首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phagocytosis of Borrelia burgdorferi, the causative agent of Lyme disease, is mediated partly by the interaction of the spirochete with Complement Receptor (CR) 3. CR3 requires the GPI-anchored protein, CD14, in order to efficiently internalize CR3-B. burgdorferi complexes. GPI-anchored proteins reside in cholesterol-rich membrane microdomains, and through its interaction with partner proteins, help initiate signaling cascades. Here, we investigated the role of CD14 on the internalization of B. burgdorferi mediated by CR3. We show that CR3 partly colocalizes with CD14 in lipid rafts. The use of the cholesterol-sequestering compound methyl-β-cyclodextran completely prevents the internalization of the spirochete in CHO cells that co-express CD14 and CR3, while no effect was observed in CD11b-deficient macrophages. These results show that lipid rafts are required for CR3-dependent, but not independent, phagocytosis of B. burgdorferi. Our results also suggest that CD14 interacts with the C-lectin domain of CR3, favoring the formation of multi-complexes that allow their internalization, and the use of β-glucan, a known ligand for the C-lectin domain of CR3, can compensate for the lack of CD14 in CHO cells that express CR3. These results provide evidence to understand the mechanisms that govern the interaction between CR3 and CD14 during the phagocytosis of B. burgdorferi.  相似文献   

2.
A significant amount of evidence has been accumulated to show that Toll-like receptors (TLRs) function as sensors for microbial invasion. However, little is known about how signalling triggered by TLRs leads to the phagocytosis of pathogens. This study was designed to determine whether stimulation of TLR2 mainly with the lipopeptide FSL-1 plays a role in the phagocytosis of pathogens by macrophages. FSL-1 enhanced the phagocytosis of Escherichia coli to a markedly greater extent than it did that of Staphylococcus aureus, but did not enhance the phagocytosis of latex beads. FSL-1 stimulation resulted in enhanced phagocytosis of bacteria by macrophages from TLR2(+/+) mice but not by those from TLR2(-/-) mice. Chinese hamster ovary cells stably expressing TLR2 failed to phagocytose these bacteria, but the cells expressing CD14 did. FSL-1 induced upregulation of the expression of phagocytic receptors, including MSR1, CD36, DC-SIGN and Dectin-1 in THP-1 cells. Human embryonic kidney 293 cells transfected with DC-SIGN and MSR1 phagocytosed these bacteria. These results suggest that the FSL-1-induced enhancement of phagocytosis of bacteria by macrophages may be explained partly by the upregulation of scavenger receptors and the C-type lectins through TLR2-mediated signalling pathways, and that TLR2 by itself does not function as a phagocytic receptor.  相似文献   

3.
Mammalian Toll-like receptor (TLR) proteins are new members of the IL-1 receptor family that participate in activation of cells by bacteria and bacterial products. Several recent reports indicate that TLR proteins mediate cellular activation by bacterial LPS via a signaling pathway that is largely shared by the type I IL-1 receptor. We previously showed that Chinese hamster ovary (CHO) fibroblasts engineered to express CD14 (CHO/CD14) were responsive to LPS, but not to a distinct CD14 ligand, mycobacterial lipoarabinomannan (LAM). These CHO/CD14 cells were subsequently found to possess a frame-shift mutation within the TLR2 gene which resulted in their inability to express functional TLR2 protein. Thus, we hypothesized that TLR2, but not TLR4, was necessary for LAM signaling. In this paper we show that CHO/CD14 cells engineered to express functional TLR2 protein acquired the ability to be activated by LAM. Similarly, overexpression of TLR2 in murine macrophages conferred enhanced LAM responsiveness. Together, our data demonstrate that the distinct CD14 ligands LAM and LPS utilize different TLR proteins to initiate intracellular signals. These findings suggest a novel receptor signaling paradigm in which the binding of distinct ligands is mediated by a common receptor chain, but cellular activation is initiated via distinct signal-transducing chains that confer ligand specificity. This paradigm contrasts with many cytokine receptor complexes in which receptor specificity is conferred by a unique ligand-binding chain but cellular activation is initiated via shared signal-transducing chains.  相似文献   

