首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ozaki K  Shibata Y  Yamashita Y  Nakano Y  Tsuda H  Koga T 《FEBS letters》2002,532(1-2):159-163
We have cloned two genes (rgpH and rgpI) that encode proteins for the formation of the glucose side-chains of the Streptococcus mutans rhamnose-glucose polysaccharide (RGP), which consists of a rhamnan backbone with glucose side-chains. The roles of rgpH and rgpI were evaluated in a rhamnan-synthesizing Escherichia coli. An E. coli strain that harbored rgpH reacted with antiserum directed against complete RGP, whereas the E. coli strain that carried rgpI did not react with this antiserum. Although E. coli:rgpH reacted strongly with rhamnan-specific antiserum, co-transformation of this strain with rgpI increased the number of glucose side-chains and decreased immunoreactivity with the rhamnan-specific antiserum significantly. These results suggest that two genes are involved in side-chain formation during S. mutans RGP synthesis in E. coli: one gene encodes a glucosyltransferase, and the other gene probably controls the frequency of branching. This is the first report to identify a gene that is involved in regulation of branching frequency in polysaccharide synthesis.  相似文献   

2.
Reversibly glycosylated polypeptides (RGPs) have been implicated in polysaccharide biosynthesis. In plants, these proteins may function, for example, in cell wall synthesis and/or in synthesis of starch. We have isolated wheat (Triticum aestivum) and rice (Oryza sativa) Rgp cDNA clones to study the function of RGPs. Sequence comparisons showed the existence of two classes of RGP proteins, designated RGP1 and RGP2. Glucosylation activity of RGP1 and RGP2 from wheat and rice was studied. After separate expression of Rgp1 and Rgp2 in Escherichia coli or yeast (Saccharomyces cerevisiae), only RGP1 showed self-glucosylation. In Superose 12 fractions from wheat endosperm extract, a polypeptide with a molecular mass of about 40 kD is glucosylated by UDP-glucose. Transgenic tobacco (Nicotiana tabacum) plants, overexpressing either wheat Rgp1 or Rgp2, were generated. Subsequent glucosylation assays revealed that in RGP1-containing tobacco extracts as well as in RGP2-containing tobacco extracts UDP-glucose is incorporated, indicating that an RGP2-containing complex is active. Gel filtration experiments with wheat endosperm extracts and extracts from transgenic tobacco plants, overexpressing either wheat Rgp1 or Rgp2, showed the presence of RGP1 and RGP2 in high-molecular mass complexes. Yeast two-hybrid studies indicated that RGP1 and RGP2 form homo- and heterodimers. Screening of a cDNA library using the yeast two-hybrid system and purification of the complex by an antibody affinity column did not reveal the presence of other proteins in the RGP complexes. Taken together, these results suggest the presence of active RGP1 and RGP2 homo- and heteromultimers in wheat endosperm.  相似文献   

3.
L-Ara, an important constituent of plant cell walls, is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. Nucleotide sugar mutases have been demonstrated to interconvert UDP-Larabinopyranose (UDP-Arap) and UDP-L-arabinofuranose (UDP-Araf) in rice (Oryza sativa). These enzymes belong to a small gene family encoding the previously named Reversibly Glycosylated Proteins (RGPs). RGPs are plant-specific cytosolic proteins that tend to associate with the endomembrane system. In Arabidopsis thaliana, the RGP protein family consists of five closely related members. We characterized all five RGPs regarding their expression pattern and subcellular localizations in transgenic Arabidopsis plants. Enzymatic activity assays of recombinant proteins expressed in Escherichia coli identified three of the Arabidopsis RGP protein family members as UDP-L-Ara mutases that catalyze the formation of UDP-Araf from UDP-Arap. Coimmunoprecipitation and subsequent liquid chromatography-electrospray ionization-tandem mass spectrometry analysis revealed a distinct interaction network between RGPs in different Arabidopsis organs. Examination of cell wall polysaccharide preparations from RGP1 and RGP2 knockout mutants showed a significant reduction in total L-Ara content (12–31%) compared with wild-type plants. Concomitant downregulation of RGP1 and RGP2 expression results in plants almost completely deficient in cell wall–derived L-Ara and exhibiting severe developmental defects.  相似文献   

