首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The protein-tyrosine kinase Syk couples immune recognition receptors to multiple signal transduction pathways, including the mobilization of calcium and the activation of NFAT. The ability of Syk to regulate signaling is influenced by its phosphorylation on tyrosine residues within the linker B region. The phosphorylation of both Y342 and Y346 is necessary for optimal signaling from the B cell receptor for antigen. The SH2 domains of multiple signaling proteins share the ability to bind this doubly phosphorylated site. The NMR structure of the C-terminal SH2 domain of PLCgamma (PLCC) bound to a doubly phosphorylated Syk peptide reveals a novel mode of phosphotyrosine recognition. PLCC undergoes extensive conformational changes upon binding to form a second phosphotyrosine-binding pocket in which pY346 is largely desolvated and stabilized through electrostatic interactions. The formation of the second binding pocket is distinct from other modes of phosphotyrosine recognition in SH2-protein association. The dependence of signaling on simultaneous phosphorylation of these two tyrosine residues offers a new mechanism to fine-tune the cellular response to external stimulation.  相似文献   

2.
The linker region of Syk and ZAP70 tyrosine kinases plays an important role in regulating their function. There are three conserved tyrosines in this linker region; Tyr317 of Syk and its equivalent residue in ZAP70 were previously shown to negatively regulate the function of Syk and ZAP70. Here we studied the roles of the other two tyrosines, Tyr342 and Tyr346 of Syk, in Fc epsilon RI-mediated signaling. Antigen stimulation resulted in Tyr342 phosphorylation in mast cells. Syk with Y342F mutation failed to reconstitute Fc epsilon RI-initiated histamine release. In the Syk Y342F-expressing cells there was dramatically impaired receptor-induced phosphorylation of multiple signaling molecules, including LAT, SLP-76, phospholipase C-gamma2, but not Vav. Compared to wild-type Syk, Y342F Syk had decreased binding to phosphorylated immunoreceptor tyrosine-based activation motifs and reduced kinase activity. Surprisingly, mutation of Tyr346 had much less effect on Fc epsilon RI-dependent mast cell degranulation. An anti-Syk-phospho-346 tyrosine antibody indicated that antigen stimulation induced only a very minor increase in the phosphorylation of this tyrosine. Therefore, Tyr342, but not Tyr346, is critical for regulating Syk in mast cells and the function of these tyrosines in immune receptor signaling appears to be different from what has been previously reported for the equivalent residues of ZAP70.  相似文献   

3.
Stimulation of FcepsilonRI, the high affinity IgE receptor of mast cells results in the rapid binding of the Syk tyrosine kinase to cytoplasmic domains of FcepsilonRI and to its subsequent activation. Syk plays an essential role in signal transduction from FcepsilonRI as shown by Syk-deficient mast cells, which are defective in receptor-induced degranulation, cytokine synthesis, and intracellular pathways. However the mechanism by which Syk activates these pathways remains unclear. Activation of Syk is associated with its phosphorylation on several tyrosine residues, including the linker tyrosines Tyr317, Tyr342, and Tyr346. These residues have been proposed to play important roles in the transduction of signals by binding to other signaling proteins. To test these hypotheses in primary murine mast cells, we used retroviral infection of Syk-deficient mast cells to generate cells expressing Syk proteins bearing mutations in the linker tyrosines. We show that Tyr342 and Tyr346 contribute positively to the function of Syk and have both overlapping as well as distinct functions. Mutations in either Tyr342 or Tyr346 alone had no effect on FcepsilonRI-induced degranulation or calcium flux, whereas mutation of both residues caused a significant reduction in both pathways. In contrast, phosphorylation of PLCgamma1, PLCgamma2, and Vav1 was strongly decreased by a mutation in Tyr342 alone, whereas phosphorylation of ERK and Akt was more dependent on Tyr346. Finally we show that Tyr317 functions as a negative regulatory site and that its mutation can partially compensate for the loss of both Tyr342 and Tyr346.  相似文献   

