首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A comprehensive SNP-based genetic analysis of inbred mouse strains   总被引:3,自引:1,他引:2  
Dense genetic maps of mammalian genomes facilitate a variety of biological studies including the mapping of polygenic traits, positional cloning of monogenic traits, mapping of quantitative or qualitative trait loci, marker association, allelic imbalance, speed congenic construction, and evolutionary or phylogenetic comparison. In particular, single nucleotide polymorphisms (SNPs) have proved useful because of their abundance and compatibility with multiple high-throughput technology platforms. SNP genotyping is especially suited for the genetic analysis of model organisms such as the mouse because biallelic markers remain fully informative when used to characterize crosses between inbred strains. Here we report the mapping and genotyping of 673 SNPs (including 519 novel SNPs) in 55 of the most commonly used mouse strains. These data have allowed us to construct a phylogenetic tree that correlates and expands known genealogical relationships and clarifies the origin of strains previously having an uncertain ancestry. All 55 inbred strains are distinguishable genetically using this SNP panel. Our data reveal an uneven SNP distribution consistent with a mosaic pattern of inheritance and provide some insight into the changing dynamics of the physical architecture of the genome. Furthermore, these data represent a valuable resource for the selection of markers and the design of experiments that require the genetic distinction of any pair of mouse inbred strains such as the generation of congenic mice, positional cloning, and the mapping of quantitative or qualitative trait loci.The content of this publication does not necessarily reflect the view or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.  相似文献   

2.
Systemic Lupus Erythematosus (SLE) is an autoimmune disease with a very varied spectrum of clinical manifestations that could be partly determined by genetic factors. We aimed to determine the relationship between prevalence of 11 clinical features and age of disease onset with European population genetic substructure. Data from 1413 patients of European ancestry recruited in nine countries was tested for association with genotypes of top ancestry informative markers. This analysis was done with logistic regression between phenotypes and genotypes or principal components extracted from them. We used a genetic additive model and adjusted for gender and disease duration. Three clinical features showed association with ancestry informative markers: autoantibody production defined as immunologic disorder (P = 6.8×10−4), oral ulcers (P = 6.9×10−4) and photosensitivity (P = 0.002). Immunologic disorder was associated with genotypes more common in Southern European ancestries, whereas the opposite trend was observed for photosensitivity. Oral ulcers were specifically more common in patients of Spanish and Portuguese self-reported ancestry. These results should be taken into account in future research and suggest new hypotheses and possible underlying mechanisms to be investigated. A first hypothesis linking photosensitivity with variation in skin pigmentation is suggested.  相似文献   

3.
Estimates of genetic diversity in major geographic regions are frequently made by pooling all individuals into regional aggregates. This method can potentially bias results if there are differences in population substructure within regions, since increased variation among local populations could inflate regional diversity. A preferred method of estimating regional diversity is to compute the mean diversity within local populations. Both methods are applied to a global sample of craniometric data consisting of 57 measurements taken on 1734 crania from 18 local populations in six geographic regions: sub-Saharan Africa, Europe, East Asia, Australasia, Polynesia, and the Americas. Each region is represented by three local populations. Both methods for estimating regional diversity show sub-Saharan Africa to have the highest levels of phenotypic variation, consistent with many genetic studies. Polynesia and the Americas both show high levels of regional diversity when regional aggregates are used, but the lowest mean local population diversity. Regional estimates of F(ST) made using quantitative genetic methods show that both Polynesia and the Americas also have the highest levels of differentiation among local populations, which inflates regional diversity. Regional differences in F(ST) are directly related to the geographic dispersion of samples within each region; higher F(ST) values occur when the local populations are geographically dispersed. These results show that geographic sampling can affect results, and suggest caution in making inferences regarding regional diversity when population substructure is ignored.  相似文献   

4.
We used the Roche-454 platform to sequence from normalized cDNA libraries from each of two inbred lines of onion (OH1 and 5225). From approximately 1.6 million reads from each inbred, 27,065 and 33,254 cDNA contigs were assembled from OH1 and 5225, respectively. In total, 3,364 well supported single nucleotide polymorphisms (SNPs) on 1,716 cDNA contigs were identified between these two inbreds. One SNP on each of 1,256 contigs was randomly selected for genotyping. OH1 and 5225 were crossed and 182 gynogenic haploids extracted from hybrid plants were used for SNP mapping. A total of 597 SNPs segregated in the OH1 × 5225 haploid family and a genetic map of ten linkage groups (LOD ≥8) was constructed. Three hundred and thirty-nine of the newly identified SNPs were also mapped using a previously developed segregating family from BYG15-23 × AC43, and 223 common SNPs were used to join the two maps. Because these new SNPs are in expressed regions of the genome and commonly occur among onion germplasms, they will be useful for genetic mapping, gene tagging, marker-aided selection, quality control of seed lots, and fingerprinting of cultivars.  相似文献   