4.
Reversible glycosylated polypeptides (RGPs) are highly conserved plant-specific proteins, which can perform self-glycosylation. These proteins have been shown essential in plants yet its precise function remains unknown. In order to understand the function of this self-glycosylating polypeptide, it is important to establish what factors are involved in the regulation of the RGP activity. Here we show that incubation at high ionic strength produced a high self-glycosylation level and a high glycosylation reversibility of RGP from Solanum tuberosum L. In contrast, incubation at low ionic strength led to a low level of glycosylation and a low glycosylation reversibility of RGP. The incubation at low ionic strength favored the formation of high molecular weight RGP-containing forms, whereas incubation at high ionic strength produced active RGP with a molecular weight similar to the one expected for the monomer. Our data also showed that glycosylation of RGP, in its monomeric form, was highly reversible, whereas, a low reversibility of the protein glycosylation was observed when RGP was part of high molecular weight structures. In addition, glycosylation of RGP increased the occurrence of non-monomeric RGP-containing forms, suggesting that glycosylation may favor multimer formation. Finally, our results indicated that RGP from Arabidopsis thaliana and Pisum sativum are associated to golgi membranes, as part of protein complexes. A model for the regulation of the RGP activity and its binding to golgi membranes based on the glycosylation of the protein is proposed where the sugars linked to oligomeric form of RGP in the golgi may be transferred to acceptors involved in polysaccharide biosynthesis.  相似文献   

5.
Rabies glycoprotein (RGP(WT)) contains N-glycosylation sequons at Asn(37), Asn(247), and Asn(319), although Asn(37) is not efficiently glycosylated. To examine N-glycan processing at Asn(247) and Asn(319), full-length glycosylation mutants, RGP(-2-) and RGP(--3), were expressed, and Endo H sensitivity was compared. When the Asn(247) sequon is present alone in RGP(-2-), 90% of its N-glycans are high-mannose type, whereas only 35% of the N-glycans at Asn(319) in RGP(--3) are high-mannose. When both sequons are present in RGP(-23), 87% of the N-glycans are of complex type. The differing patterns of Endo H sensitivity at sequons present individually or together suggests that glycosylation of one sequon affects glycosylation at another, distant sequon. To explore this further, we constructed soluble forms of RGP: RGP(WT)T441His and RGP(--3)T441His. Tryptic glycopeptides from these purified secreted proteins were isolated by HPLC and characterized by a 3D oligosaccharide mapping technique. RGP(WT)T441His had fucosylated, bi- and triantennary complex type glycans at Asn(247) and Asn(319). However, Asn(247) had half as many neutral glycans, more monosialylated glycans, and fewer disialylated glycans when compared with Asn(319). Moreover, when comparing the N-glycans at Asn(319) on RGP(--3)T441His and RGP(WT)T441His, the former had 30% more neutral, 28% more monosialylated, and 33% fewer disialylated glycans. This suggests that the N-glycan at Asn(247) allows additional N-glycan processing to occur at Asn(319), yielding more heavily sialylated bi- and triantennary forms. The mechanism(s) by which glycosylation at one sequon influences N-glycan processing at a distant sequon on the same glycoprotein remains to be determined.  相似文献   

6.
Mucus glycoprotein (RGP) was purified and characterized from the skin mucus of rainbow trout, Salmo gairdneri. RGP was found to contain 30.1% NeuAc, 26.0% GalNAc, 5.0% Gal, and 26.0% amino acids. The protein moiety of RGP is very rich in Thr (32.4 mol%). Neither NeuGc nor KDN (2-keto-3-deoxy-d-glycero-d-galacto-nononic acid) was found in RGP. Alkaline borohydride treatment of RGP yielded a major disaccharide alditol, NeuAcα2→6GalNAc-ol and more than 4 minor oligosaccharide alditols including NeuAc→(GalNAcα1→)GalNAc-ol. It was evident that an average RGP molecule has approximately 500 NeuAc-containing oligosaccharide chains, which are attached to the Thr and Ser residues of the protein moiety and spaced at an average of 3 amino acids apart.  相似文献   

