首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malondialdehyde (MDA), a lipid peroxidation product, reacts with lysine residues in proteins. Human serum albumin (HSA) is a major target of MDA-modification of serum proteins. To identify, the modification sites of HSA by MDA in vitro, MDA-treated HSA was digested with a protease and the resulting peptides were subjected to liquid chromatography-tandem mass spectrometry. We identified six peptides, which contained a N-propenal adduct at Lys136, Lys174, Lys240, Lys281, Lys525, and Lys541, and revealed that Lys525 is the most reactive residue for MDA modification. Analysis of electrostatic surface potential of a 3-D model structure of HSA indicates that Lys525 is located at the center of positively charged grooves. The results of this study indicate that the modification of proteins by lipid-derived aldehydes may be influenced by the electrostatic potential of the protein surface.  相似文献   

2.
The arginine and lysine residues of calf thymus histone H1 were modified with large molar excesses of 2,3-butanedione and O-methylisourea, respectively. Kinetic study of the modification reaction of the arginine residue revealed that the reaction is divided into the two pseudo-first-order processes. About a third (1 Arg) of the total arginine residues of the H1 molecule was rapidly modified without causing any detectable structural change of the molecule, and the slow modification of the remaining arginine residues (2 Arg) led to a loss of the folded structure of H1. In the case of lysine residue modification, 93% (56 Lys) of the total lysine residues of the H1 was modified with the same rate constant, while 7% (4 Lys) of lysine residue remained unmodified. When the reaction was performed in the presence of 6M guanidine-HCl, all of lysine residues were modified. It is concluded that the 2 arginine and 4 lysine residues resistant to modification are buried in interior regions of the H1 molecule and play an important role in the formation of the H1 globular structure, while the other 1 arginine and 56 lysine residues are exposed to solvent.  相似文献   

3.
Hexahydrophthalic anhydride (HHPA) is a highly sensitizing industrial chemical that is known to covalently bind to endogenous proteins. The aim of this study was to determine the binding sites of HHPA to human serum albumin (HSA). Conjugates between HSA and HHPA, at two different molar ratios, were synthesized under physiological conditions. The conjugates were digested with trypsin and Pronase E to obtain specific peptides and amino acids, which were separated by liquid chromatography (LC). Fractions containing modified peptides were detected through quantification of hydrolysable HHPA using LC coupled to a triple quadrupole mass spectrometer with electrospray ionization. Modified residues in albumin were identified by sequence analyses using nanoelectrospray quadrupole time-of-flight mass spectrometry. A total of 36 HHPA adducts were found in the HSA-HHPA conjugate with 10 times molar excess of added HHPA. In the conjugate with a molar ratio of 1:0.1 of added HHPA, seven HHPA adducts were found bound to Lys137 (domain IB), Lys190, Lys199 and Lys212 (domain IIA), Lys351 (domain IIB), and Lys432 and Lys436 (domain IIIA). Moreover, several of these adducted albumin peptides were detected in nasal lavage fluid from one volunteer exposed to HHPA. The binding sites of HHPA to HSA have been determined, thus identifying potential allergenic chemical structures. This knowledge generates the possibility of developing methods for the biological monitoring of HHPA exposure by analysing tryptic peptides including these binding sites.  相似文献   

4.
Heparin binds to human antithrombin III and accelerates its inhibitory activity in the blood coagulation system. Previous reports (Rosenberg, R. D., and Damus, P. S. (1973) J. Biol. Chem. 248, 6490-6505; Pecon, J. M., and Blackburn, M. N. (1984) J. Biol. Chem. 259, 935-938) have shown that selective chemical modification of a limited number of lysine residues in antithrombin III causes drastic loss of its heparin cofactor activity. We have performed chemical modification of antithrombin III with trinitrobenzene sulfonic acid in order to determine the location of these lysine residues. When antithrombin III was treated with 100 M excess of trinitrobenzene sulfonic acid for 10 min, about 3.2 mol of amino group per mol of antithrombin III were modified. The heparin cofactor activity dropped to about 25%, whereas the progressive inhibitory activity (in the absence of heparin) remained essentially intact (about 95%). The modified amino groups were identified to be Lys114 (75%), Lys125 (94%), and Lys287 (96%). These results were obtained by comparing and analyzing the cyanogen bromide fragments derived from native antithrombin III and the 10-min modified antithrombin III. When antithrombin III was pretreated with heparin, followed by trinitrobenzene sulfonic acid modification, the extent of modification at Lys114 and Lys125 decreased from 75% and 94% to 20% and 40%, respectively, whereas the modification at Lys287 remained nearly quantitative (greater than 95%). Based on these results, we conclude that Lys114 and Lys125 are essential for the heparin cofactor activity of human antithrombin III.  相似文献   