5.
Bracken [ Pteridium aquilinum (L.) Kuhn] is a cosmopolitan species and is a noxious weed in many areas. Because of its abundance, particularly in Britain, bracken affords an ideal system for investigating various aspects of population genetics and evolution. High mobility of dispersal units (spores) suggests that rates of gene flow among distant populations should be high. Gene flow is a major evolutionary force that influences the genetic structure of populations. To examine the effects of gene flow on population heterogeneity and population substructuring in bracken, starch gel electrophoresis of enzymes was used to provide the necessary genetic database. Allele frequency data at 21 loci were obtained for seven British populations, one Majorcan and one from the eastern United States. A model was employed to estimate the amount of gene flow ( Nm ) at several levels. Gene flow among British populations was extremely high ( Nm = 36.51), one of the highest estimates reported for plants. Among eight European populations gene flow was lower (but still considered high) at Nm = 2.47. Trans-Atlantic gene flow was low ( Nm = 0.0926).
F -statistics were used to assess population heterogeneity and substructuring. The data indicate that, compared with other species, there is very little genetic differentiation among British populations of bracken. Indeed, it appears that the whole island is behaving as a single randommating population. This result is consistent with high levels of gene flow. Only one population (on the Isle of Arran) showed statistically significant genetic substructuring. Habitat heterogeneity on the island and age structure are hypothesized as possible causes of this result.
The data reported here support previous studies demonstrating that bracken is genetically polymorphic and is an outcrossing species.  相似文献   

6.
We propose a novel latent-class approach to detect and account for population stratification in a case-control study of association between a candidate gene and a disease. In our approach, population substructure is detected and accounted for using data on additional loci that are in linkage equilibrium within subpopulations but have alleles that vary in frequency between subpopulations. We have tested our approach using simulated data based on allele frequencies in 12 short tandem repeat (STR) loci in four populations in Argentina.  相似文献   

7.

Background

Although Daphnia is increasingly recognized as a model for ecological genomics and biomedical research, there is, as of yet, no high-resolution genetic map for the genus. Such a map would provide an important tool for mapping phenotypes and assembling the genome. Here we estimate the genome size of Daphnia magna and describe the construction of an SNP array based linkage map. We then test the suitability of the map for life history and behavioural trait mapping. The two parent genotypes used to produce the map derived from D. magna populations with and without fish predation, respectively and are therefore expected to show divergent behaviour and life-histories.

Results

Using flow cytometry we estimated the genome size of D. magna to be about 238 mb. We developed an SNP array tailored to type SNPs in a D. magna F2 panel and used it to construct a D. magna linkage map, which included 1,324 informative markers. The map produced ten linkage groups ranging from 108.9 to 203.6 cM, with an average distance between markers of 1.13 cM and a total map length of 1,483.6 cM (Kosambi corrected). The physical length per cM is estimated to be 160 kb. Mapping infertility genes, life history traits and behavioural traits on this map revealed several significant QTL peaks and showed a complex pattern of underlying genetics, with different traits showing strongly different genetic architectures.

Conclusions

The new linkage map of D. magna constructed here allowed us to characterize genetic differences among parent genotypes from populations with ecological differences. The QTL effect plots are partially consistent with our expectation of local adaptation under contrasting predation regimes. Furthermore, the new genetic map will be an important tool for the Daphnia research community and will contribute to the physical map of the D. magna genome project and the further mapping of phenotypic traits. The clones used to produce the linkage map are maintained in a stock collection and can be used for mapping QTLs of traits that show variance among the F2 clones.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1033) contains supplementary material, which is available to authorized users.  相似文献   

8.
Uncovering population structure is important for properly conducting association studies and for examining the demographic history of a population. Here, we examined the Japanese population substructure using data from the Japan Multi-Institutional Collaborative Cohort (J-MICC), which covers all but the northern region of Japan. Using 222 autosomal loci from 4502 subjects, we investigated population substructure by estimating F(ST) among populations, testing population differentiation, and performing principal component analysis (PCA) and correspondence analysis (CA). All analyses revealed a low but significant differentiation between the Amami Islanders and the mainland Japanese population. Furthermore, we examined the genetic differentiation between the mainland population, Amami Islanders and Okinawa Islanders using six loci included in both the Pan-Asian SNP (PASNP) consortium data and the J-MICC data. This analysis revealed that the Amami and Okinawa Islanders were differentiated from the mainland population. In conclusion, we revealed a low but significant level of genetic differentiation between the mainland population and populations in or to the south of the Amami Islands, although genetic variation between both populations might be clinal. Therefore, the possibility of population stratification must be considered when enrolling the islander population of this area, such as in the J-MICC study.  相似文献   

