首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Centrosomes provide docking sites for regulatory molecules involved in the control of the cell division cycle. The centrosomal matrix contains several proteins, which anchor kinases and phosphatases. The large A-Kinase Anchoring Protein AKAP450 is acting as a scaffolding protein for other components of the cell signaling machinery. We selectively perturbed the centrosome by modifying the cellular localization of AKAP450. We report that the expression in HeLa cells of the C terminus of AKAP450, which contains the centrosome-targeting domain of AKAP450 but not its coiled-coil domains or binding sites for signaling molecules, leads to the displacement of the endogenous centrosomal AKAP450 without removing centriolar or pericentrosomal components such as centrin, gamma-tubulin, or pericentrin. The centrosomal protein kinase A type II alpha was delocalized. We further show that this expression impairs cytokinesis and increases ploidy in HeLa cells, whereas it arrests diploid RPE1 fibroblasts in G1, thus further establishing a role of the centrosome in the regulation of the cell division cycle. Moreover, centriole duplication is interrupted. Our data show that the association between centrioles and the centrosomal matrix protein AKAP450 is critical for the integrity of the centrosome and for its reproduction.  相似文献   

2.
3.
T cell migration represents a complex highly coordinated process involving participation of surface receptor/ligand interactions, cytoskeletal rearrangements, and phosphorylation-dependent signaling cascades. Members of the A-kinase anchoring protein (AKAP) family of giant scaffolding proteins can assemble and compartmentalize multiple signaling and structural molecules thereby providing a platform for their targeted positioning and efficient interactions. We characterize here the expression, intracellular distribution, and functional role of the scaffolding protein CG-NAP (centrosome and Golgi localized protein kinase N-associated protein)/AKAP450 in the process of active T cell motility induced via LFA-1 integrins. This protein is predominantly localized at the centrosome and Golgi complex. T cell locomotion triggered by LFA-1 ligation induces redistribution of CG-NAP/AKAP450 along microtubules in trailing cell extensions. Using an original in situ immunoprecipitation approach, we show that CG-NAP/AKAP450 is physically associated with LFA-1 in the multimolecular signaling complex also including tubulin and the protein kinase C beta and delta isoenzymes. CG-NAP/AKAP450 recruitment to this complex was specific for the T cells migrating on LFA-1 ligands, but not on the beta(1) integrin ligand fibronectin. Using the GFP-tagged C-terminal CG-NAP/AKAP450 construct, we demonstrate that expression of the intact CG-NAP/AKAP450 and its recruitment to the LFA-1-associated multimolecular complex is critically important for polarization and migration of T cells induced by this integrin.  相似文献   

4.
AKAP350 is a multiply spliced type II protein kinase A-anchoring protein that localizes to the centrosomes in most cells and the Golgi apparatus in epithelial cells. Multiple studies suggest that AKAP350 is involved in microtubule nucleation at the centrosome. Our previous studies demonstrated that AKAP350 was necessary for the maintenance of Golgi apparatus integrity. These data suggested that AKAP350 might be necessary for normal cytoskeletal interactions with the Golgi. To examine the relationship of AKAP350 with the microtubule cytoskeleton, we analyzed the effect of the depletion of AKAP350 on microtubule regrowth after nocodazole treatment in HeLa cells. The decrease in AKAP350 expression with short interfering RNA induced a delay in microtubule elongation with no effect on microtubule aster formation. In contrast, overexpression of the centrosomal targeting domain of AKAP350 elicited alterations in aster formation, but did not affect microtubule elongation. RNA interference for AKAP350 also induced an increase in cdc42 activity during microtubule regrowth. Our data suggest that AKAP350 has a role in the remodeling of the microtubule cytoskeleton.  相似文献   

5.
We report that microtubule (MT) nucleation at the Golgi apparatus requires AKAP450, a centrosomal γ‐TuRC‐interacting protein that also forms a distinct network associated with the Golgi. Depletion of AKAP450 abolished MT nucleation at the Golgi, whereas depletion of the cis‐Golgi protein GM130 led to the disorganisation of AKAP450 network and impairment of MT nucleation. Brefeldin‐A treatment induced relocalisation of AKAP450 to ER exit sites and concomitant redistribution of MT nucleation capacity to the ER. AKAP450 specifically binds the cis‐side of the Golgi in an MT‐independent, GM130‐dependent manner. Short AKAP450‐dependent growing MTs are covered by CLASP2. Like for centrosome, dynein/dynactin complexes are necessary to anchor MTs growing from the Golgi. We further show that Golgi‐associated AKAP450 has a role in cell migration rather than in cell polarisation of the centrosome–Golgi apparatus. We propose that the recruitment of AKAP450 on the Golgi membranes through GM130 allows centrosome‐associated nucleating activity to extend to the Golgi, to control the assembly of subsets of MTs ensuring specific functions within the Golgi or for transporting specific cargos to the cell periphery.  相似文献   