4.
Inulin is a polysaccharide that enhances various immune responses, mainly to T and B cells, natural killer cells, and macrophages in vivo and in vitro. Previous reports describe that inulin activates macrophages indirectly by affecting the alternative complement pathway. In this study, we examined the direct effect of inulin on PMA-treated THP-1 macrophages. Inulin treatment did not stimulate the proliferation of THP-1 macrophages at all. However, inulin treatment significantly increased phagocytosis of the polystyrene beads without the influence of serum. Doses of around 1 mg/mL had the maximal effect, and significant progression of phagocytosis occurred at times treated over 6 h. Inulin augmented phagocytosis not only with polystyrene beads but also with apoptotic cancer cells. The inulin-induced phagocytosis uptake was suppressed in Toll-like receptor (TLR) 4 mutated C3H/HeJ mice peritoneal macrophages. Moreover, inulin-induced THP-1 macrophage TNF-α secretion was inhibited using a blocking antibody specific to TLR4, suggesting that TLR4 is involved in the binding of inulin to macrophages. Furthermore, we used specific kinase inhibitors to assess the involvement of inulin-induced phagocytosis and revealed that phosphoinositide 3-kinase and mitogen-activated protein kinase, especially p38, participated in phagocytosis. These results suggest that inulin affects macrophages directly by involving the TLR4 signaling pathway and stimulating phagocytosis for enhancing immunomodulation.  相似文献   

5.
Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus   总被引:17,自引:0,他引:17  
Aspergillus fumigatus causes life-threatening infections in patients with qualitative and quantitative defects in phagocytic function. Here, we examined the contribution of Toll-like receptor (TLR)-2, TLR4, the adapter protein MyD88, and CD14 to signaling in response to the three forms of A. fumigatus encountered during human disease: resting conidia (RC), swollen conidia (SC), and hyphae (H). Compared with elicited peritoneal macrophages obtained from wild-type and heterozygous mice, TLR2(-/-) and MyD88(-/-) macrophages produced significantly less tumor necrosis factor-alpha (TNFalpha) following A. fumigatus stimulation. In contrast, following stimulation with RC, SC, and H, TLR4(-/-) and CD14(-/-) macrophages exhibited no defects in tumor necrosis factor-alpha release. TLR2(-/-), TLR4(-/-), MyD88(-/-), and CD14(-/-) macrophages bound similar numbers of RC and SC compared with wild-type macrophages. RC, SC, and H stimulated greater activation of a nuclear factor kappa B (NFkappaB)-dependent reporter gene and greater release of tumor necrosis factor-alpha from the human monocytic THP-1 cell line stably transfected with CD14 compared with control cells stably transfected with empty vector. A. fumigatus stimulated NFkappaB-dependent reporter gene activity in the human embryonic kidney cell line, HEK293, only if the cells were transfected with TLR2. Moreover, activity increased when TLR2 and CD14 were co-transfected. Taken together, these data suggest that optimal signaling responses to A. fumigatus require TLR2 in both mouse and human cells. In contrast, a role for CD14 was found only in the human cells. MyD88 acts as a central adapter protein mediating signaling responses following stimulation with RC, SC, and H.  相似文献   

6.
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.  相似文献   

7.
TLRs function as pattern recognition receptors in mammals and play an essential role in the recognition of microbial components. We found that the injection of glycoinositolphospholipids (GIPLs) from Trypanosoma cruzi into the peritoneal cavity of mice induced neutrophil recruitment in a TLR4-dependent manner: the injection of GIPL in the TLR4-deficient strain of mice (C57BL/10ScCr) caused no inflammatory response. In contrast, in TLR2 knockout mice, neutrophil chemoattraction did not differ significantly from that seen in wild-type controls. GIPL-induced neutrophil attraction and MIP-2 production were also severely affected in TLR4-mutant C3H/HeJ mice. The role of TLR4 was confirmed in vitro by testing genetically engineered mutants derived from TLR2-deficient Chinese hamster ovary (CHO)-K1 fibroblasts that were transfected with CD14 (CHO/CD14). Wild-type CHO/CD14 cells express the hamster TLR4 molecule and the mutant line, in addition, expresses a nonfunctional form of MD-2. In comparison to wild-type cells, mutant CHO/CD14 cells failed to respond to GIPLs, indicating a necessity for a functional TLR4/MD-2 complex in GIPL-induced NF-kappaB activation. Finally, we found that TLR4-mutant mice were hypersusceptible to T. cruzi infection, as evidenced by a higher parasitemia and earlier mortality. These results demonstrate that natural resistance to T. cruzi is TLR4 dependent, most likely due to TLR4 recognition of their GIPLs.  相似文献   