9.
Cranial cruciate ligament rupture (CCLR) is one of the leading causes of pelvic limb lameness in dogs. About 6% of Labrador Retrievers suffer from this orthopedic problem. The aim of this study was to determine the heritability of CCLR in this breed using SNP array genotyping data. DNA samples were collected from CCLR-affected dogs (n = 190) and unaffected dogs over the age of 8 years (n = 143). All 333 dogs were genotyped directly or imputed up to approximately 710k SNPs on the Affymetrix Axiom CanineHD SNP array. Heritability of CCLR was calculated using multiple methodologies, including linear mixed models, Bayesian models and a model that incorporates LD. The covariates of sex and sterilization status were added to each analysis to assess their impact. Across the algorithms of these models, heritability ranged from 0.550 to 0.886, depending on covariate inclusion. The relatively high heritability for this disease indicates that a substantial genetic component contributes to CCLR in the Labrador Retriever.  相似文献   

10.
Dragonflies reside in both aquatic and terrestrial environments, depending on their life stage, necessitating the conservation of drastically different habitats; however, little is understood about how nymph and adult dragonflies function as metapopulations within connected habitat. We used genetic techniques to examine nymphs and adults within a single metapopulation both spatially and temporally to better understand metapopulation structure and the processes that might influence said structure. We sampled 97 nymphs and 149 adult Sympetrum obtrusum from eight locations, four aquatic, and four terrestrial, at the Pierce Cedar Creek Institute in Southwest Michigan over two summers. We performed AFLP genetic analysis and used the Bayesian analysis program STRUCTURE to detect genetic clusters from sampled individuals. STRUCTURE detected k = u4 populations, in which nymphs and adults from the same locations collected in different years did not necessarily fall into the same clusters. We also evaluated grouping using the statistical clustering analyses NMDS and MRPP. The results of these confirmed findings from STRUCTURE and emphasized differences between adults collected in 2012 and all other generations. These results suggest that both dispersal and a temporal cycle of emergence of nymphs from unique clusters every other year could be influential in structuring dragonfly populations, although our methods were not able to fully distinguish the influences of either force. This study provides a better understanding of local dragonfly metapopulation structure and provides a starting point for future studies to investigate the spatial and temporal mechanisms controlling metapopulation structure. The results of the study should prove informative for managers working to preserve genetic diversity in connected dragonfly metapopulations, especially in the face of increasing anthropogenic landscape changes.  相似文献   

11.
The Yellowstone National Park bison herd is 1 of only 2 populations known to have continually persisted on their current landscape since pre-Columbian times. Over the last century, the census size of this herd has fluctuated from around 100 individuals to over 3000 animals. Previous studies involving radiotelemetry, tooth wear, and parturition timing provide evidence of at least 2 distinct groups of bison within Yellowstone National Park. To better understand the biology of Yellowstone bison, we investigated the potential for limited gene flow across this population using multilocus Bayesian clustering analysis. Two genetically distinct and clearly defined subpopulations were identified based on both genotypic diversity and allelic distributions. Genetic cluster assignments were highly correlated with sampling locations for a subgroup of live capture individuals. Furthermore, a comparison of the cluster assignments to the 2 principle winter cull sites revealed critical differences in migration patterns across years. The 2 Yellowstone subpopulations display levels of differentiation that are only slightly less than that between populations which have been geographically and reproductively isolated for over 40 years. The identification of cryptic population subdivision and genetic differentiation of this magnitude highlights the importance of this biological phenomenon in the management of wildlife species.  相似文献   

12.
The population of Costa Rica (CR) represents an admixture of major continental populations. An investigation of the CR population structure would provide an important foundation for mapping genetic variants underlying common diseases and traits. We conducted an analysis of 1,301 women from the Guanacaste region of CR using 27,904 single nucleotide polymorphisms (SNPs) genotyped on a custom Illumina InfiniumII iSelect chip. The program STRUCTURE was used to compare the CR Guanacaste sample with four continental reference samples, including HapMap Europeans (CEU), East Asians (JPT+CHB), West African Yoruba (YRI), as well as Native Americans (NA) from the Illumina iControl database. Our results show that the CR Guanacaste sample comprises a three-way admixture estimated to be 43% European, 38% Native American and 15% West African. An estimated 4% residual Asian ancestry may be within the error range. Results from principal components analysis reveal a correlation between genetic and geographic distance. The magnitude of linkage disequilibrium (LD) measured by the number of tagging SNPs required to cover the same region in the genome in the CR Guanacaste sample appeared to be weaker than that observed in CEU, JPT+CHB and NA reference samples but stronger than that of the HapMap YRI sample. Based on the clustering pattern observed in both STRUCTURE and principal components analysis, two subpopulations were identified that differ by approximately 20% in LD block size averaged over all LD blocks identified by Haploview. We also show in a simulated association study conducted within the two subpopulations, that the failure to account for population stratification (PS) could lead to a noticeable inflation in the false positive rate. However, we further demonstrate that existing PS adjustment approaches can reduce the inflation to an acceptable level for gene discovery.  相似文献   

