首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal handling of physiological and pharmacological nucleosides is a major determinant of their plasma levels and tissue availabilities. Additionally, the pharmacokinetics and normal tissue toxicities of nucleoside drugs are influenced by their handling in the kidney. Renal reabsorption or secretion of nucleosides is selective and dependent on integral membrane proteins, termed nucleoside transporters (NTs) present in renal epithelia. The 7 known human NTs (hNTs) exhibit varying permeant selectivities and are divided into 2 protein families: the solute carrier (SLC) 29 (SLC29A1, SLC29A2, SLC29A3, SLC29A4) and SLC28 (SLC28A1, SLC28A2, SLC28A3) proteins, otherwise known, respectively, as the human equilibrative NTs (hENTs, hENT1, hENT2, hENT3, hENT4) and human concentrative NTs (hCNTs, hCNT1, hCNT2, hCNT3). The well characterized hENTs (hENT1 and hENT2) are bidirectional facilitative diffusion transporters in plasma membranes; hENT3 and hENT4 are much less well known, although hENT3, found in lysosomal membranes, transports nucleosides and is pH dependent, whereas hENT4-PMAT is a H+-adenosine cotransporter as well as a monoamine-organic cation transporter. The 3 hCNTs are unidirectional secondary active Na+-nucleoside cotransporters. In renal epithelial cells, hCNT1, hCNT2, and hCNT3 at apical membranes, and hENT1 and hENT2 at basolateral membranes, apparently work in concert to mediate reabsorption of nucleosides from lumen to blood, driven by Na+ gradients. Secretion of some physiological nucleosides, therapeutic nucleoside analog drugs, and nucleotide metabolites of therapeutic nucleoside and nucleobase drugs likely occurs through various xenobiotic transporters in renal epithelia, including organic cation transporters, organic anion transporters, multidrug resistance related proteins, and multidrug resistance proteins. Mounting evidence suggests that hENT1 may have a presence at both apical and basolateral membranes of renal epithelia, and thus may participate in both selective secretory and reabsorptive fluxes of nucleosides. In this review, the renal handling of nucleosides is examined with respect to physiological and clinical implications for the regulation of human kidney NTs and adenosine signaling, intracellular nucleoside transport, and nephrotoxicities associated with some nucleoside drugs.  相似文献   

2.
3.
To better understand the role of human equilibrative (hENTs) and concentrative (hCNTs) nucleoside transporters in physiology and pharmacology, we investigated the regional, cellular, and spatial distribution of two hCNTs (hCNT1 and hCNT2) and two hENTs (hENT1 and hENT2) in four human tissues. Using in situ hybridization and immunohistochemical techniques, we found that the duodenum expressed hCNT1 and hCNT2 mRNAs in enterocytes and hENT1 and hENT2 mRNAs in crypt cells. In these cells, the hCNT and hENT proteins were predominantly localized in the apical and lateral membrane, respectively. Hepatocytes expressed higher levels of mRNAs of hENT1, hCNT1, and hENT2 than of hCNT2 and expressed all these proteins at hepatocyte cell borders and in the cytoplasm. While the kidney expressed hCNT1 and hCNT2 mRNAs in the proximal tubules, hENT1 and hENT2 mRNAs were present in the distal tubules, glomeruli, endothelial cells, and vascular smooth muscle cells. Proximal tubules adjacent to corticomedullary junctions expressed hENT1, hCNT1, and hCNT2 mRNA. Immunolocalization studies revealed predominant localization of hCNTs in the brush-border membrane of the proximal tubular epithelial cells and hENTs in the basolateral membrane of the distal tubular epithelial cells. Chorionic villi sections of human term placenta expressed mRNAs and proteins for hENT1 and hENT2 but only mRNA for hCNT2. Immunolocalization studies showed presence of hENT1 in the brush-border membrane of the syncytiotrophoblasts. These data are critical for a better understanding of the role of nucleoside transporters in the physiological and pharmacological effects of nucleosides and nucleoside drugs, respectively.  相似文献   