6.
The protein kinase A-anchoring proteins (AKAPs) are defined by their ability to scaffold protein kinase A to specific subcellular compartments. Each of the AKAP family members utilizes unique targeting domains specific for a particular subcellular compartment. AKAP350 is a multiply spliced AKAP family member localized to the centrosome and the Golgi apparatus. Three splicing events in the carboxyl terminus of AKAP350 generate the AKAP350A, AKAP350B, and AKAP350C proteins. A monoclonal antibody recognizing all three splice variants as well as a polyclonal antibody specific for AKAP350A demonstrated both centrosomal and Golgi apparatus staining in paraformaldehyde-fixed HCA-7 cells. Golgi apparatus-associated AKAP350A staining was dispersed following brefeldin A treatment. Using GFP chimeric constructs of the carboxyl-terminal regions of AKAP350A, a Golgi apparatus targeting domain was identified between amino acids 3259 and 3307 of AKAP350A. This domain was functionally distinguishable from the recently described centrosomal targeting domain (PACT domain, amino acids 3308-3324) located adjacent to the Golgi targeting domain. These data definitively establish the specific association of AKAP350A with the Golgi apparatus in HCA-7 cells.  相似文献   

7.
Background information. The GA (Golgi apparatus) has an essential role in membrane trafficking, determining the assembly and delivery of UPs (uroplakins) to the APM (apical plasma membrane) of superficial UCs (uroepithelial cells) of urinary bladder. UPs are synchronously and uniformly delivered from the GA to the APM by DFVs (discoidal‐ or fusiform‐shaped vesicles); however, the mechanism of UP delivery is not known. We have used the culture model of UCs with the capacity to undergo terminal differentiation to study the process of uniform delivery of DFVs to the APM and to elucidate the mechanisms involved. Results. By three‐dimensional localization using confocal microscopy of immunofluorescence‐labelled GA‐related markers [GM130 (cis‐Golgi matrix protein of 130 kDa), GS15 (Golgi Snare 15 kDa), GS28 and giantin], uroepithelial differentiation‐related markers (UPs), MTs (microtubules; α‐tubulin) and intermediate filaments [CK7 (cytokeratin 7) and CK20], we found that in non‐differentiated, UP‐negative UCs the GA is mostly organized as a single ribbon‐like structure close to the nucleus, whereas in differentiated, UP‐positive UCs the GA is fragmented and spread almost through the entire cell. The FRAP (fluorescence recovery after photobleaching) experiments on the UCs transfected with GalT (trans‐Golgi/TGN enzyme β1,4‐galactosyltransferase) fused to fluorescent protein showed that Golgi‐resident enzyme cycles freely within ribbon‐like GA but not within fragmented GA. By CLEM (correlative light—electron microscopy), we examined the GA fragments in cells expressing UPs. We found that GA fragments are fully functional and similar to the GA fragments that are formed after nocodazole treatment. Furthermore, we demonstrated that the reorganization of GA into a fragmented form is associated with the impairment of the MT organization in the basal, central and subapical cytoplasm and the accumulation of intermediate filaments in the apical cytoplasm that could affect the kinetics of MT star leading to the peripheral fragmentation of the GA in the differentiated UCs. Conclusions. The fragmentation of the GA and the subsequent spreading of GA to the cell periphery represent one of the key events that promote the uniform delivery of UPs over the entire APM of differentiating UCs and thus are of major importance in the final proper formation and maintenance of the blood—urine barrier.  相似文献   