4.
Phosphorylation-dependent protein-protein interactions provide the mechanism for a large number of intracellular signal transduction pathways. One of the goals of signal transduction research is to understand more precisely the nature of these phosphorylation-dependent interactions. Here, we report a novel strategy based on quantitative proteomics that allows for the rapid analysis of peptide-protein interactions with more than one phosphorylation site involved. The phosphorylation of two tyrosine residues, Y342 and Y346, within the linker B region of the protein-tyrosine kinase Syk is important for optimal signaling from the B cell receptor for antigen. We employed four amino-specific, isobaric reagents to differentially label proteins interacting in vitro with four Syk peptides containing none, one, or two phosphates on tyrosine residues Y342 and Y346, respectively. In total, 76 proteins were identified and quantified, 11 of which were dependent on the phosphorylation of individual tyrosine residues. One of the proteins, peroxiredoxin 1, preferably bound to phosphorylated Y346, which was further verified by Western blotting results. Thus, we demonstrate that the use of 4-fold multiplexing allows for relative protein measurements simultaneously for the identification of interacting proteins dependent on the phosphorylation of specific residues.  相似文献   

5.
The B cell antigen receptor (BCR) is coupled to the mobilization of Ca(2+) by the protein-tyrosine kinase, Syk. Syk, recruited to the clustered BCR, becomes phosphorylated on three tyrosines (Tyr-317, Tyr-342, and Tyr-346) located within the linker region that separates the C-terminal catalytic domain from the N-terminal tandem Src homology 2 domains. Phosphorylation within the linker region can be either activating or inhibitory to Ca(2+) mobilization depending on the sites that are modified. Syk that is not phosphorylated on linker region tyrosines couples the BCR to Ca(2+) mobilization through a phosphoinositide 3-kinase-dependent pathway. The phosphorylation of Tyr-342 and -346 enhances the phosphorylation and activation of phospholipase C-gamma and the early phase of Ca(2+) mobilization via a phosphoinositide 3-kinase-independent pathway. The phosphorylation of Tyr-317 strongly dampens the Ca(2+) signal. In cells that lack the Src family kinase, Lyn, the phosphorylation of the inhibitory Tyr-317 is suppressed leading to elevated production of inositol 1,4,5-trisphosphate and an amplified Ca(2+) signal. This provides a novel mechanism by which Lyn functions as an inhibitor of BCR-stimulated signaling. Thus, Syk and Lyn combine to determine the pathway through which the BCR is coupled to Ca(2+) mobilization as well as the magnitude and duration of the Ca(2+) flux.  相似文献   

6.
The linker for activation of T-cells (LAT) is a palmitoylated integral membrane adaptor protein that resides in lipid membrane rafts and contains nine consensus putative tyrosine phosphorylation sites, several of which have been shown to serve as SH2 binding sites. Upon T-cell antigen receptor (TCR/CD3) engagement, LAT is phosphorylated by protein tyrosine kinases (PTK) and binds to the adaptors Gads and Grb2, as well as to phospholipase Cgamma1 (PLCgamma1), thereby facilitating the recruitment of key signal transduction components to drive T-cell activation. The LAT tyrosine residues Y(132), Y(171), Y(191), and Y(226) have been shown previously to be critical for binding to Gads, Grb2, and PLCgamma1. In this report, we show by generation of LAT truncation mutants that the Syk-family kinase ZAP-70 and the Tec-family kinase Itk favor phosphorylation of carboxy-terminal tyrosines in LAT. By direct binding studies using purified recombinant proteins or phosphopeptides and by mutagenesis of individual tyrosines in LAT to phenylalanine residues, we demonstrate that Y(171) and potentially Y(226) are docking sites for the Vav guanine nucleotide exchange factor. Further, overexpression of a kinase-deficient mutant of Itk in T-cells reduced both the tyrosine phosphorylation of endogenous LAT and the recruitment of Vav to LAT complexes. These data indicate that kinases from distinct PTK families are likely responsible for LAT phosphorylation following T-cell activation and that Itk kinase activity promotes recruitment of Vav to LAT.  相似文献   

7.
Ags that cross-link the B cell Ag receptor are preferentially and rapidly delivered to the MHC class II-enriched compartment for processing into peptides and subsequent loading onto MHC class II. Proper sorting of Ag/receptor complexes requires the recruitment of Syk to the phosphorylated immunoreceptor tyrosine-based activation motif tyrosines of the B cell Ag receptor constituent Igalpha. We postulated that the Igalpha nonimmunoreceptor tyrosine-based activation motif tyrosines, Y(176) and Y(204), contributed to receptor trafficking. Igalpha(YDeltaF(176,204))/Igbeta receptors were targeted to late endosomes, but were excluded from the vesicle lumen and could not facilitate the presentation of Ag to T cells. Subsequent analysis demonstrated that phosphorylation of Y(176)/Y(204) recruited the B cell linker protein, Vav, and Grb2. Reconstitution of Igalpha(YDeltaF(176,204))/Igbeta with the B cell linker protein rescued both receptor-facilitated Ag presentation and entry into the MHC class II-enriched compartment. Thus, aggregation accelerates receptor trafficking by recruiting two separate signaling modules required for transit through sequential checkpoints.  相似文献   