4.
5.
The SLC28 family of concentrative nucleoside transporter (CNT) proteins in mammalian cells contains members of two distinct phylogenic subfamilies. In humans, hCNT1 and hCNT2 belong to one subfamily, and hCNT3 to the other. All three CNTs mediate inwardly-directed Na(+)/nucleoside cotransport, and are either pyrimidine nucleoside-selective (hCNT1), purine nucleoside-selective (hCNT2), or broadly selective for both pyrimidine and purine nucleosides (hCNT3). While previous studies have characterized cation interactions with both hCNT1 and hCNT3, little is known about the corresponding properties of hCNT2. In the present study, heterologous expression in Xenopus oocytes in combination with radioisotope flux and electrophysiological techniques has allowed us to undertake a side-by-side comparison of hCNT2 with other hCNT family members. Apparent K (50) values for Na(+) activation were voltage-dependent, and similar in magnitude for all three transporters. Only hCNT3 was also able to couple transport of uridine to uptake of H(+). The Na(+)/nucleoside stoichiometry of hCNT2, as determined from both Hill coefficients and direct charge/flux measurements, was 1:1. This result was the same as for hCNT1, but different from that of hCNT3 (2:1). The charge-to-(22)Na(+) uptake stoichiometry was 1:1 for all three hCNTs. In parallel with their division into two separate CNT subfamilies, hCNT2 shares common cation specificity and coupling characteristics with hCNT1, which differ markedly from those of hCNT3.  相似文献   

6.
Responses to nucleoside analog drugs used in the treatment of cancers and viral infections can vary considerably between individuals. Genetic variability between individuals in their ability to transport drugs may be a contributory factor. Nucleoside transporters (NTs) move nucleosides and analog drugs across cell membranes. Four human NTs have been cloned: hENT1, hENT2, hCNT1, and hCNT2. Human NT expression profiles are not well defined; therefore, we undertook a comprehensive quantitative analysis of the differential expression of NTs within normal and tumor tissue. Results show tissue specific expression of the different NTs in normal tissue while matched normal/tumor tissue cDNA array data show considerable variability in all NT expression profiles from different individuals, in particular decreased expression in tumor tissue. Decreased NT expression in tumor tissue may contribute to reduced drug uptake and the development of resistance. These data suggest that nucleoside analog drug therapies may be optimized by determining individual NT expression profiles.  相似文献   

7.
Human umbilical vein endothelial cells (HUVEC) from gestational diabetes exhibit reduced adenosine uptake and increased nitric oxide (NO) synthesis. Adenosine transport via human equilibrative nucleoside transporters 1 (hENT1) is reduced by NO by unknown mechanisms in HUVEC. We examined whether gestational diabetes-reduced adenosine transport results from lower hENT1 gene (SLC29A1) expression. HUVEC from gestational diabetes exhibit reduced SLC29A1 promoter activity when transfected with pGL3-hENT1(-2154) compared with pGL3-hENT1(-1114) constructs, an effect blocked by N(G)-nitro-L-arginine methyl ester (L-NAME, NOS inhibitor), but unaltered by S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor). In cells from gestational diabetes transfected with pGL3-hENT1(-2154), L-NAME increased, but SNAP did not alter promoter activity and hENT1 expression. However, in cells from normal pregnancies L-NAME increased, but SNAP reduced promoter activity and hENT1 expression. Adenovirus-silenced eNOS expression increased hENT1 expression and activity in cells from normal or gestational diabetic pregnancies. Thus, reduced adenosine transport may result from downregulation of SLC29A1 expression by NO in HUVEC from gestational diabetes. These findings explain the accumulation of extracellular adenosine detected in cultures of HUVEC from gestational diabetes. In addition, fetal endothelial dysfunction could be involved in the abnormal fetal development and growth seen in gestational diabetes.  相似文献   