8.
AKAP350 is a multiply spliced family of 350-450-kDa protein kinase A-anchoring proteins localized to the centrosomes and the Golgi apparatus. Using AKAP350A as bait in a yeast two-hybrid screen of a rabbit parietal cell library, we have identified a novel AKAP350-interacting protein, transforming acidic coiled-coil-containing protein 4 (TACC4). Two-hybrid binary assays demonstrate interaction of both TACC3 and TACC4 with AKAP350A and AKAP350B. Antibodies raised to a TACC4-specific peptide sequence colocalize TACC4 with AKAP350 at the centrosome in interphase Jurkat cells. Mitotic cell staining reveals translocation of TACC4 from the centrosome to the spindle apparatus with the majority of TACC4 at the spindle poles. Truncated TACC4 proteins lacking the AKAP350 minimal binding domain found in the carboxyl coiled-coil region of TACC4 could no longer target to the centrosome. Amino-truncated TACC4 proteins could no longer target to the spindle apparatus. Further, overexpression of TACC4 fusion proteins that retained spindle localization in mitotic cells resulted in an increased proportion of cells present in prometaphase. We propose that AKAP350 is responsible for sequestration of TACC4 to the centrosome in interphase, whereas a separate TACC4 domain results in functional localization of TACC4 to the spindle apparatus in mitotic cells.  相似文献   

9.
GRASP55 and GRASP65 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, RNAi or gene knockout approaches to dissect their respective roles have often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115, and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, GRASP55 and/or GRASP65 is not required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking but are involved in maintaining the integrity of the Golgi ribbon together with GM130 and Golgin-45.  相似文献   

10.
A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis-face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells.  相似文献   

11.
Because the functional borders of the intermediate compartment (IC) are not well defined, the spatial map of the transport machineries operating between the endoplasmic reticulum (ER) and the Golgi apparatus remains incomplete. Our previous studies showed that the IC consists of interconnected vacuolar and tubular parts with specific roles in pre-Golgi trafficking. Here, using live cell imaging, we demonstrate that the tubules containing the GTPase Rab1A create a long-lived membrane compartment around the centrosome. Separation of this pericentrosomal domain of the IC from the Golgi ribbon, due to centrosome motility, revealed that it contains a distinct pool of COPI coats and acts as a temperature-sensitive way station in post-ER trafficking. However, unlike the Golgi, the pericentrosomal IC resists the disassembly of COPI coats by brefeldin A, maintaining its juxtaposition with the endocytic recycling compartment, and operation as the focal point of a dynamic tubular network that extends to the cell periphery. These results provide novel insight into the compartmental organization of the secretory pathway and Golgi biogenesis. Moreover, they reveal a direct functional connection between the IC and the endosomal system, which evidently contributes to unconventional transport of the cystic fibrosis transmembrane conductance regulator to the cell surface.  相似文献   

12.
Linstedt AD 《Cell》2004,118(3):271-272
Ríos et al. (2004) report in this issue that the Golgi protein GMAP-210 is sufficient to confer pericentrosomal positioning and recruits gamma-tubulin and associated microtubule-nucleating ring complex proteins to Golgi membranes. The results raise the possibility that short microtubules emanate from the Golgi to mediate its organization and positioning.  相似文献   

13.
Golgin-160, a ubiquitous protein in vertebrates, localizes to the cytoplasmic face of the Golgi complex. Golgin-160 has a large coiled-coil C-terminal domain and a non-coiled-coil N-terminal ("head") domain. The head domain contains important motifs, including a nuclear localization signal, a Golgi targeting domain, and three aspartates that are recognized by caspases during apoptosis. Some of the caspase cleavage products accumulate in the nucleus when overexpressed. Expression of a non-cleavable form of golgin-160 impairs apoptosis induced by some pro-apoptotic stimuli; thus cleavage of golgin-160 appears to play a role in apoptotic signaling. We used a yeast two-hybrid assay to screen for interactors of the golgin-160 head and identified GCP60 (Golgi complex-associated protein of 60 kDa). Further analysis demonstrated that GCP60 interacts preferentially with one of the golgin-160 caspase cleavage fragments (residues 140-311). This strong interaction prevented the golgin-160 fragment from accumulating in the nucleus when this fragment and GCP60 were overexpressed. In addition, cells overexpressing GCP60 were more sensitive to apoptosis induced by staurosporine, suggesting that nuclear-localized golgin-160-(140-311) might promote cell survival. Our results suggest a potential mechanism for regulating the nuclear translocation and potential functions of golgin-160 fragments.  相似文献   