8.
Antigen receptor ligation on lymphocytes activates protein tyrosine kinases and phospholipase C-gamma (PLC-gamma) isoforms. Glutathione S-transferase fusion proteins containing the C-terminal Src-homology 2 [SH2(C)] domain of PLC-gamma1 bound to tyrosyl phosphorylated Syk. Syk isolated from antigen receptor-activated B cells phosphorylated PLC-gamma1 on Tyr-771 and the key regulatory residue Tyr-783 in vitro, whereas Lyn from the same B cells phosphorylated PLC-gamma1 only on Tyr-771. The ability of Syk to phosphorylate PLC-gamma1 required antigen receptor ligation, while Lyn was constitutively active. An mCD8-Syk cDNA construct could be expressed as a tyrosyl-phosphorylated chimeric protein tyrosine kinase in COS cells, was recognized by PLC-gamma1 SH2(C) in vitro, and induced tyrosyl phosphorylation of endogenous PLC-gamma1 in vivo. Substitution of Tyr-525 and Tyr-526 at the autophosphorylation site of Syk in mCD8-Syk substantially reduced the kinase activity and the binding of this variant chimera to PLC-gamma1 SH2(C) in vitro; it also failed to induce tyrosyl phosphorylation of PLC-gamma1 in vivo. In contrast, substitution of Tyr-348 and Tyr-352 in the linker region of Syk in mCD8-Syk did not affect the kinase activity of this variant chimera but almost completely eliminated its binding to PLC-gamma1 SH(C) and completely eliminated its ability to induce tyrosyl phosphorylation of PLC-gamma1 in vivo. Thus, an optimal kinase activity of Syk and an interaction between the linker region of Syk with PLC-gamma1 are required for the tyrosyl phosphorylation of PLC-gamma1.  相似文献   

9.
Activation of the high affinity IgE-binding receptor (FcεRI) results in the tyrosine phosphorylation of two conserved tyrosines located close to the COOH terminus of the protein-tyrosine kinase Syk. Synthetic peptides representing the last 10 amino acids of the tail of Syk with these two tyrosines either nonphosphorylated or phosphorylated were used to precipitate proteins from mast cell lysates. Proteins specifically precipitated by the phosphorylated peptide were identified by mass spectrometry. These included the adaptor proteins SLP-76, Nck-1, Grb2, and Grb2-related adaptor downstream of Shc (GADS) and the protein phosphatases SHIP-1 and TULA-2 (also known as UBASH3B or STS-1). The presence of these in the precipitates was further confirmed by immunoblotting. Using the peptides as probes in far Western blots showed direct binding of the phosphorylated peptide to Nck-1 and SHIP-1. Immunoprecipitations suggested that there were complexes of these proteins associated with Syk especially after receptor activation; in these complexes are Nck, SHIP-1, SLP-76, Grb2, and TULA-2 (UBASH3B or STS-1). The decreased expression of TULA-2 by treatment of mast cells with siRNA increased the FcεRI-induced tyrosine phosphorylation of the activation loop tyrosines of Syk and the phosphorylation of phospholipase C-γ2. There was parallel enhancement of the receptor-induced degranulation and activation of nuclear factor for T cells or nuclear factor κB, indicating that TULA-2, like SHIP-1, functions as a negative regulator of FcεRI signaling in mast cells. Therefore, once phosphorylated, the terminal tyrosines of Syk bind complexes of proteins that are positive and negative regulators of signaling in mast cells.  相似文献   

10.
The protein tyrosine kinase Syk plays an essential role in Fc epsilon RI-mediated histamine release in mast cells by regulating the phosphorylation of other proteins. We investigated the functional role of a putative Syk phosphorylation site, Tyr317. This tyrosine in the linker region of Syk is a possible site for binding by the negative regulator Cbl. Syk with Tyr317 mutated to Phe (Y317F) was expressed in a Syk-negative variant of the RBL-2H3 mast cells. Compared with cells expressing wild-type Syk, expression of the Y317F mutant resulted in an increase in the Fc epsilon RI-mediated tyrosine phosphorylation of phospholipase C-gamma and a dramatic enhancement of histamine release. The in vivo Fc epsilon RI-induced tyrosine phosphorylation of wild-type Syk and that of the Y317F mutant were similar. Although the Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins was enhanced in the cells expressing the Y317F Syk, the phosphorylation of some other molecules, including the receptor subunits, Vav and mitogen-activated protein kinase, was not increased. The Fc epsilon RI-induced phosphorylation of Cbl was downstream of Syk kinase activity and was unchanged by expression of the Y317F mutation. These data indicate that Tyr317 in the linker region of Syk functions to negatively regulate the signals leading to degranulation.  相似文献   