8.
9.
The nucleoside analogs 5-azacytidine (azacitidine) and 5-aza-2′-deoxycytidine (decitabine) are active against acute myeloid leukemia and myelodysplastic syndromes. Cellular transport across membranes is crucial for uptake of these highly polar hydrophilic molecules. We assessed the ability of azacitidine, decitabine, and, for comparison, gemcitabine, to interact with human nucleoside transporters (hNTs) in Saccharomyces cerevisiae cells (hENT1/2, hCNT1/2/3) or Xenopus laevis oocytes (hENT3/4). All three drugs inhibited hCNT1/3 potently (K i values, 3–26 μM), hENT1/2 and hCNT2 weakly (K i values, 0.5–3.1 mM), and hENT3/4 poorly if at all. Rates of transport of [3H]gemcitabine, [14C]azacitidine, and [3H]decitabine observed in Xenopus oocytes expressing individual recombinant hNTs differed substantially. Cytotoxicity of azacitidine and decitabine was assessed in hNT-expressing or hNT-deficient cultured human cell lines in the absence or presence of transport inhibitors where available. The rank order of cytotoxic sensitivities (IC 50 values, μM) conferred by hNTs were hCNT1 (0.1) > hENT1 (0.3) ? hCNT2 (8.3), hENT2 (9.0) for azacitidine and hENT1 (0.3) > hCNT1 (0.8) ? hENT2, hCNT2 (>100) for decitabine. Protection against cytotoxicity was observed for both drugs in the presence of inhibitors of nucleoside transport, thus suggesting the importance of hNTs in manifestation of toxicity. In summary, all seven hNTs transported azacitidine, with hCNT3 showing the highest rates, whereas hENT1 and hENT2 showed modest transport and hCNT1 and hCNT3 poor transport of decitabine. Our results show for the first time that azacitidine and decitabine exhibit different human nucleoside transportability profiles and their cytotoxicities are dependent on the presence of hNTs, which could serve as potential biomarkers of clinical response.  相似文献   

10.
To test the hypothesis that human concentrative and equilibrative nucleoside transporters (hCNT1 and hENT1) are present on the apical and basolateral membrane, respectively, we constructed a Madin-Darby canine kidney (MDCK) cell line that simultaneously and stably expresses recombinant hCNT1 and hENT1 gene products tagged with CFP and YFP fluorescent proteins, respectively. Using a confocal microscope, both hCNT1-CFP and hENT1-YFP were found to be distributed uniformly on the plasma membrane of undifferentiated MDCK cells. Upon differentiation of the MDCK cells on Transwell filter inserts, hCNT1-CFP was visualized exclusively on the apical membrane, whereas hENT1-YFP appeared predominantly on the basolateral membrane. As differentiation proceeded, there was an increase in alkaline phosphatase activity, and activity of hENT1 in the apical compartment decreased while hCNT1 activity remained constant. These results suggest that, on differentiation, hENT1 is sorted to the basolateral membrane. This was confirmed when the hCNT1-mediated uptake of [(3)H]uridine from the apical compartment of the differentiated cells was found to be approximately 20-fold higher and that for hENT1 was approximately 4-fold lower than the corresponding uptake from the basal compartment. As observed in vivo, the net transport of [(3)H]adenosine was from the apical to the basal compartment, whereas that for (14)C-deoxyadenosine was from the basal to the apical compartment. In summary, we have shown for the first time that hCNT1 and hENT1 are expressed in polarized MDCK cells on the apical and basolateral membrane, respectively, allowing vectorial transport in both directions depending on the relative activity (ratio of maximal transporter activity to affinity) of each transporter for their substrates.  相似文献   

11.
12.
Nucleoside transporters are essential for the cellular entry, efficacy, and cytotoxicity of several clinically important deoxynucleoside analogs (e.g., cytarabine and gemcitabine). We used immunohistochemistry to determine protein expression levels of the nucleoside transporters hENT1 and hCNT1 in NSCLC cell lines, NSCLC patient samples, and a variety of normal tissues. All 4 NSCLC cell lines expressed high to very high levels of both hENT1 and hCNT1. In NSCLC and normal tissues expression of hENT1 and hCNT1 ranged from completely negative to high. Immunohistochemistry might be a useful tool to predict response to deoxynucleoside analogs in malignancies treated with these drugs.  相似文献   

13.
Nucleoside transporters are essential for the cellular entry, efficacy, and cytotoxicity of several clinically important deoxynucleoside analogs (e.g., cytarabine and gemcitabine). We used immunohistochemistry to determine protein expression levels of the nucleoside transporters hENT1 and hCNT1 in NSCLC cell lines, NSCLC patient samples, and a variety of normal tissues. All 4 NSCLC cell lines expressed high to very high levels of both hENT1 and hCNT1. In NSCLC and normal tissues expression of hENT1 and hCNT1 ranged from completely negative to high. Immunohistochemistry might be a useful tool to predict response to deoxynucleoside analogs in malignancies treated with these drugs.  相似文献   