5.
Hexahydrophthalic anhydride (HHPA) is a highly sensitizing industrial chemical that is known to covalently bind to endogenous proteins. The aim of this study was to determine the binding sites of HHPA to human serum albumin (HSA). Conjugates between HSA and HHPA, at two different molar ratios, were synthesized under physiological conditions. The conjugates were digested with trypsin and Pronase E to obtain specific peptides and amino acids, which were separated by liquid chromatography (LC). Fractions containing modified peptides were detected through quantification of hydrolysable HHPA using LC coupled to a triple quadrupole mass spectrometer with electrospray ionization. Modified residues in albumin were identified by sequence analyses using nanoelectrospray quadrupole time-of-flight mass spectrometry. A total of 36 HHPA adducts were found in the HSA–HHPA conjugate with 10 times molar excess of added HHPA. In the conjugate with a molar ratio of 1:0.1 of added HHPA, seven HHPA adducts were found bound to Lys137 (domain IB), Lys190, Lys199 and Lys212 (domain IIA), Lys351 (domain IIB), and Lys432 and Lys436 (domain IIIA). Moreover, several of these adducted albumin peptides were detected in nasal lavage fluid from one volunteer exposed to HHPA. The binding sites of HHPA to HSA have been determined, thus identifying potential allergenic chemical structures. This knowledge generates the possibility of developing methods for the biological monitoring of HHPA exposure by analysing tryptic peptides including these binding sites.  相似文献   

6.
Derivatisation of lysine residues in human albumin was performed in vitro by reaction with penicillin G. This modification reaction has been reported to occur in patients treated with high dosages of the antibiotic. The structure of the modified protein was characterised by mass spectrometry and circular dichroism. The number of the lysine residues involved depends on the time of incubation and on the drug/protein molar ratio. The secondary structure of the modified protein does not change significantly with respect to the native protein. Furthermore, the binding properties of the modified albumin were characterised by CD spectroscopy. Phenylbutazone, diazepam and bilirubin, known to bind to specific binding areas, were used as markers. A decrease of the affinity to the high-affinity binding sites was observed after the modification.  相似文献   

7.
Only lysine epsilon-amino groups (and the N-terminal alpha-amino group) in native subtilisin DY were reductively alkylated by glyceraldehyde in the presence of sodium cyanoborohydride. The modified protein molecule was cleaved by TosPheCH2Cl-trypsin or cyanogen bromide and the two sets of peptides obtained were fractionated and purified by gel filtration and HPLC. For determination of the degree of modification of each lysine residue, selected peptides were subjected to sequence analysis combined with quantitative estimation of the containing PTH-Lys and PTH-epsilon-DHP-Lys. The data obtained showed that the lysine residues in positions 12, 15, 27, 43, 136, 141, 265 were entirely modified, those in positions 170, 184, 237 were partially modified, and Lys22 and Lys94 were unaccessible for the reagent. The caseinolytic activity decreased by 23% when the maximum number of lysine residues (8.6 of the total 12 residues) in subtilisin DY were modified. The CD-spectra of native and modified enzyme showed only slight differences. Both these experiments suggest that the lysine residues do not take part directly in the catalytic reaction but are responsible for maintaining the native three-dimensional enzyme structure. The data obtained for the accessibility of the different lysine residues in subtilisin DY correlated very well with the positions of these residues in a video model of the structure of subtilisin Carlsberg, thus suggesting that the spatial structures of these two enzymes are very similar.  相似文献   