11.
Immune cells express receptors bearing an immune tyrosine activation motif (ITAM) containing two YXXL motifs or hemITAMs containing only one YXXL motif. Phosphorylation of the ITAM/hemITAM is mediated by Src family kinases allowing for the binding and activation of spleen tyrosine kinase (Syk). It is believed that Syk must be phosphorylated on tyrosine residues for activation, and Tyr342, а conserved tyrosine in the interdomain B region, has been shown to be critical for regulating Syk in FcεR1-activated mast cells. Syk is a key mediator of signaling pathways downstream of several platelet pathways including the ITAM bearing glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor and the hemITAM containing C-type lectin-like receptor-2 (CLEC-2). Since platelet activation is a crucial step in both hemostasis and thrombosis, we evaluated the importance of Syk Y342 in these processes by producing an Syk Y342F knock-in mouse. When using a CLEC-2 antibody as an agonist, reduced aggregation and secretion were observed in Syk Y342F mouse platelets when compared with control mouse platelets. Platelet reactivity was also reduced in response to the GPVI agonist collagen-related peptide. Signaling initiated by either GPVI or CLEC-2 was also greatly inhibited, including Syk Y519/520 phosphorylation. Hemostasis, as measured by tail bleeding time, was not altered in Syk Y342F mice, but thrombus formation in response to FeCl3 injury was prolonged in Syk Y342F mice. These data demonstrate that phosphorylation of Y342 on Syk following stimulation of either GPVI or CLEC-2 receptors is important for the ability of Syk to transduce a signal.  相似文献   

12.
The Src homology 2 (SH2) and collagen domain protein Shc plays a pivotal role in signaling via tyrosine kinase receptors, including epidermal growth factor receptor (EGFR). Shc binding to phospho-tyrosine residues on activated receptors is mediated by the SH2 and phospho-tyrosine binding (PTB) domains. Subsequent phosphorylation on Tyr-317 within the Shc linker region induces Shc interactions with Grb2-Son of Sevenless that initiate Ras-mitogen-activated protein kinase signaling. We use molecular dynamics simulations of full-length Shc to examine how Tyr-317 phosphorylation controls Shc conformation and interactions with EGFR. Our simulations reveal that Shc tyrosine phosphorylation results in a significant rearrangement of the relative position of its domains, suggesting a key conformational change. Importantly, computational estimations of binding affinities show that EGFR-derived phosphotyrosyl peptides bind with significantly more strength to unphosphorylated than to phosphorylated Shc. Our results unveil what we believe is a novel structural phenomenon, i.e., tyrosine phosphorylation of Shc within its linker region regulates the binding affinity of SH2 and PTB domains for phosphorylated Shc partners, with important implications for signaling dynamics.  相似文献   

13.
Syk and ZAP-70 form a subfamily of nonreceptor tyrosine kinases that contain tandem SH2 domains at their N termini. Engagement of these SH2 domains by tyrosine-phosphorylated immunoreceptor tyrosine-based activation motifs leads to kinase activation and downstream signaling. These kinases are also regulated by beta3 integrin-dependent cell adhesion via a phosphorylation-independent interaction with the beta3 integrin cytoplasmic domain. Here, we report that the interaction of integrins with Syk and ZAP-70 depends on the N-terminal SH2 domain and the interdomain A region of the kinase. The N-terminal SH2 domain alone is sufficient for weak binding, and this interaction is independent of tyrosine phosphorylation of the integrin tail. Indeed, phosphorylation of tyrosines within the two conserved NXXY motifs in the integrin beta3 cytoplasmic domain blocks Syk binding. The tandem SH2 domains of these kinases bind to multiple integrin beta cytoplasmic domains with varying affinities (beta3 (Kd = 24 nm) > beta2 (Kd = 38 nm) > beta1 (Kd = 71 nm)) as judged by both affinity chromatography and surface plasmon resonance. Thus, the binding of Syk and ZAP-70 to integrin beta cytoplasmic domains represents a novel phosphotyrosine-independent interaction mediated by their N-terminal SH2 domains.  相似文献   

