首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level.  相似文献   

2.
Malaria parasites are a major cause of human mortality in tropical countries and a potential threat for wildlife, as witnessed by the malaria-induced extinction of naive Hawaiian avifauna. Identifying resistance mechanisms is therefore crucial both for human health and wildlife conservation. Patterns of malaria resistance are known to be highly polygenic in both humans and mice, with marked contributions attributed to major histocompatibility (Mhc) genes. Here we show that specific Mhc variants are linked to both increased resistance and susceptibility to malaria infection in a wild passerine species, the house sparrow (Passer domesticus). In addition, links between host immunogenetics and resistance to malaria involved population-specific alleles, suggesting local adaptation in this host-parasite interaction. This is the first evidence for a population-specific genetic control of resistance to malaria in a wild species.  相似文献   

3.
Associations between malaria and MHC genes in a migratory songbird   总被引:8,自引:0,他引:8  
Malaria parasites are a widespread and species-rich group infecting many wild populations of mammals, birds and reptiles. Studies on humans have demonstrated that genetic factors play a key role in the susceptibility and outcome of malaria infections. Until the present study, it has not been examined whether genetic variation in hosts is important for the outcome of malaria infections in natural avian populations. We investigated associations between major histocompatibility complex (MHC) genes and prevalence of three different avian malaria parasites (Haemoproteus payevskyi (GRW1), Plasmodium sp. (GRW2) and Plasmodium sp. (GRW4)) in a long-term study of great reed warblers Acrocephalus arundinaceus. We hypothesized that the MHC genes could either give full protection against a malaria infection, or confer protection against lethal malaria and direct the infection towards being milder. We found a positive association between numbers of MHC class I alleles (a measure of level of heterozygosity) and prevalence of the GRW2 parasite, suggesting the latter scenario. There was also a positive association between a specific MHC allele (B4b), previously shown to be under frequency-dependent selection in the study population, and prevalence of GRW2. These associations suggest that individuals carrying either a large number of MHC alleles or a specific MHC allele are protected against lethal malaria infections.  相似文献   

4.
Avian malaria parasites are supposed to exert negative effects on host fitness because these intracellular parasites affect host metabolism. Recent advances in molecular genotyping and microscopy have revealed that coinfections with multiple parasites are frequent in bird-malaria parasite systems. However, studies of the fitness consequences of such double infections are scarce and inconclusive. We tested if the infection with two malaria parasite lineages has more negative effects than single infection using 6 years of data from a natural population of house martins. Survival was negatively affected by both types of infections. We found an additive cost from single to double infection in body condition, but not in reproductive parameters (double-infected had higher reproductive success). These results demonstrate that malaria infections decrease survival, but also have different consequences on the breeding performance of single- and double-infected wild birds.  相似文献   

5.
A cDNA library screening using the conserved exon 4 of Atlantic salmon Mhc class I as probe provided the basis for a study on Mhc class I polymorphism in a breeding population. Twelve different alleles were identified in the 82 dams and sires studied. No individual expressed more than two alleles, which corresponded to the diploid segregation patterns of the polymorphic marker residing within the 3'-untranslated tail. Close linkage between the Sasa-UBA and Sasa-TAP2B loci strengthens the claim that Sasa-UBA is the major Mhc class I locus in Atlantic salmon. We found no evidence for a second expressed classical or non-classical Mhc class I locus in Atlantic salmon. A phylogenetic analysis of salmonid Mhc class I sequences showed domains conserved between rainbow trout, brown trout and Atlantic salmon. Evidence for shuffling of the alpha(1) domain was identified and lineages of the remaining alpha(2) through the cytoplasmic tail gene segment can be defined. The coding sequence of one allele was found associated with two different markers, suggesting recombination within the 3'-tail dinucleotide repeat itself. Protein modelling of several Sasa-UBA alleles shows distinct differences in their peptide binding domains and enables a further understanding of the functionality of the high polymorphism.  相似文献   

6.
Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks.  相似文献   

7.
In vertebrate hosts, malaria parasites face a tradeoff between replicating and the production of transmission stages that can be passed onto mosquitoes. This tradeoff is analogous to growth‐reproduction tradeoffs in multicellular organisms. We use a mathematical model tailored to the life cycle and dynamics of malaria parasites to identify allocation strategies that maximize cumulative transmission potential to mosquitoes. We show that plastic strategies can substantially outperform fixed allocation because parasites can achieve greater fitness by investing in proliferation early and delaying the production of transmission stages. Parasites should further benefit from restraining transmission investment later in infection, because such a strategy can help maintain parasite numbers in the face of resource depletion. Early allocation decisions are predicted to have the greatest impact on parasite fitness. If the immune response saturates as parasite numbers increase, parasites should benefit from even longer delays prior to transmission investment. The presence of a competing strain selects for consistently lower levels of transmission investment and dramatically increased exploitation of the red blood cell resource. While we provide a detailed analysis of tradeoffs pertaining to malaria life history, our approach for identifying optimal plastic allocation strategies may be broadly applicable.  相似文献   