8.
The bifunctional compound, ethylene-glycol bis(N-hydroxysuccinimidylsuccinate) (EGNHS), stabilizes horseradish peroxidase C (HRP) by reaction with the enzyme's lysine residues. In this study we compare native and modified HRP by proteolytic fragmentation, peptide sequencing, and mass spectroscopy, and identify the sites of modification. Most significantly, EGNHS is shown to form a crosslink between Lys232 and Lys241 of HRP and modifies Lys174 without formation of a crosslink. These findings are in agreement with the lysine side-chain reactivities predicted from the surface accessibility of the amino groups, and the maximal span of 16 A of the EGNHS crosslinker.  相似文献   

9.
To clarify the structural basis for the sweetness of thaumatin I, lysine-modified derivatives and carboxyl-group-modified derivatives were prepared by chemical modification followed by chromatographic purification. The sweetness of derivatives was evaluated by sensory analysis. Phosphopyridoxylation of lysine residues Lys78, Lys97, Lys106, Lys137 and Lys187 markedly reduced sweetness. The intensity of sweetness was returned to that of native thaumatin by dephosphorylation of these phosphopyridoxylated lysine residues except Lys106. Pyridoxamine modification of the carboxyl group of Asp21, Glu42, Asp60, Asp129 or Ala207 (C-terminal) did not markedly change sweetness. Analysis by far-UV circular dichroism spectroscopy indicated that the secondary structure of all derivatives remained unchanged, suggesting that the loss of sweetness was not a result of major disruption in protein structure. The five lysine residues, modification of which affected sweetness, are separate and spread over a broad surface region on one side of the thaumatin I molecule. These lysine residues exist in thaumatin, but not in non-sweet thaumatin-like proteins, suggesting that these lysine residues are required for sweetness. These lysine residues may play an important role in sweetness through a multipoint interaction with a putative thaumatin receptor.  相似文献   

10.
Patterns of histone acetylation   总被引:9,自引:0,他引:9  
  相似文献   

11.
Protein lysine monomethylation is an important post-translational modification participated in regulating many biological processes. There is growing interest in identifying these methylation events. However, the introduction of one methyl group on lysine residues has negligible effect on changing the physical and chemical properties of proteins or peptides, making enriching and identifying monomethylated lysine (Kme1) proteins or peptides extraordinarily challenging. In this study, we proposed an antibody-free chemical proteomics approach to capture Kme1 peptides from complex protein digest. By exploiting reductive glutaraldehydation, 5-aldehyde-pentanyl modified Kme1 residues and piperidine modified primary amines were generated at the same time. The peptides with aldehyde modified Kme1 residues were then enriched by solid-phase hydrazide chemistry. This chemical proteomics approach was validated by using several synthetic peptides. It was demonstrated that it can enrich and detect Kme1 peptide from peptide mixture containing 5000-fold more bovine serum albumin tryptic digest. Besides, we extended our approach to profile Kme1 using heavy methyl stable isotope labeling by amino acids in cell culture (hmSILAC) labeled Jurkat T cells and Hela cells. Totally, 29 Kme1 sites on 25 proteins were identified with high confidence and 11 Kme1 sites were identified in both two types cells. This is the first antibody-free chemical proteomics approach to enrich Kme1 peptides from complex protein digest, and it provides a potential avenue for the analysis of methylome.  相似文献   