7.
Relaxin-like gonad-stimulating peptide (RGP) in starfish is the only known invertebrate peptide hormone responsible for final gamete maturation, rendering it functionally analogous to gonadotropins in vertebrates. Recently, RGP was purified from the radial nerves of starfish Asterina pectinifera, which belongs to the Order Valvatida in the Class Asteroidea. A. pectinifera is an endemic Japanese species, inhabiting rocky shores from northern to southern Japanese waters. This study examined whether genetic variation or polymorphism is found in RGP. Comparing cDNA sequences of RGP in A. pectinifera from 10 local populations in Japanese waters, we found that the coding DNA sequences (CDSs) were exactly the same. This result indicated that RGP is a highly conserved peptide in A. pectinifera. Furthermore, the CDS of RGP identified in Certonardoa semiregularis, which also belongs to Order Valvatida, was completely consistent with that of A. pectinifera. Thus, this also suggested that the chemical structure of A. pectinifera RGP is conserved among starfish of the Order Valvatida beyond species.  相似文献   

8.
Reversibly glycosylated polypeptides (RGPs) have been implicated in polysaccharide biosynthesis. To date, to our knowledge, no direct evidence exists for the involvement of RGPs in a particular biochemical process. The Arabidopsis (Arabidopsis thaliana) genome contains five RGP genes out of which RGP1 and RGP2 share the highest sequence identity. We characterized the native expression pattern of Arabidopsis RGP1 and RGP2 and used reverse genetics to investigate their respective functions. Although both genes are ubiquitously expressed, the highest levels are observed in actively growing tissues and in mature pollen, in particular. RGPs showed cytoplasmic and transient association with Golgi. In addition, both proteins colocalized in the same compartments and coimmunoprecipitated from plant cell extracts. Single-gene disruptions did not show any obvious morphological defects under greenhouse conditions, whereas the double-insertion mutant could not be recovered. We present evidence that the double mutant is lethal and demonstrate the critical role of RGPs, particularly in pollen development. Detailed analysis demonstrated that mutant pollen development is associated with abnormally enlarged vacuoles and a poorly defined inner cell wall layer, which consequently results in disintegration of the pollen structure during pollen mitosis I. Taken together, our results indicate that RGP1 and RGP2 are required during microspore development and pollen mitosis, either affecting cell division and/or vacuolar integrity.  相似文献   

9.
The crown-of thorns starfish, Acanthaster planci, has been blamed for coral mortality in a large number of coral reef systems in the Indo-Pacific region. Because population outbreaks of A. planci are closely related to reproduction, it is important to examine the mechanism of reproductive control in this starfish. Previously, a relaxin-like gonad-stimulating peptide (RGP) in starfish Asterina pectinifera has been identified as the gonadotropin responsible for final gamete maturation. On the basis of homology research on RGP cDNAs from several species, this study was carried out to identify gonadotropin in A. planci. The cDNA sequence of RGP was determined using a RACE product of mRNA from the radial nerves of A. planci. The coding DNA sequence consisted of 351 base pairs with an open reading frame encoding a peptide of 116 amino acids (aa), including a signal peptide (29 aa), B-chain (19 aa), C-peptide (44 aa), and A-chain (24 aa). The chemical structure of A. planci RGP was exactly the same as that of A. pectinifera RGP. Furthermore, synthetic RGP could induce gamete spawning and oocyte maturation in the ovarian fragments of A. planci. This strongly suggested that the RGP is a gonadotropin in A. planci.  相似文献   

10.
目的:研究复发性胆源性胰腺炎(RGP)的临床特征及危险因素。方法:选择从2012年1月至2017年1月在本院接受治疗的80例RGP患者作为观察组,另选同期在本院接受治疗的胆源性胰腺炎(GP)患者86例作为对照组,分析观察组患者的临床特征及两组患者的致病因素,采用Logistic回归分析RGP的危险因素。结果:在RGP患者的临床特征中,复发次数均较多,平均达到(3.21±0.23)次。发病诱因则主要是胆囊结石、胆总管结石及高脂血症;临床症状主要是黄疸、呕吐、恶心、腹痛、腹胀;并发症主要包括胆管炎、胰腺脓肿以及腹水;临床体征主要有出血征象、腹肌紧张、腹部压痛等。观察组的男性、重度胰腺炎、合并胆总管结石、胆胰管开口狭窄、有高脂血症、手术治疗的患者致病率分别高于对照组,并且观察组急性生理与慢性健康评分(APACHE-Ⅱ)明显高于对照组,差异均有统计学意义(P0.05)。由多因素Logistic回归分析可知,导致RGP的危险因素有男性、高APACHE-Ⅱ评分、重度胰腺炎、合并胆总管结石、胆胰管开口狭窄、有高脂血症以及手术治疗。结论:RGP患者的临床特征具有一定的规律性,其中男性、高APACHE-Ⅱ评分、重度胰腺炎、合并胆总管结石、胆胰管开口狭窄、有高脂血症以及手术治疗是导致RGP发生的危险因素。  相似文献   