8.
SUMMARY Malaria parasites often manage to maintain an infection for several months or years in their vertebrate hosts. In humans, rodents and birds, most of the fitness costs associated with malaria infections are in the short initial primary (high parasitaemia) phase of the infection, whereas the chronic phase (low parasitaemia) is more benign to the host. In wild birds, malaria parasites have mainly been studied during the chronic phase of the infection. This is because the initial primary phase of infection is short in duration and infected birds with severe disease symptoms tend to hide in sheltered places and are thus rarely caught and sampled. We therefore wanted to investigate the relationship between the parasitaemia during the primary and chronic phases of the infection using an experimental infection approach. We found a significant positive correlation between parasitaemia in the primary peak and the subsequent chronic phase of infection when we experimentally infected great reed warblers (Acrocephalus arundinaceus) with Plasmodium ashfordi. The reason for this association remains to be understood, but might arise from individual variation in exoerythrocytic parasite reservoirs in hosts, parasite antigenic diversity and/or host genetics. Our results suggest that the chronic phase parasitaemia can be used to qualitatively infer the parasitaemia of the preceding and more severe primary phase, which is a very important finding for studies of avian malaria in wild populations.  相似文献   

9.
The mangrove killifish Rivulus marmoratus, a neotropical fish in the order Cyprinodontiformes, is the only known obligatorily selfing, synchronous hermaphroditic vertebrate. To shed light on its population structure and the origin of hermaphroditism, major histocompatibility complex (Mhc) class I genes of the killifish from seven different localities in Florida, Belize, and the Bahamas were cloned and sequenced. Thirteen loci and their alleles were identified and classified into eight groups. The loci apparently arose approximately 20 million years ago (MYA) by gene duplications from a single common progenitor in the ancestors of R. marmoratus and its closest relatives. Distinct loci were found to be restricted to different populations and different individuals in the same population. Up to 44% of the fish were heterozygotes at Mhc loci, as compared to near homozygosity at non-Mhc loci. Large genetic distances between some of the Mhc alleles revealed the presence of ancestral allelic lineages. Computer simulation designed to explain these findings indicated that selfing is incomplete in R. marmoratus populations, that Mhc allelic lineages must have diverged before the onset of selfing, and that the hermaphroditism arose in a population containing multiple ancestral Mhc lineages. A model is proposed in which hermaphroditism arose stage-wise by mutations, each of which spread through the entire population and was fixed independently in the emerging clones.  相似文献   

10.
Yan G  Severson DW 《Genetics》2003,164(2):511-519
Models on the evolution of resistance to parasitism generally assume fitness tradeoffs between the costs of being parasitized and the costs associated with resistance. This study tested this assumption using the yellow fever mosquito Aedes aegypti and malaria parasite Plasmodium gallinaceum system. Experimental mosquito populations were created by mixing susceptible and resistant strains in equal proportions, and then the dynamics of markers linked to loci for Plasmodium resistance and other unlinked neutral markers were determined over 12 generations. We found that when the mixed population was maintained under parasite-free conditions, the frequencies of alleles specific to the susceptible strain at markers closely linked to the loci for resistance (QTL markers) as well as other unlinked markers increased significantly in the first generation and then fluctuated around equilibrium frequencies for all six markers. However, when the mixed population was exposed to an infected blood meal every generation, allele frequencies at the QTL markers for resistance were not significantly changed. Small population size caused significant random fluctuations of allele frequencies at all marker loci. Consistent allele frequency changes in the QTL markers and other unlinked markers suggest that the reduced fitness in the resistant population has a genome-wide effect on the genetic makeup of the mixed population. Continuous exposure to parasites promoted the maintenance of alleles from the resistant Moyo-R strain in the mixed population. The results are discussed in relation to the proposed malaria control strategy through genetic disruption of vector competence.  相似文献   