12.
N epsilon-[2H6]Isopropyllysyl-beta-lactoglobulin was prepared by reductive alkylation of beta-lactoglobulin with [2H6]acetone and NaBH4 to provide a 2H (NMR) probe for the study of lysine involvement in lipid-protein interactions. Amino acid analysis showed 80% of the protein's 15 lysine residues to be labeled. Unmodified lysine residues were located through peptide maps produced from CNBr, tryptic, and chymotryptic digests of the labeled protein. Lys47 was not modified; Lys135,138,141, located along an amphipathic helical rod, were each partially unmodified. All other lysine residues were at least 90% modified. Average correlation times calculated from 2H NMR spectra were 20 and 320 ps for 8.7 and 3.3 residues, respectively, in 6 M guanidine hydrochloride; in nondenaturing solution, values of 70 and 320 ps were obtained for 6.5 and 3.2 residues, respectively, with the remaining 2.3 modified residues not observed, suggesting that side chains of lysine residues in unordered or flexible regions were more mobile than those in stable periodic structures. 2H NMR spectra of the protein complexed with dipalmitoylphosphatidylcholine confirmed the extrinsic membrane protein type behavior of beta-lactoglobulin previously reported from 31P NMR studies of the phospholipids complexed with beta-lactoglobulin. Although no physiological function has yet been identified, comparison of these results with the X-ray structure [Papiz et al. (1986) Nature (London) 324, 383-385] supports the hypothesis that residues not accessible for modification may help to stabilize the cone-shaped beta-barrel thought to contain binding sites for small lipid-soluble molecules.  相似文献   

13.
The amino acid modification, gel filtration chromatographic, and electrophoretic characteristics of bovine and human serum albumins irreversibly modified by methylglyoxal (MG-SA) and by glucose-derived advanced glycation endproducts (AGE-SA) were investigated. Methylglyoxal selectively modified arginine residues at low concentration (1 mM); at high methylglyoxal concentration (100 mM), the extent of arginine modification increased and lysine residues were also modified. Both arginine and lysine residues were modified in AGE-SA. Analytical gel filtration HPLC of serum albumin derivatives suggested that the proportion of dimers and oligomers increased with modification in both low and highly modified MG-SA and AGE-SA derivatives relative to unmodified serum albumins. In SDS-PAGE analysis, dimers and oligomers of low-modified MG-SA were dissociated into monomers, but not in highly modified MG-SA. MG-SA had increased anodic electrophoretic mobility under nondenaturing conditions atpH 8.6, indicating an increased net negative charge, which increased with extent of modification; highly modified MG-SA and AGE-SA had similar high electrophoretic mobilities. MG-SA derivatives were fluorescent: the fluorescence was characteristic of the arginine-derived imidazoloneN -(5-methyl-4-imidazolon-2-yl)ornithine, but other fluorophores were also present. AGE-SA had similar fluorescence, attributed, in part, to glucose-derived imidazolones. AGE formed from glucose-modified proteins and AGE-like compounds formed from methylglyoxal-modified proteins may both be signals for recognition and degradation of senescent macromolecules.Abbreviations AGE advanced glycation endproduct - BSA bovine serum albumin - HSA human serum albumin - MG-SA methylglyoxal-modified serum albumin - MG-BSA methylglyoxal-modified bovine serum albumin - MG-HSA methylglyoxal-modified human serum albumin - AGE-SA AGE-modified serum albumin - AGE-BSA AGE-modified bovine serum albumin - AGE-HSA AGE-modified human serum albumin - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - HPLC high-performance liquid chromatography - FFI 2-(2-furoyl)-4(5)-(2-furanyl)-1H-imidazole  相似文献   

14.
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the ''ubiquitin code''. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.  相似文献   

15.
The CTL response to SV40 in C3H/HeJ mice is directed against the tumor (T) Ag and is H-2Kk restricted. CTL specific for both the amino terminus (residues 1-271) and the carboxyl terminus (residues 512-708) of the T Ag molecule have been detected, and we have previously cloned CTL of both specificities. In this paper we show that the panel of 10 CTL clones specific for the C-terminal region includes clones specific for three different epitopes, termed C1, C2, and C3. Epitopes C1 and C2 are conserved in the T Ag of the related papova viruses BK and SA12, and only epitopes C2 and C3 are present on SV40 transformed targets bearing the Kk mutant Kkml. Epitopes C1 and C2 were mapped to residues 563-576 by using in-frame deletion mutants of SV40 T antigen, and all clones specific for these two epitopes can lyse Kk bearing target cells in the presence of a synthetic peptide comprising residues 559-576. Kk and Kkml differ at residue 152, which is located in the Ag-binding pocket. Because epitopes C1 and C2 can be formed by the same antigenic peptide, but epitope C1 is not present on SV40 transformed Kkml cells, epitopes C1 and C2 must differ in the contribution made by residue 152 of the MHC class I molecule. These data show that CTL epitopes on transformed cells can be made up of Ag fragments, and strengthen the idea that this is a general phenomenon for both class I and class II restricted T cell epitopes.  相似文献   