11.
The nucleotide sequence of the Escherichia coli envM gene was determined. It codes for a protein of 262 amino acids. The sequences of the E. coli and Salmonella typhimurium EnvM proteins are 98% identical. Gene envM is preceded in E. coli by a 43-nucleotide-long structural element, termed 'box c', which occurs in several E. coli operons between structural genes. This sequence element is totally absent in S. typhimurium. Gene envM was mapped at coordinate position 1366.8 kb of the physical map of Kohara et al. (Cell, 1987, 50, 495-508). As in S. typhimurium, a Gly for Ser exchange at position 93 of the amino acid sequence leads to a diazaborine-resistant E. coli phenotype. A Ser for Phe exchange at position 241 of the EnvM protein results in a temperature-sensitive growth phenotype. Comparison of the EnvM amino acid sequence with sequences available in databases showed significant homology with the family of short-chain alcohol dehydrogenases.  相似文献   

12.
13.
How to generate a brain of correct size and with appropriate cell-type diversity during development is a major question in Neuroscience. In the developing neocortex, radial glial progenitor (RGP) cells are the main neural stem cells that produce cortical excitatory projection neurons, glial cells, and establish the prospective postnatal stem cell niche in the lateral ventricles. RGPs follow a tightly orchestrated developmental program that when disrupted can result in severe cortical malformations such as microcephaly and megalencephaly. The precise cellular and molecular mechanisms instructing faithful RGP lineage progression are however not well understood. This review will summarize recent conceptual advances that contribute to our understanding of the general principles of RGP lineage progression.  相似文献   

14.
Arginine-specific cysteine proteinase (Arg-gingipain [RGP], a major proteinase secreted from the oral anaerobic bacterium Porphyromonas gingivalis, is encoded by two separate genes (rgpA and rgpB) on the P. gingivalis chromosome and widely implicated as an important virulence factor in the pathogenesis of periodontal disease (K. Nakayama, T. Kadowaki, K. Okamoto, and K. Yamamoto, J. Biol. Chem. 270:23619-23626, 1995). In this study, we investigated the role of RGP in the formation of P. gingivalis fimbriae which are thought to mediate adhesion of the organism to the oral surface by use of the rgp mutants. Electron microscopic observation revealed that the rgpA rgpB double (RGP-null) mutant possessed very few fimbriae on the cell surface, whereas the number of fimbriae of the rgpA or rgpB mutant was similar to that of the wild-type parent strain. The rgpB+ revertants that were isolated from the double mutant and recovered 20 to 40% of RGP activity of the wild-type parent possessed as many fimbriae as the wild-type parent, indicating that RGP significantly contributes to the fimbriation of P. gingivalis as well as to the degradation of various host proteins, disturbance of host defense mechanisms, and hemagglutination. Immunoblot analysis of cell extracts of these mutants with antifimbrilin antiserum revealed that the rgpA rgpB double mutant produced small amounts of two immunoreactive proteins with molecular masses of 45 and 43 kDa, corresponding to those of the precursor and mature forms of fimbrilin, respectively. The result suggests that RGP may function as a processing proteinase for fimbrilin maturation. In addition, a precursor form of the 75-kDa protein, one of the major outer membrane proteins of P. gingivalis, was accumulated in the rgpA rgpB double mutant but not in the single mutants and the revertants, suggesting an extensive role for RGP in the maturation of some of the cell surface proteins.  相似文献   

15.
Bacteriophage M102 is a virulent siphophage that propagates in some serotype c Streptococcus mutans strains, but not in S. mutans of serotype e, f or k. The serotype of S. mutans is determined by the glucose side chain of rhamnose–glucose polysaccharide (RGP). Because the first step in the bacteriophage infection process is adsorption of the phage, it was investigated whether the serotype specificity of phage M102 was determined by adsorption. M102 adsorbed to all tested serotype c strains, but not to strains of different serotypes. Streptococcus mutans serotype c mutants defective in the synthesis of the glucose side chain of RGP failed to adsorb phage M102. These results suggest that the glucose side chain of RGP acts as a receptor for phage M102.  相似文献   