14.
The mammalian Golgi ribbon disassembles during mitosis and reforms in both daughter cells after division. Mitotic Golgi membranes concentrate around the spindle poles, suggesting that the spindle may control Golgi partitioning. To test this, cells were induced to divide asymmetrically with the entire spindle segregated into only one daughter cell. A ribbon reforms in the nucleated karyoplasts, whereas the Golgi stacks in the cytoplasts are scattered. However, the scattered Golgi stacks are polarized and transport cargo. Microinjection of Golgi extract together with tubulin or incorporation of spindle materials rescues Golgi ribbon formation. Therefore, the factors required for postmitotic Golgi ribbon assembly are transferred by the spindle, but the constituents of functional stacks are partitioned independently, suggesting that Golgi inheritance is regulated by two distinct mechanisms.  相似文献   

15.
KIFC3, a microtubule (MT) minus end-directed kinesin superfamily protein, is expressed abundantly and is associated with the Golgi apparatus in adrenocortical cells. We report here that disruption of the kifC3 gene induced fragmentation of the Golgi apparatus when cholesterol was depleted. Analysis of the reassembly process of the Golgi apparatus revealed bidirectional movement of the Golgi fragments in both wild-type and kifC3-/- cells. However, we observed a markedly reduced inwardly directed motility of the Golgi fragments in cholesterol-depleted kifC3-/- cells compared with either cholesterol-depleted wild-type cells or cholesterol-replenished kifC3-/- cells. These results suggest that (a) under the cholesterol-depleted condition, reduced inwardly directed motility of the Golgi apparatus results in the observed Golgi scattering phenotype in kifC3-/- cells, and (b) cholesterol is necessary for the Golgi fragments to attain sufficient inwardly directed motility by MT minus end-directed motors other than KIFC3, such as dynein, in kifC3-/- cells. Furthermore, we showed that Golgi scattering was much more drastic in kifC3-/- cells than in wild-type cells to the exogenous dynamitin expression even in the presence of cholesterol. These results collectively demonstrate that KIFC3 plays a complementary role in Golgi positioning and integration with cytoplasmic dynein.  相似文献   

16.
The Golgi apparatus (GA) is a dynamic store of Ca2+ that can be released into the cell cytosol. It can thus participate in the regulation of the Ca2+ concentration in the cytosol ([Ca2+]cyt), which might be critical for intra‐Golgi transport. Secretory pathway Ca2+‐ATPase pump type 1 (SPCA1) is important in Golgi homeostasis of Ca2+. The subcellular localization of SPCA1 appears to be GA specific, although its precise location within the GA is not known. Here, we show that SPCA1 is mostly excluded from the cores of the Golgi cisternae and is instead located mainly on the lateral rims of Golgi stacks, in tubular noncompact zones that interconnect different Golgi stacks, and within tubular parts of the trans Golgi network, suggesting a role in regulation of the local [Ca2+]cyt that is crucial for membrane fusion. SPCA1 knockdown by RNA interference induces GA fragmentation. These Golgi fragments lack the cis‐most and trans‐most cisternae and remain within the perinuclear region. This SPCA1 knockdown inhibits exit of vesicular stomatitis virus G‐protein from the GA and delays retrograde redistribution of the GA glycosylation enzymes into the endoplasmic reticulum caused by brefeldin A; however, exit of these enzymes from the endoplasmic reticulum is not affected. Thus, correct SPCA1 functioning is crucial to intra‐Golgi transport and maintenance of the Golgi ribbon.  相似文献   

17.
AKAP450 (also known as AKAP350, CG-NAP or Hyperion) and pericentrin are large coiled-coil proteins found in mammalian centrosomes that serve to recruit structural and regulatory components including dynein and protein kinase A. We find that these proteins share a well conserved 90 amino acid domain near their C-termini that is also found in coiled-coil proteins of unknown function from Drosophila and fission yeast. Fusion of the C-terminal region from either protein to a reporter protein confers a centrosomal localization, and overexpression of the domain from AKAP450 displaces endogenous pericentrin, suggesting recruitment to a shared site. When isolated from transfected cells the C-terminal domain of AKAP450 was associated with calmodulin, suggesting that this protein could contribute to centrosome assembly.  相似文献   