14.
We have cloned and functionally expressed a sodium-dependent human nucleoside transporter, hCNT2, from a CNS cancer cell line U251. Our cDNA clone of hCNT2 had the same predicted amino acid sequence as the previously cloned hCNT2 transporter. Of the several cell lines studied, the best hCNT2 transport function was obtained when transiently expressed in U251 cells. Na(+)-dependent uptake of [3H]inosine in U251 cells transiently expressing hCNT2 was 50-fold greater than that in non-transfected cells, and uptake in Na(+)-containing medium was approximately 30-fold higher than that at Na(+)-free condition. The hCNT2 displayed saturable uptake of [3H]inosine with K(m) of 12.8 microM and V(max) of 6.66 pmol/mg protein/5 min. Uptake of [3H]inosine was significantly inhibited by the purine nucleoside drugs dideoxyinosine and cladribine, but not by acyclic nucleosides including acyclovir, ganciclovir, and their prodrugs valacyclovir and valganciclovir. This indicates that the closed ribose ring is important for binding of nucleoside drugs to hCNT2. Among several pyrimidine nucleosides, hCNT2 favorably interacted with the uridine analogue floxuridine. Interestingly, we found that benzimidazole analogues, including maribavir, 5,6-dichloro-2-bromo-1-beta-D-ribofuranosylbenzimidazole (BDCRB), and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), were strong inhibitors of inosine transport, even though they have a significantly different heterocycle structure compared to a typical purine ring. As measured by GeneChip arrays, mRNA expression of hCNT2 in human duodenum was 15-fold greater than that of hCNT1 or hENT2. Further, the rCNT2 expression in rat duodenum was 20-fold higher than rCNT1, rENT1 or rENT2. This suggests that hCNT2 (and rCNT2) may have a significant role in uptake of nucleoside drugs from the intestine and is a potential transporter target for the development of nucleoside and nucleoside-mimetic drugs.  相似文献   

15.
Many antiviral drugs (e.g. fialuridine; FIAU) produce clinically significant mitochondrial toxicity that limits their dose or prevents their use in the clinic. Because the majority of nucleoside drugs is too hydrophilic to cross the highly impermeable mitochondrial membrane, we have hypothesized that they must be transported into the mitochondria to produce their toxicity. To test this hypothesis, we have sought to determine whether the nucleoside transporters, human equilibrative nucleoside transporter 1 (hENT1) or human concentrative nucleoside transporter 1 (hCNT1), when stably expressed in Madin-Darby canine kidney cells as yellow fluorescent fusion protein (YFP), are localized to the mitochondria. By using organelle-selective dyes and confocal microscopy, we have found that hENT1-YFP is localized to the mitochondria as well as the plasma membrane, whereas hCNT1-YFP was found predominantly on the plasma membrane. hENT1-YFP was not localized to the nuclear envelope, endosomes, lysosomes, or Golgi complex. Western blotting confirmed the presence of hENT1-YFP or endogenous hENT1 in mitochondria isolated from hENT1-YFP-expressing cells and human livers, respectively. In agreement with these localization data, [14C]FIAU was efficiently transported into the mitochondria of cells expressing hENT1-YFP but not of cells expressing hCNT1-YFP. The mitochondrial toxicity of FIAU to Madin-Darby canine kidney cells was enhanced by hENT1-YFP, even when hENT1 activity on the plasma membrane was selectively blocked by 10 nm nitrobenzylthioinosine. Moreover, FIAU (50 microm) produced significant mitochondrial toxicity ( approximately 70% decrease in mitochondrial DNA synthesis) when it was directly incubated with mitochondria isolated from hENT1-expressing cells. In conclusion, we have identified for the first time that hENT1 is expressed on the mitochondrial membrane and that this expression enhances the mitochondrial toxicity of nucleoside drugs such as FIAU. Mitochondrial expression of hENTs may explain the clinically significant mitochondrial toxicity caused by the anti-HIV nucleoside drugs such as zidovudine, stavudine, and didanosine.  相似文献   