16.
We present here the functional characterization of a third complete type II secretion system (T2SS) found in newly sequenced Pseudomonas aeruginosa strain PA7. We call this system Txc (third Xcp homolog). This system is encoded by the RGP69 region of genome plasticity found uniquely in strain PA7. In addition to the 11 txc genes, RGP69 contains two additional genes encoding a possible T2SS substrate and a predicted unorthodox sensor protein, TtsS (type II secretion sensor). We also identified a gene encoding a two-component response regulator called TtsR (type II secretion regulator), which is located upstream of the ttsS gene and just outside RGP69. We show that TtsS and TtsR constitute a new and functional two-component system that controls the production and secretion of the RGP69-encoded T2SS substrate in a Txc-dependent manner. Finally, we demonstrate that this Txc-secreted substrate binds chitin, and we therefore name it CbpE (chitin-binding protein E).  相似文献   

17.
A DNA fragment of approximately 1500 bp, harbouring the sorbitol transport gene (srlT), was amplified from the chromosomal DNA of Erwinia herbicola ATCC 21998 by PCR and cloned in Escherichia coli JM109. Degenerate oligonucleotide primers used were designed based on the conserved regions in the gene sequences within the gut operon of E. coli (Gene Bank accession no. J02708) and the srl operon of Erwinia amylovora (Gene Bank accession no. Y14603). The cloned DNA fragment was sequenced and found to contain an open reading frame of 1473 nucleotides coding for a protein of 491 amino acids, corresponding to a mass of 52410 Da. The nucleotide sequence of this ORF was highly homologous to that of the gutA gene of Escherichia coli gut operon, the srlE gene of Shigella flexrni and the sorbitol transporter gene sequence of Escherichia coli K12 (Gene Bank accession nos. J02708, AE016987 and D90892 respectively). The protein sequence showed significant homology to that of the phosphotransferase system i.e. the glucitol/sorbitol-specific IIBC components of Escherichia coli and Erwinia amylovora (P56580, O32522). The cloned DNA fragment was introduced into a pRA90 vector and the recombinant was used for developing srlT mutants of Erwinia herbicola, by homologous recombination. Mutants obtained were unable to grow on minimal medium with sorbitol. The insertion of the pRA90 vector inside the srlT gene sequence of the mutants was confirmed by DNA-DNA hybridisation.  相似文献   

18.
Gene fda has been mapped, by co-transduction, between thyA and serA on the Escherichia coli chromosome.  相似文献   

19.
The cell wall of Gram‐positive bacteria has been shown to mediate environmental stress tolerance, antibiotic susceptibility, host immune evasion and overall virulence. The majority of these traits have been demonstrated for the well‐studied system of wall teichoic acid (WTA) synthesis, a common cell wall polysaccharide among Gram‐positive organisms. Streptococcus mutans, a Gram‐positive odontopathogen that contributes to the enamel‐destructive disease dental caries, lacks the capabilities to generate WTA. Instead, the cell wall of S. mutans is highly decorated with rhamnose‐glucose polysaccharides (RGP), for which functional roles are poorly defined. Here, we demonstrate that the RGP has a distinct role in protecting S. mutans from a variety of stress conditions pertinent to pathogenic capability. Mutant strains with disrupted RGP synthesis failed to properly localize cell division complexes, suffered from aberrant septum formation and exhibited enhanced cellular autolysis. Surprisingly, mutant strains of S. mutans with impairment in RGP side chain modification grew into elongated chains and also failed to properly localize the presumed cell wall hydrolase, GbpB. Our results indicate that fully mature RGP has distinct protective and morphogenic roles for S. mutans, and these structures are functionally homologous to the WTA of other Gram‐positive bacteria.  相似文献   

20.
利用旋转培养装置处理大肠杆菌,筛选生长曲线发生变化、提前进入对数期的突变菌株,对菌株进行基因芯片的表达谱分析和质谱分析,研究微重力条件下微生物的生理代谢变化和对微重力条件的适应机制。结果发现突变菌株有114个差异表达基因,其中99个基因表达上调。表达上调基因主要集中在ABC转运系统、糖代谢、三羧酸代谢、磷酸转移酶系统、核酸代谢、脂类代谢等方面。质谱分析从蛋白水平上验证了这个结果。表明经过微重力处理可以筛选到生长加快的菌株,生长加快是菌株相关代谢水平上调的结果。空间微重力通过对微生物生长代谢相关基因的影响来使菌株适应空间环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号