18.
AKAP350 can scaffold a number of protein kinases and phosphatases at the centrosome and the Golgi apparatus. We performed a yeast two-hybrid screen of a rabbit parietal cell library with a 3.2-kb segment of AKAP350 (nucleotides 3611-6813). This screen yielded a full-length clone of rabbit chloride intracellular channel 1 (CLIC1). CLIC1 belongs to a family of proteins, all of which contain a high degree of homology in their carboxyl termini. All CLIC family members were able to bind a 133-amino acid domain within AKAP350 through the last 120 amino acids in the conserved CLIC carboxyl termini. Antibodies developed against a bovine CLIC, p64, immunoprecipitated AKAP350 from HCA-7 colonic adenocarcinoma cell extracts. Antibodies against CLIC proteins recognized at least five CLIC species including a novel 46-kDa CLIC protein. We isolated the human homologue of bovine p64, CLIC5B, from HCA-7 cell cDNA. A splice variant of CLIC5, the predicted molecular mass of CLIC5B corresponds to the molecular mass of the 46-kDa CLIC immunoreactive protein in HCA-7 cells. Antibodies against CLIC5B colocalized with AKAP350 at the Golgi apparatus with minor staining of the centrosomes. AKAP350 and CLIC5B association with Golgi elements was lost following brefeldin A treatment. Furthermore, GFP-CLIC5B-(178-410) targeted to the Golgi apparatus in HCA-7 cells. The results suggest that AKAP350 associates with CLIC proteins and specifically that CLIC5B interacts with AKAP350 at the Golgi apparatus in HCA-7 cells.  相似文献   

19.
The vesicle-tethering protein p115 functions in endoplasmic reticulum-Golgi trafficking. We explored the function of homologous region 2 (HR2) of the p115 head domain that is highly homologous with the yeast counterpart, Uso1p. By expression of p115 mutants in p115 knockdown (KD) cells, we found that deletion of HR2 caused an irregular assembly of the Golgi, which consisted of a cluster of mini-stacked Golgi fragments, and gathered around microtubule-organizing center in a microtubule-dependent manner. Protein interaction analyses revealed that p115 HR2 interacted with Cog2, a subunit of the conserved oligomeric Golgi (COG) complex that is known another putative cis-Golgi vesicle-tethering factor. The interaction between p115 and Cog2 was found to be essential for Golgi ribbon reformation after the disruption of the ribbon by p115 KD or brefeldin A treatment and recovery by re-expression of p115 or drug wash out, respectively. The interaction occurred only in interphase cells and not in mitotic cells. These results strongly suggested that p115 plays an important role in the biogenesis and maintenance of the Golgi by interacting with the COG complex on the cis-Golgi in vesicular trafficking.  相似文献   

20.
The mammalian GAS11 gene is a candidate tumor suppressor of unknown function that was previously identified as one of several genes upregulated upon growth arrest. Interestingly, although GAS11 homologs in Trypanosoma brucei (trypanin) and Chlamydomonas reinhardtii (PF2) are integral components of the flagellar axoneme and are necessary for regulating flagellar beat, the GAS11 gene was discovered based on its expression in cells that do not assemble a motile cilium. This suggests that GAS11 function might not be restricted to the cilium. To investigate this possibility, we generated GAS11-specific antibodies and demonstrate here that GAS11 is expressed in a variety of mammalian cells that lack a motile cilium. In COS7 cells, GAS11 is associated with the detergent-insoluble cytoskeleton and exhibits a juxtanuclear localization that overlaps with the pericentrosomal Golgi apparatus. This localization is dependent upon intact microtubules and is cell-cycle regulated, such that GAS11 is dispersed throughout the cytoplasm as cells progress through mitosis. GAS11 remains associated with Golgi fragments following depolymerization of cytoplasmic microtubules but is dispersed upon disruption of the Golgi with brefeldin A. These data suggest that GAS11 is associated with the Golgi apparatus. In support of this, recombinant GAS11 binds Golgi membranes in vitro. In growth-arrested mIMCD3 cells, GAS11 co-localizes with gamma-tubulin at the base of the primary cilium. The pericentrosomal Golgi apparatus and base of the cilium both represent convergence points for microtubule minus ends and correspond to sites where dynein regulation is required. The algal GAS11 homolog functions as part of a dynein regulatory complex (DRC) in the axoneme (Rupp and Porter. J Cell Biol 2003;162:47-57) and our findings suggest that components of this axonemal dynein regulatory system have been adapted in mammalian cells to participate in non-axonemal functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号