow spectrophotometry has shown the occurrence of two distinct spectral intermediates in the reaction of oxygen with the reduced form of highly purified cytochrome P-450 from liver microsomes. As indicated by difference spectra, Complex I (with maxima at 430 and 450 nm) is rapidly formed and then decays to form Complex II (with a broad maximum at 440 nm), which resembles the intermediate seen in steady state experiments. In the reaction sequence, P-450LMredO2Complex I→Complex II→P-450LMox the last step is rate-limiting. The rate of that step is inadequate to account for the known turnover number of the enzyme in benzphetamine hydroxylation unless NADPH-cytochrome P-450 reductase or cytochrome b5 is added. The latter protein does not appear to function as an electron carrier in this process.  相似文献   

20.
Highly purified divalent and monovalent antibodies against cytochrome b5, anti-b5 immunoglobulin G (IG) and anti-b5 Fab', were used in elucidating the role of this cytochrome in the drug-oxidizing enzyme system of mouse liver microsomes. Anti-b5 IG strongly inhibited not only NADH-supported but also NADPH-supported oxidation of 7-ethoxycoumarin and benzo(a)pyrene, but had no inhibitory action on the oxidation of aniline. Anti-b5 Fab' also inhibited NADH-supported and NADPH-supported benzo(a)pyrene hydroxylation. These observations indicate an essential role of cytochrome b5 in the transfer of electrons not only from NADH but also from NADPH to cytochrome P-450 in the microsomal oxidation of some drugs, but not of aniline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号