13.
14.
Adequate knowledge regarding hereditary diseases and genetics, as well as personal attitudes toward gene tests, are major determinants of optimal utilization of genetic testing. In the present study, we aimed to explore the general attitudes toward genetic testing in a sample representative of the German general population (n = 2,076) and to compare the attitudes of persons at risk for hereditary non-polyposis colorectal cancer/familial adenomatous polyposis (HNPCC/FAP) (n = 36) who had attended a university genetic counseling service, with a matched general population sample. We administered a subset of a questionnaire previously used in a Finnish study (Jallinoja et al., 1998). The 12 statements pertain to approval, disapproval, and concern for genetic testing. Overall, the results reveal high approval of genetic testing in the German population and in at-risk persons. In accordance with other studies, we find that the attitudes of individuals for whom hereditary disease is a salient issue of personal relevance and the attitudes of the general public are very similar. Only a few significant differences between these two samples emerged, indicating that at-risk persons hold a more favourable view of the testing. One intriguing finding was the high rate of "don't know" responses, especially in the general population sample. Compared to results from Finland, approval of genetic testing is lower in the German population, and endorsement of "don't knows" is remarkably higher. We argue for increased attention to the issue of attitude change after genetic counseling and for the need of comparative cross-cultural research on attitudes toward gene technology.  相似文献   

15.

Background  

Recently we have witnessed a surge of interest in using genome-wide association studies (GWAS) to discover the genetic basis of complex diseases. Many genetic variations, mostly in the form of single nucleotide polymorphisms (SNPs), have been identified in a wide spectrum of diseases, including diabetes, cancer, and psychiatric diseases. A common theme arising from these studies is that the genetic variations discovered by GWAS can only explain a small fraction of the genetic risks associated with the complex diseases. New strategies and statistical approaches are needed to address this lack of explanation. One such approach is the pathway analysis, which considers the genetic variations underlying a biological pathway, rather than separately as in the traditional GWAS studies. A critical challenge in the pathway analysis is how to combine evidences of association over multiple SNPs within a gene and multiple genes within a pathway. Most current methods choose the most significant SNP from each gene as a representative, ignoring the joint action of multiple SNPs within a gene. This approach leads to preferential identification of genes with a greater number of SNPs.  相似文献   

16.
Little is known about the population biology of midget faded rattlesnakes, a sensitive subspecies of the Western Rattlesnake, despite conservation efforts to protect them. We conducted a molecular genetic study of midget faded rattlesnakes in southwestern Wyoming to investigate population genetic structure in this area, particularly with reference to Flaming Gorge Reservoir and its associated human activities, and to document levels of genetic diversity. We genotyped 229 snakes from 11 sampling sites using 9 microsatellite loci. We found significant levels of genetic structure among sites that were better explained by geographic region and isolation by distance than by position relative to waterways. Sites on either side of the reservoir at its widest point were not significantly different. Six of the sites showed signatures of a population bottleneck using an alpha value of 0.05. Three of these bottlenecked sites (the three most northern) were the most genetically distinct and occur in areas of greatest impact from human activity.  相似文献   

17.
18.
Little is known with respect to bacterial population structures in freshwater environments. Using complementary culture-based, cloning, and high-throughput Illumina sequencing approaches, we investigated microdiverse clusters of bacteria that comprise members with identical or very similar 16S rRNA gene sequences. Two 16S rRNA phylotypes could be recovered by cultivation in low-nutrient-strength liquid media from two lakes of different trophic status. Both phylotypes were found to be physiologically active in situ throughout most of the year, as indicated by the presence of their rRNA sequences in the samples. Analyses of internal transcribed spacer (ITS1) sequences revealed the presence of seven different sequence types among cultured representatives and the cloned rrn fragments. Illumina sequencing yielded 8,576 ITS1 sequences that encompassed 15 major and numerous rare sequence types. The major ITS1 types exhibited distinct temporal patterns, suggesting that the corresponding Sphingomonadaceae lineages occupy different ecological niches. However, since strains of the same ITS1 type showed highly variable substrate utilization patterns, the potential mechanism of niche separation in Sphingomonadaceae cannot be explained by substrate utilization alone and may be related to other traits.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号