11.
In Western Amazon areas with perennial malaria transmission, long term residents frequently develop partial immunity to malarial infection caused either by Plasmodium falciparum or P. vivax, resulting in a considerable number of non-symptomatically infected individuals. For yet unknown reasons, these individuals sporadically develop symptomatic malaria. In order to identify if determined parasite genotypes, defined by a combination of eleven microsatellite markers, were associated to different outcomes--symptomatic or asymptomatic malaria--we analyzed infecting P. falciparum parasites in a suburban riverine population. Despite of detecting a high degree of diversity in the analyzed samples, several microsatellite marker alleles appeared accumulated in parasites from non-symptomatic infections. This result may be interpreted that a number of microsatellites, which are not directly related to antigenic features, could be associated to the outcome of malarial infection. The result may also point to a low frequency of recombinatorial events which otherwise would dissociate genes under strong immune pressure from the relatively neutral microsatellite loci.  相似文献   

12.
Hamilton and Zuk proposed that females choose mates based on ornaments whose expression is dependent on their genetically based resistance to parasites. The major histocompatibility complex (MHC) plays an important role in pathogen recognition and is a good candidate for testing the relationships between immune genes and both ornament expression and parasite resistance. We tested the hypothesis that female common yellowthroats prefer to mate with more ornamented males, because it is a signal of their MHC‐based resistance to parasites and likelihood of survival. In this species, females prefer males that have larger black facial masks as extrapair mates. Using pyrosequencing, we found that mask size was positively related to the number of different MHC class II alleles, as predicted if greater variation at the MHC allows for the recognition of a greater variety of pathogens. Furthermore, males with more MHC class II alleles had greater apparent survival, and resistance to malaria infection was associated with the presence of a particular MHC class II allele. Thus, extrapair mating may provide female warblers with immunity genes that are related to parasite resistance, survival, and the expression of a male ornament, consistent with good genes models of sexual selection.  相似文献   

13.
Major histocompatibility complex (MHC) genes are central for the adaptive immune response against parasites. Here, we investigated potential associations among MHC‐I alleles and blood parasite infections in a natural breeding population of a passerine bird, the blue tit Cyanistes caeruleus, in central Spain. We screened both infection status (presence/absence of infection) and infection intensity to the pathogenic blood parasites Haemoproteus and Leucocytozoon. Three MHC‐I alleles (UA104, UA108 and UA117) were associated with higher or lower infection intensities by Leucocytozoon. Interestingly, these associations were dependent on age and were found both among young and adult birds. No MHC alleles were associated with infection intensity by Haemoproteus parasites. In addition, no significant relationships were detected between infection status by Haemoproteus and Leucocytozoon infections and MHC alleles. The very high prevalence of these two parasites in our study population (79–100%) poses challenges to identify associations with infection status and also suggests that clearance of infections may be rare. In conclusion, associations between specific MHC‐I alleles and Leucocytozoon parasites were related to either high or low infection intensities, and hence increased susceptibility or resistance to infection.  相似文献   

14.
Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite ‘susceptibility alleles’ were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation.  相似文献   

15.
An immune response against malaria has to be tightly controlled. The production of pro-inflammatory cytokines is required to control parasites but the same cytokines are also involved in severe malaria. We have shown that CTLA-4 expression during Plasmodium berghei malaria dampens the immune response. This strain provokes a pro-inflammatory immune response that is associated with the pathology of cerebral malaria. Accordingly a blockade of CTLA-4 during the blood-stage of P. berghei malaria leads to an exacerbation of disease. To analyze the effects of a CTLA-4 blockade in a malaria model which is not prone to immune pathology we employed P. yoelii infection. Blood-stage infection led to a rapid induction of CTLA-4 on T cells. Using the non-lethal P. yoelii strain Py17NL we found that a blockade of CTLA-4 resulted in an increased T cell activation and IFN-gamma production, which was accompanied by a lower peak parasitemia and earlier parasite clearance. In contrast, blockade of CTLA-4 during infection with a P. yoelii strain exhibiting a higher parasitemia induced markedly increased serum-levels of TNF-alpha, which was associated with severe inflammation and reduced survival.  相似文献   

16.
Allelic genealogy and human evolution   总被引:25,自引:7,他引:18  
Genetic variation at most loci examined in human populations indicates that the (effective) population size has been approximately 10(4) for the past 1 Myr and that individuals have been genetically united rather tightly. Also suggested is that the population size has never dropped to a few individuals, even in a single generation. These impose important requirements for the hypotheses for the origin of modern humans: a relatively large population size and frequent migration if populations were geographically subdivided. Any hypothesis that assumes a small number of founding individuals throughout the late Pleistocene can be rejected. Extraordinary polymorphism at some loci of the major histocompatibility complex (Mhc) rules out the past action of severe bottlenecks, or the so-called founder principle, which invokes only a small number of founding individuals when a new species emerges. This conclusion may be extended to the 35-Myr-old history of the human lineage, because some polymorphism at Mhc loci seems to have lasted that long. Furthermore, although the population structure prior to the late Pleistocene is less clear, owing to the insensitivity of Mhc alleles, even to low levels of migration, the nature of Mhc polymorphism suggests that the effective size of populations leading to humans was as large as 10(5). Hence, the effective population size of humans might have become somewhat smaller in most of the late Pleistocene. The reduction could be due either to the then adverse environment in the Old World and/or to the increased migration rate. It is also argued that population explosion fostered by the agriculture revolution has had significant effects on incorporating new alleles into human populations.   相似文献   