16.
Involvement of tumor-Ag specific CD4(+) and CD8(+) T cells could be critical in the generation of an effective immunotherapy for cancer. In an attempt to optimize the T cell response against defined tumor Ags, we previously developed a method allowing transgene expression in human dendritic cells (DCs) using retroviral vectors. One advantage of using gene-modified DCs is the potential ability to generate CD8(+) T cells against multiple class I-restricted epitopes within the Ag, thereby eliciting a broad antitumor immune response. To test this, we generated tumor-reactive CD8(+) T cells with DCs transduced with the melanoma Ag gp100, for which a number of HLA-A2-restricted epitopes have been described. Using gp100-transduced DCs, we were indeed able to raise T cells recognizing three distinct HLA-A2 epitopes within the Ag, gp100(154-162), gp100(209-217), and gp100(280-288). We next tested the ability of transduced DCs to raise class II-restricted CD4(+) T cells. Interestingly, stimulation with gp100-transduced DCs resulted in the generation of CD4(+) T cells specific for a novel HLA-DRbeta1*0701-restricted epitope of gp100. The minimal determinant of this epitope was defined as gp100(174-190) (TGRAMLGTHTMEVTVYH). These observations suggest that retrovirally transduced DCs have the capacity to present multiple MHC class I- and class II-restricted peptides derived from a tumor Ag, thereby eliciting a robust immune response against that Ag.  相似文献   

17.
Lysine succinylation (Ksucc) is a newly identified protein posttranslational modification (PTM), which may play an important role in cellular physiology. However, the role of lysine succinylation in antibiotic resistance remains elusive. Isocitrate lyase (ICL) is crucial for broad-spectrum antibiotics tolerance in Mycobacterium tuberculosis (Mtb). We previously found that MtbICL (Rv0467) has at least three succinylated lysine residues, namely K189, K322, and K334.To explore the effect of succinylation on the activity of MtbICL, mutants’ mimicry of the lysine succinylation were generated by site-directed mutagenesis. ICL-K189E mutant strain is more sensitive than the wild-type to rifampicin and streptomycin, but not isoniazid. For the in vitro activity of the purified isocitrate lyase, only K189E mutant showed significantly decreased activity. Crystal structure analysis showed that Lys189 Glu dramatically increased the pKa of Glu188 and decreased the pKa of Lys190, whereas had negligible effect on other residues within 5?Å as well as disruption of the electrostatic interaction between Lys189 and Glu182, which might prevent the closure of the active site loop and cause severe reduction of the enzyme activity. Considering the genetic, biochemical, and crystallographical evidences together, the succinylation of specific ICL residue can fine-tune the bacterial resistance to selected antibiotics. The decreased enzymatic activity resulting from the succinylation-changed electrostatic interaction might underlie this phenotype. This study provided the first insight into the link between lysine succinylation and antibiotic resistance.  相似文献   