16.
17.
The purpose of this study was to characterize the role of adenosine-dependent regulation of anion secretion in Calu-3 cells. RT-PCR studies showed that Calu-3 cells expressed mRNA for A2A and A2B but not A1 or A3 receptors, and for hENT1, hENT2 and hCNT3 but not hCNT1 or hCNT2 nucleoside transporters. Short-circuit current measurements indicated that A2B receptors were present in both apical and basolateral membranes, whereas A2A receptors were detected only in basolateral membranes. Uptake studies demonstrated that the majority of adenosine transport was mediated by hENT1, which was localized to both apical and basolateral membranes, with a smaller hENT2-mediated component in basolateral membranes. Whole-cell current measurements showed that application of extracellular nitrobenzylmercaptopurine ribonucleoside (NBMPR), a selective inhibitor of hENT1-mediated transport, had similar effects on whole-cell currents as the application of exogenous adenosine. Inhibitors of adenosine kinase and 5'-nucleotidase increased and decreased, respectively, whole-cell currents, whereas inhibition of adenosine deaminase had no effect. Single-channel studies showed that NBMPR and adenosine kinase inhibitors activated CFTR Cl- channels. These results suggested that the equilibrative nucleoside transporters (hENT1, hENT2) together with adenosine kinase and 5'-nucleotidase play a crucial role in the regulation of CFTR through an adenosine-dependent pathway in human airway epithelia.  相似文献   

18.
Drug metabolism in liver is the major pathway for xenobiotic elimination from the body. Access to intracellular metabolising enzymes is possible through passive diffusion of lipophilic drugs through cell membrane or active uptake of more polar drugs by specific uptake transporters. Organic Anion Transporting Polypeptides (OATP/SLCO) and Organic Cation Transporters (OCT/SLC22A) are among the most important transporters involved in xenobiotic transport into hepatocytes. Isolated hepatocytes are the model of choice for drug metabolism and drug transport investigations. These primary cells are used either as fresh directly after isolation from liver biopsies, or after subsequent cryopreservation in liquid nitrogen. While cryopreserved hepatocytes are a more convenient and flexible tool for in vitro investigations, information on the functionality of transporter activity after cryopreservation is still sparse. The present study investigated the effect of cryopreservation of human hepatocytes on the uptake of [(3)H]-estradiol-17β-glucuronide (E(2)17βG, substrate of OATP1B1/3/SLCO1B1/3) and [(3)H]-1-methyl-4-phenylpyridinium (MPP+, substrate of OCT1/SLC22A1) into hepatocytes from 6 and 5 human donors, respectively. The results showed that cryopreserved human hepatocytes display carrier-mediated uptake of E(2)17βG and MPP+. While the affinity of E(2)17βG for OATP1B1/3/SLCO1B1/3 was not affected by cryopreservation (Km unchanged, the Wilcoxon signed pair t test gave p=1), V(max) and CL(uptake) values decreased in average by 47% (p=0.06). The passive diffusion of E(2)17βG decreased significantly after cryopreservation (p=0.03). Cryopreservation did not affect Km, V(max) or the passive diffusion of MPP+ in human hepatocytes. In conclusion, the present study showed that cryopreserved human hepatocytes are useful tool to investigate hepatic uptake mediated by OATP1B1/3/SLCO1B1/3 or OCT1/SLC22A1, two of the most important hepatic uptake transporters.  相似文献   

19.
SLC28 genes, encoding concentrative nucleoside transporter proteins (CNT), show little genetic variability, although a few single nucleotide polymorphisms (SNPs) have been associated with marked functional disturbances. In particular, human CNT1S546P had been reported to result in negligible thymidine uptake. In this study we have characterized the molecular mechanisms responsible for this apparent loss of function. The hCNT1S546P variant showed an appropriate endoplasmic reticulum export and insertion into the plasma membrane, whereas loss of nucleoside translocation ability affected all tested nucleoside and nucleoside-derived drugs. Site-directed mutagenesis analysis revealed that it is the lack of the serine residue itself responsible for the loss of hCNT1 function. This serine residue is highly conserved, and mutation of the analogous serine in hCNT2 (Ser541) and hCNT3 (Ser568) resulted in total and partial loss of function, respectively. Moreover, hCNT3, the only member that shows a 2Na(+)/1 nucleoside stoichiometry, showed altered Na(+) binding properties associated with a shift in the Hill coefficient, consistent with one Na(+) binding site being affected by the mutation. Two-electrode voltage-clamp studies using the hCNT1S546P mutant revealed the occurrence of Na(+) leak, which was dependent on the concentration of extracellular Na(+) indicating that, although the variant is unable to transport nucleosides, there is an uncoupled sodium transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号