17.
The development of molecular genetic screening techniques for avian blood parasites has revealed many novel aspects of their ecology, including greatly elevated diversity and complex host-parasite relationships. Many previous studies of malaria in birds have treated single study populations as spatially homogeneous with respect to the likelihood of transmission of malaria to hosts, and we have very little idea whether any spatial heterogeneity influences different malaria lineages similarly. Here, we report an analysis of variation in the prevalence and cytochrome b lineage distribution of avian malaria infection with respect to environmental and host factors, and their interactions, in a single blue tit (Cyanistes caeruleus) population. Of 11 Plasmodium and Haemoproteus cytochrome b lineages found in 997 breeding individuals, the three most numerous (pSGS1, pTURDUS1 and pBT7) were considered separately, in addition to analyses of all avian malaria lineages pooled. Our analyses revealed marked spatial differences in the prevalence and distribution of these lineages, with local prevalence of malaria within the population ranging from over 60% to less than 10%. In addition, we found several more complex patterns of prevalence with respect to local landscape features, host state, parasite genotype, and their interactions. We discuss the implications of such heterogeneity in parasite infection at a local scale for the study of the ecology and evolution of infectious diseases in natural populations. The increased resolution afforded by the combination of molecular genetic and geographical information systems (GIS) tools has the potential to provide many insights into the epidemiology, evolution and ecology of these parasites in the future.  相似文献   

18.
Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.  相似文献   

19.
Like many parasites, avian haematozoa are often found at lower infection intensities in older birds than young birds. One explanation, known as the “selection” hypothesis, is that infected young birds die before reaching adulthood, thus removing the highest infection intensities from the host population. We tested this hypothesis in the field by experimentally infecting nestling rock pigeons (Columba livia) with the malaria parasite Haemoproteus columbae. We compared the condition and fledging success of infected nestlings to that of uninfected controls. There was no significant difference in the body mass, fledging success, age at fledging, or post-fledging survival of experimental versus control birds. These results were unexpected, given that long-term studies of older pigeons have demonstrated chronic effects of H. columbae. We conclude that H. columbae has little impact on nestling pigeons, even when they are directly infected with the parasite. Our study provides no support for the selection hypothesis that older birds have lower parasite loads because parasites are removed from the population by infected nestlings dying. To our knowledge, this is the first study to test the impact of avian malaria using experimental inoculations under natural conditions.  相似文献   

20.
Plasmodium knowlesi, a malaria parasite originally thought to be restricted to macaques in Southeast Asia, has recently been recognized as a significant cause of human malaria. Unlike the benign and morphologically similar P. malariae, these parasites can lead to fatal infections. Malaria parasites, including P. knowlesi, have not yet been detected in macaques of the Kapit Division of Malaysian Borneo, where the majority of human knowlesi malaria cases have been reported. In order to extend our understanding of the epidemiology and evolutionary history of P. knowlesi, we examined 108 wild macaques for malaria parasites and sequenced the circumsporozoite protein (csp) gene and mitochondrial (mt) DNA of P. knowlesi isolates derived from macaques and humans. We detected five species of Plasmodium (P. knowlesi, P. inui, P. cynomolgi, P. fieldi and P. coatneyi) in the long-tailed and pig-tailed macaques, and an extremely high prevalence of P. inui and P. knowlesi. Macaques had a higher number of P. knowlesi genotypes per infection than humans, and some diverse alleles of the P. knowlesi csp gene and certain mtDNA haplotypes were shared between both hosts. Analyses of DNA sequence data indicate that there are no mtDNA lineages associated exclusively with either host. Furthermore, our analyses of the mtDNA data reveal that P. knowlesi is derived from an ancestral parasite population that existed prior to human settlement in Southeast Asia, and underwent significant population expansion approximately 30,000-40,000 years ago. Our results indicate that human infections with P. knowlesi are not newly emergent in Southeast Asia and that knowlesi malaria is primarily a zoonosis with wild macaques as the reservoir hosts. However, ongoing ecological changes resulting from deforestation, with an associated increase in the human population, could enable this pathogenic species of Plasmodium to switch to humans as the preferred host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号