14.
A high-affinity IL-2 receptor requires two Janus protein tyrosine kinases (JAKs) for IL-2 signal transduction: JAK1 and JAK3. Since transphosphorylation of the two kinases is presumed to occur after receptor engagement we examined the phosphorylation by recombinant JAK3 of a peptide substrate corresponding to the JAK1 activation loop (KAIETDKEYYTVKD), which has two adjacent tyrosines. Mass spectral analysis of the enzymatically phosphorylated peptide showed that the second tyrosine was phosphorylated at a 30-fold greater rate than the first tyrosine. Moreover, no doubly phosphorylated peptide was detected by this analysis. Kinetic analysis of the reactions of singly phosphorylated JAK1 activation loop peptides showed that phosphorylating the first or second tyrosine decreased the k(cat)/K(m) for the phosphorylation of the other 115- and 26-fold, respectively. Singly changing each side chain of the KEYYTV portion of the peptide to a methyl group (alanine) yielded substrates comparable to the wild-type sequences in all cases except that of the first or second tyrosine, which showed a 153- or 70-fold drop in k(cat)/K(m), respectively. Using libraries of immobilized peptides with all 20 naturally occurring amino acids substituted for Y9 or T11 showed that the JAK3 tolerated substitution at T11 but prefers large hydrophobic amino acids at Y9. These results show that JAK3 does not act processively on the JAK1 activation loop in vitro and illustrate the role of Y9 in the recognition of the preferred site of phosphorylation which is Y10.  相似文献   

15.
Many immune signaling pathways require activation of the Syk tyrosine kinase to link ligation of surface receptors to changes in gene expression. Despite the central role of Syk in these pathways, the Syk activation process remains poorly understood. In this work we quantitatively characterized the molecular mechanism of Syk activation in vitro using a real time fluorescence kinase assay, mutagenesis, and other biochemical techniques. We found that dephosphorylated full-length Syk demonstrates a low initial rate of substrate phosphorylation that increases during the kinase reaction due to autophosphorylation. The initial rate of Syk activity was strongly increased by either pre-autophosphorylation or binding of phosphorylated immune tyrosine activation motif peptides, and each of these factors independently fully activated Syk. Deletion mutagenesis was used to identify regions of Syk important for regulation, and residues 340-356 of the SH2 kinase linker region were identified to be important for suppression of activity before activation. Comparison of the activation processes of Syk and Zap-70 revealed that Syk is more readily activated by autophosphorylation than Zap-70, although both kinases are rapidly activated by Src family kinases. We also studied Syk activity in B cell lysates and found endogenous Syk is also activated by phosphorylation and immune tyrosine activation motif binding. Together these experiments show that Syk functions as an "OR-gate" type of molecular switch. This mechanism of switch-like activation helps explain how Syk is both rapidly activated after receptor binding but also sustains activity over time to facilitate longer term changes in gene expression.  相似文献   

16.
Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2, also referred to SH3BP2) regulates immune receptor-mediated signal transduction. In this report we focused on the molecular mechanism of 3BP2 function in B cell receptor (BCR) signaling. Engagement of BCR induces tyrosine phosphorylation of 3BP2. Genetic analysis demonstrated that Syk is critical for BCR-mediated tyrosine phosphorylation of 3BP2. Mutational analysis of 3BP2 revealed that both Tyr183 and Src homology 2 (SH2) domain are necessary for 3BP2-mediated BCR-induced activation of nuclear factor of activated T cells (NFAT). Point mutation of Tyr183 or Arg486 in the SH2 domain of 3BP2 diminished BCR-mediated tyrosine phosphorylation of 3BP2. Endogenous 3BP2 forms a complex with tyrosine-phosphorylated cellular signaling molecules. Peptide binding experiments demonstrated that only phosphorylated Tyr183 in 3BP2 could form a complex with the SH2 domain(s) of phospholipase Cγ2 and Vav1 from B cell lysates. These interactions were represented by using bacterial glutathione S-transferase-phospholipase Cγ2 or -Vav1 SH2 domain. Furthermore, pulldown and Far Western experiments showed that the 3BP2-SH2 domain directly binds to B cell linker protein (BLNK) after BCR stimulation. These results demonstrated that 3BP2 induces the protein complex with cellular signaling molecules through phosphorylation of Tyr183 and SH2 domain leading to the activation of NFAT in B cells.  相似文献   