8.
Phagocytosis of microbial pathogens is essential for the host immune response to infection. Our previous work has shown that lipooligosaccharide (LOS) expression on the surface of Neisseria meningitidis (Nm) is essential for phagocytosis, but the receptor involved remained unclear. In this study, we show that human CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are phagocytic receptors for Nm as illustrated by the capacity of CR3- and CR4-transfected Chinese hamster ovary (CHO) cells to facilitate Nm uptake. A CR3-signalling mutant failed to internalize Nm, showing that the ability of CR3 to signal is essential for phagocytosis. Internalization of Nm by CR3-transfected CHO cells could be inhibited by the presence of CR3-specific antibodies. Furthermore, dendritic cells from leukocyte adhesion deficiency-1 patients, who have diminished expression of β2 integrins, showed markedly reduced phagocytosis of Nm. The CR3-mediated phagocytosis required the presence of lipopolysaccharide-binding protein (LBP). Furthermore, the expression of LOS by Nm was essential for LBP binding and phagocytosis via CR3. These results reveal a critical role of CR3 and LBP in the phagocytosis of Nm and provide important insights into the initial interaction meningococci have with the immune system.  相似文献   

9.
ER-112022 is a novel acyclic synthetic lipid A analog that contains six symmetrically organized fatty acids on a noncarbohydrate backbone. Chinese hamster ovary (CHO)-K1 fibroblasts and U373 human astrocytoma cells do not respond to lipopolysaccharide (LPS) in the absence of CD14. In contrast, exposure to ER-112022 effectively induced activation of CHO and U373 cells under serum-free conditions. Expression of CD14 was not necessary for cells to respond to ER-112022, although the presence of soluble CD14 enhanced the sensitivity of the response. Several lines of evidence suggested that ER-112022 stimulates cells via the LPS signal transduction pathway. First, the diglucosamine-based LPS antagonists E5564 and E5531 blocked ER-112022-induced stimulation of CHO-K1, U373, and RAW264.7 cells. Second, ER-112022 was unable to activate C3H/HeJ mouse peritoneal macrophages, containing a mutation in Toll-like receptor (TLR) 4, as well as HEK293 cells, an epithelial cell line that does not express TLR4. Third, ER-112022 activated NF-kappaB in HEK293 cells transfected with TLR4/MD-2. Finally, tumor necrosis factor release from primary human monocytes exposed to ER-112022 was blocked by TLR4 antibodies but not by TLR2 antibodies. Our results suggest that ER-112022 and the family of lipid A-like LPS antagonists can functionally associate with TLR4 in the absence of CD14. Synthetic molecules like ER-112022 may prove to be valuable tools to characterize elements in the LPS receptor complex, as well as to activate or inhibit the TLR4 signaling pathway for therapeutic purposes.  相似文献   