18.
Therapeutic vaccination of B cell lymphoma patients with tumor-specific Ig (idiotype, or Id) chemically coupled to the immunogenic foreign carrier protein keyhole limpet hemocyanin (KLH) using glutaraldehyde has shown promising results in early clinical trials, and phase III trials are underway. However, glutaraldehyde Id-KLH vaccines fail to elicit anti-Id immune and clinical responses in many patients, possibly because glutaraldehyde reacts with lysine, cysteine, tyrosine, and histidine residues, damaging critical immunogenic epitopes. A sulfhydryl-based tumor Ag-carrier protein conjugation system using maleimide chemistry was used to enhance the efficacy of Id-KLH vaccines. Maleimide Id-KLH conjugates eradicated A20 lymphoma from most tumor-bearing mice, whereas glutaraldehyde Id-KLH had little efficacy. Maleimide Id-KLH elicited tumor-specific IgG Abs and T cells, with CD8(+) T cells being the major effectors of antilymphoma immunity. Maleimide Id-KLH vaccines also demonstrated superior efficacy in 38C13 and BCL-1 lymphoma models, where Abs were shown to be critical for protection. Importantly, standard glutaraldehyde Id-KLH conjugation procedures could result in "overconjugation" of the tumor Ag, leading to decreased efficacy, whereas the heterobifunctional maleimide-based conjugation yielded potent vaccine product regardless of conjugation duration. Under lysosomal processing conditions, the Id-carrier protein linkage was cleavable only after maleimide conjugation. Maleimide KLH conjugation was easily performed with human Igs analogous to those used in Id-KLH clinical trials. These data support the evaluation of sulfhydryl-based Id-KLH vaccines in lymphoma clinical trials and possibly the use of tumor Ag-carrier protein vaccines for other cancers.  相似文献   

19.
A new methodology for the preparation of enzyme-labeled protein polymers bearing pendent haptens was developed through the combination of chemical modification and posttranslational protein modification catalyzed by microbial transglutaminase (MTG). As a model hapten, trinitrobenzene (TNB) was chosen and chemically conjugated with the accessible Lys residues of beta-casein. The resultant trinitrophenylated beta-casein was further modified with formaldehyde to render the residual Lys residues inert toward self-cross-linking by MTG. Escherichia coli alkaline phosphatase (AP), comprising a specific peptide tag carrying a MTG-reactive Lys residue, was then conjugated to the Gln residues in beta-casein-TNB conjugates. The resultant AP-labeled beta-casein-bearing pendent TNB moieties (AP-betaCT) showed comparable specific activity with native AP. It was found that only the AP-betaCT with a sufficient number of pendent TNBs are capable of binding to a surface adsorbed with anti-TNP and anti-TNT antibodies, indicating the presence of polyvalent interactions. The utility of AP-betaCT was demonstrated by competitive immunoassays for trinitrophenol (TNP) and trinitrotoluene (TNT), with detection limits of 0.99 microg/L and 0.18 microg/L, respectively. The present study demonstrates the potential of dual labeling of protein scaffolds by chemical and enzymatic protein manipulation to create a new proteinaceous architecture.  相似文献   

20.
Recombinant human interleukin-1 beta (rIL-1 beta) was chemically modified by a 10-fold molar excess (reagent:protein) of sulfosuccinimidyl 6-(biotinamido) hexanoate (sulfo-NHS-LC-biotin) or sulfosuccinimidobiotin (sulfo-NHS-biotin) under mild conditions. The primary product was purified in each case by cation exchange high performance liquid chromatography (HPLC) and digested with endoproteinase Lys C. Peptide mapping by C18 reverse phase HPLC permitted identification of three sites of biotinylation using both reagents; N-terminal alanine, lysine 93, and lysine 94. Few additional singly modified rIL-1 beta products were obtained under these conditions, despite the presence of 15 lysine residues in this protein. These data support the view that the N terminus as well as the trilysine sequence (residues 92-94) are readily susceptible to chemical modification and are exposed on the surface of the protein. Chromatography of intact biotinylated rIL-1 beta by C4 reverse phase HPLC resolved a protein modified exclusively at the N-terminal alanine from two proteins modified singly at either lysine 93 or lysine 94. In addition, a protein product modified at lysine 103 was also obtained when rIL-1 beta was similarly modified with sulfo-NHS-biotin. Since the only difference between the two biotinylation reagents relates to spacer length and its associated hydrophobicity, these data suggest that lysine 103 is not as accessible to surface modification reagents as are lysine 93, lysine 94, or alanine 1. Initial experiments indicate that none of the modifications described above decrease thymocyte proliferation by more than one order of magnitude. Therefore, these amino acid residues are not crucial for bioactivity, and we anticipate the use of these monobiotinylated proteins in structure/function analysis of IL-1 beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号