17.
After engagement of the B cell receptor for antigen, the Syk protein-tyrosine kinase becomes phosphorylated on multiple tyrosines, some of which serve as docking sites for downstream effectors with SH2 or other phosphotyrosine binding domains. The most frequently identified binding partner for catalytically active Syk identified in a yeast two-hybrid screen was the p85 regulatory subunit of phosphoinositide 3-kinase. The C-terminal SH2 domain of p85 was sufficient for mediating an interaction with tyrosine-phosphorylated Syk. Interestingly, this domain interacted with Syk at phosphotyrosine 317, a site phosphorylated in trans by the Src family kinase, Lyn, and identified previously as a binding site for c-Cbl. This site interacted preferentially with the p85 C-terminal SH2 domain compared with the c-Cbl tyrosine kinase binding domain. Molecular modeling studies showed a good fit between the p85 SH2 domain and a peptide containing phosphotyrosine 317. Tyr-317 was found to be essential for Syk to support phagocytosis mediated by FcgammaRIIA receptors expressed in a heterologous system. These studies establish a new type of p85 binding site that can exist on proteins that serve as substrates for Src family kinases and provide a molecular explanation for observations on direct interactions between Syk and phosphoinositide 3-kinase.  相似文献   

18.
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as FcϵRI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased FcϵRI-induced degranulation, nuclear factor for T cell activation and NFκB activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.  相似文献   

19.
CD19 is required for the development of B1 and marginal zone B cells, for Ab responses, and for B cell memory. CD19 immunoprecipitates contain a complex of cytoplasmic proteins, including Lyn, Vav, phospholipase Cgamma2 (PLCgamma2), Grb2, and the p85 subunit of phosphatidylinositol 3-kinase. Which of these bind directly to CD19 and the strengths of the interactions are unknown. These issues are important in understanding the signaling functions of CD19, which are crucial for normal B cell physiology. Using purified, recombinant proteins, we now show that each of these signaling proteins contains at least one Src homology 2 (SH2) domain that interacts directly with the phosphorylated CD19 cytoplasmic domain. The affinities of binding of the SH2 domains of Vav, p85, and Grb2 to CD19 are each in the nanomolar range by surface plasmon resonance (Biacore) analysis. Binding of Lyn and PLCgamma2 do not fit 1:1 modeling. However, analyses of binding data (Lyn) and competition experiments (PLCgamma2) suggest that these bind with comparable affinity. Competition experiments demonstrate that SH2 domains whose binding is dependent on the same CD19 tyrosine(s) compete for binding, but these SH2 domains do not impede binding of different SH2 domains to other CD19 tyrosines. We conclude that binding to the CD19 cytoplasmic domain is multimeric, high affinity, and competitive. The high affinity of the interactions also suggests that tyrosines that were nonessential in vivo are nevertheless functional. A preliminary structural model suggests that CD19 forms a signaling complex containing multiple cytoplasmic proteins in close proximity to each other and to the plasma membrane.  相似文献   

20.
Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2) is known to play regulatory roles in immunoreceptor-mediated signal transduction. We have previously demonstrated that Tyr174, Tyr183 and Tyr446 in mouse 3BP2 are predominantly phosphorylated by Syk, and the phosphorylation of Tyr183 and the Src homology 2 (SH2) domain of mouse 3BP2 are critical for B cell receptor (BCR)-induced activation of nuclear factor of activated T cells (NFAT) in human B cells. In this report, we have shown that Syk, but not Abl family protein-tyrosine kinases, is critical for BCR-mediated tyrosine phosphorylation of 3BP2 in chicken DT40 cells. Mutational analysis showed that Tyr174, Tyr183 and Tyr426 of chicken 3BP2 are the major phosphorylation sites by Syk and the SH2 domain of 3BP2 is critical for tyrosine phosphorylation. In addition, phosphorylation of Tyr426 is required for the inducible interaction with the SH2 domain of Vav3. Moreover, the expression of the mutant form of 3BP2 in which Tyr426 was substituted to Phe resulted in the reduction in BCR-mediated Rac1 activation, when compared with the case of wild-type. Altogether, these data suggest that 3BP2 is involved in the activation of Rac1 through the regulation of Vav3 by Syk-dependent phosphorylation of Tyr426 following BCR stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号