10.
Complement receptor 3 (CR3, CD11b/CD18) is a major macrophage phagocytic receptor. The biochemical pathways through which CR3 regulates immunologic responses have not been fully characterized. Francisella tularensis is a remarkably infectious, facultative intracellular pathogen of macrophages that causes tularemia. Early evasion of the host immune response contributes to the virulence of F. tularensis and CR3 is an important receptor for its phagocytosis. Here we confirm that efficient attachment and uptake of the highly virulent Type A F. tularensis spp. tularensis strain Schu S4 by human monocyte-derived macrophages (hMDMs) requires complement C3 opsonization and CR3. However, despite a>40-fold increase in uptake following C3 opsonization, Schu S4 induces limited pro-inflammatory cytokine production compared with non-opsonized Schu S4 and the low virulent F. novicida. This suggests that engagement of CR3 by opsonized Schu S4 contributes specifically to the immune suppression during and shortly following phagocytosis which we demonstrate by CD11b siRNA knockdown in hMDMs. This immune suppression is concomitant with early inhibition of ERK1/2, p38 MAPK and NF-κB activation. Furthermore, TLR2 siRNA knockdown shows that pro-inflammatory cytokine production and MAPK activation in response to non-opsonized Schu S4 depends on TLR2 signaling providing evidence that CR3-TLR2 crosstalk mediates immune suppression for opsonized Schu S4. Deletion of the CD11b cytoplasmic tail reverses the CR3-mediated decrease in ERK and p38 activation during opsonized Schu-S4 infection. The CR3-mediated signaling pathway involved in this immune suppression includes Lyn kinase and Akt activation, and increased MKP-1, which limits TLR2-mediated pro-inflammatory responses. These data indicate that while the highly virulent F. tularensis uses CR3 for efficient uptake, optimal engagement of this receptor down-regulates TLR2-dependent pro-inflammatory responses by inhibiting MAPK activation through outside-in signaling. CR3-linked immune suppression is an important mechanism involved in the pathogenesis of F. tularensis infection.  相似文献   

11.
Phagocytosis is a highly localized event requiring the formation of spatially and temporally restricted signals. Numerous microorganisms have taken advantage of this property to invade host cells. Coxiella burnetii, the agent of Q fever, is an obligate intracellular bacterium that has developed a survival strategy in macrophages based on subversion of receptor-mediated phagocytosis. The uptake of C. burnetii is mediated by alpha(v)beta(3) integrin and is restricted by impaired cross-talk of alpha(v)beta(3) integrin and complement receptor 3 (CR3) (CD11b/CD18). In this study, we showed that CR3 molecules remained outside the pseudopodal extensions induced by C. burnetii in THP-1 monocytes, although alpha(v)beta(3) integrin was present in the pseudopods. Chemoattractants such as RANTES restored CR3 localization to the front of pseudopodal extensions and increased C. burnetii phagocytosis, demonstrating that the localization of CR3 is critical for bacterial uptake. In addition, monocyte activation due to the expression of HIV-1 Nef protein also restored CR3-mediated phagocytosis of C. burnetii by allowing CR3 redistribution toward bacterial-induced pseudopods. The redistribution of CR3 and increased C. burnetii phagocytosis in THP-1 cells stimulated by RANTES or expressing Nef were associated with the inhibition of intracellular replication of C. burnetii. Hence, the localization of CR3 is critical for bacterial phagocytosis and also for the control of bacterial replication. This study describes a nonpreviously reported strategy of phagocytosis subversion by intracellular pathogens based on altered localization of monocyte receptors.  相似文献   

12.
A fundamental step in the life cycle of Francisella tularensis is bacterial entry into host cells. F. tularensis activates complement, and recent data suggest that the classical pathway is required for complement factor C3 deposition on the bacterial surface. Nevertheless, C3 deposition is inefficient and neither the specific serum components necessary for classical pathway activation by F. tularensis in nonimmune human serum nor the receptors that mediate infection of neutrophils have been defined. In this study, human neutrophil uptake of GFP-expressing F. tularensis strains live vaccine strain and Schu S4 was quantified with high efficiency by flow cytometry. Using depleted sera and purified complement components, we demonstrated first that C1q and C3 were essential for F. tularensis phagocytosis, whereas C5 was not. Second, we used purification and immunodepletion approaches to identify a critical role for natural IgM in this process, and then used a wbtA2 mutant to identify LPS O-Ag and capsule as prominent targets of these Abs on the bacterial surface. Finally, we demonstrate using receptor-blocking Abs that CR1 (CD35) and CR3 (CD11b/CD18) acted in concert for phagocytosis of opsonized F. tularensis by human neutrophils, whereas CR3 and CR4 (CD11c/CD18) mediated infection of human monocyte-derived macrophages. Altogether, our data provide fundamental insight into mechanisms of F. tularensis phagocytosis and support a model whereby natural IgM binds to surface capsular and O-Ag polysaccharides of F. tularensis and initiates the classical complement cascade via C1q to promote C3 opsonization of the bacterium and phagocytosis via CR3 and either CR1 or CR4 in a phagocyte-specific manner.  相似文献   

13.
Arginine-specific gingipain and lysine-specific gingipain are two major cysteine proteinases produced by Porphyromonas gingivalis. To clarify the role of gingipains in the interaction between P. gingivalis and the innate immune system, CHO reporter cells expressing TLR2 or TLR4 were stimulated with wildtype or gingipain-deficient P. gingivalis cells and activation of nuclear factor-kappaB in these cells was examined. While CHO/CD14 cells and 7.19 cells, an MD-2-defective mutant derived from CHO/CD14 cells, failed to respond to wild-type P. gingivalis, they responded to gingipain-deficient P. gingivalis. On the other hand, CHO/CD14/TLR2 cells responded to both wild-type and gingipain-deficient P. gingivalis. These results suggested that gingipains have no effects on TLR2-dependent signaling from P. gingivalis but have inhibitory effects on TLR2-and TLR4-independent signaling in CHO cells. Indeed, the activity of gingipain-deficient P. gingivalis to induce the activation of 7.19 cells was diminished after treatment of the bacterial cells with gingipains. We next partially purified bacterial cell components activating 7.19 cells from gingipain-deficient P. gingivalis. The activity of the partially purified components was diminished by treatment with heat or gingipains. It is also noteworthy that anti-CD14 mAb inhibited the activation of 7.19 cells induced by the partially purified components. These results indicated that the components of P. gingivalis that were able to induce TLR2-and TLR4-independent signaling were inactivated by gingipains before being recognized by CD14. The inactivation of the components would be helpful for P. gingivalis to escape from the innate immune system.  相似文献   

14.
15.
Lipopolysaccharide (LPS) signaling leading to nuclear factor-kappaB activation in mononuclear phagocytes involves interleukin-1 receptor-associated kinase (IRAK), which is rapidly activated after exposure to agonist. Although it is known that IRAK also undergoes rapid inactivation/degradation in response to LPS, providing negative feedback leading to LPS tolerance, mechanisms governing IRAK degradation are not fully understood. In the present study, examination of LPS signaling showed that IRAK degradation was bimodal and involved dual receptors and distinct pathways. Rapid degradation of IRAK, occurring within 30 min of exposure to agonist, was shown to signal through CD14/TLR4 and was regulated by phosphatidylinositol 3-kinase. A second delayed wave of IRAK degradation occurred 2 h after exposure to LPS and was mediated by CR3 independently of phosphatidylinositol 3-kinase. Thus, multiple independent mechanisms have evolved to regulate IRAK degradation, likely reflecting the importance of limiting cellular responses to LPS. Recognition of a CR3-dependent, CD14/TLR4-independent pathway leading to IRAK degradation has implications for understanding modulation of LPS responses by cells with important immunoregulatory function such as dendritic cells that are CD14(-).  相似文献   

16.
Toll-like receptor (TLR) signaling is an important component in the inflammatory response generated in diseases characterized by autoantibody reactivity to proteins such as SSA/Ro in complex with endogenous nucleic acids. Complement receptor 3 (CR3), a genetic variant of which has been identified as a risk factor in systemic lupus erythematosus, has been shown to induce tolerogenic responses in dendritic cells and suppress TLR4 responses in a murine sepsis model. Accordingly, this study addressed the hypothesis that activation of CR3, influenced by genotype of CD11b, negatively regulates TLR7/8-dependent effector function. Allosteric activation of CD11b via pretreatment with the small molecule, leukadhedrin 1 (LA1), significantly attenuated TLR7/8-induced (hY3 RNA, R848) secretion of TNFα in THP-1 cells and human macrophages isolated from donors homozygous for the ancestral common ITGAM allele at rs1143679. This inhibition was accompanied by profound degradation of the adaptor protein MyD88, an effect not observed with direct inhibition of TLR ligation by an antagonist oligonucleotide. In contrast, the addition of LA1 after incubation with the TLR agonists did not result in MyD88 degradation and subsequent attenuation of TNFα secretion. In TLR7/8-stimulated macrophages isolated from donors heterozygous for the CD11b variant, pretreatment with LA1 did not down-regulate TNFα release. These novel findings support a negative cross-talk between CR3 and TLR pathways likely to be induced by antibodies reactive with ribonucleoproteins and point to the development of CR3-specific agonists as potential therapeutics for diseases such as neonatal lupus.  相似文献   

17.
The complex consisting of Toll-like receptor 4 (TLR4) and associated MD-2 signals the presence of lipopolysaccharide (LPS) when it is expressed in cell lines. We here show that normal human mononuclear cells express TLR4 and signal LPS via TLR4. CD14 is a molecule that binds to LPS and facilitates its signaling. Little is known, however, about the relationship of CD14 with TLR4-MD-2. We show that CD14 helps TLR4-MD-2 to sense and signal the presence of LPS. CD14 has also been implicated in recognition of apoptotic cells, which leads to phagocytosis without activation. Membrane phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PtdIns) are thought to serve as the ligands for CD14 in apoptotic cells. We find that PtdIns acts as an LPS antagonist in the signaling via TLR4-MD-2. TLR4-MD-2 seems to discriminate LPS from phospholipids. The signaling via TLR4-MD-2 is thus regulated by CD14 and phospholipid such as PtdIns.  相似文献   

18.
The production of IL-8 can be induced by LPS via TLR4 signaling pathway. In this study, we tested the effect of a herbal melanin (HM) extract, from black cumin seeds (Nigella sativa L.), on IL-8 production. We used HM and LPS in parallel to induce IL-8 production by THP-I, PBMCs, and TLR4-transfected HEK293 cells. Both HM and LPS induced IL-8 mRNA expression and protein production in THP-1 and PBMCs. On applying similar treatment to HEK293 cells that express TLR4, MD2, and CD14, both HM and LPS significantly induced IL-8 protein production. We have also demonstrated that HM and LPS had identical effects in terms of IL-8 stimulation by HEK293 transfected with either TLR4 or MD2-CD14. Melanin extracted from N. sativa L. mimics the action of LPS in the induction of IL-8 by PBMC and the other used cell lines. Our results suggest that HM may share a signaling pathway with LPS that involves TLR4.  相似文献   

19.
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysaccharide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor-alpha production, IkappaBalpha degradation, p38 MAPK phosphorylation, and NF-kappaB-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I.C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from approximately 30 microm. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.  相似文献   

20.
Toll-like receptor (TLR) 2 and TLR4 have been implicated in the responses of cells to LPS (endotoxin). CD14-transfected Chinese hamster ovary (CHO)-K1 fibroblasts (CHO/CD14) are exquisitely sensitive to endotoxin. Sequence analysis of CHO-TLR2, compared with human and mouse TLR2, revealed a single base pair deletion. This frameshift mutation resulted in an alternative stop codon, encoding a protein devoid of transmembrane and intracellular domains. CHO-TLR2 cDNA failed to enable LPS signaling upon transient transfection into human epithelial kidney 293 cells. Site-directed mutagenesis of CHO-TLR2 enabled expression of a presumed full-length hamster TLR2 that conferred LPS responsiveness in human epithelial kidney 293 cells. Genomic TLR2 DNA from primary hamster macrophages also contained the frameshift mutation found in CHO fibroblasts. Nevertheless, hamster peritoneal macrophages were found to respond normally to LPS, as evidenced by the induction of cytokines. These results imply that expression of TLR2 is sufficient but not essential for mammalian responses to endotoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号