首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular medicine is a new research field underlain by achievements of the Human Genome Project. The review considers the contribution of the Laboratory of Prenatal Diagnostics of the Ott Institute of Obstetrics and Gynecology to the development of molecular medicine in Russia. Special emphasis is placed on molecular diagnostics, predictive medicine, and gene therapy. The lab obtained priority results in devising and promoting methods of molecular diagnostics of the most common severe hereditary disorders such as cystic fibrosis, Duchenne muscular dystrophy, hemophilia A, and fragile X syndrome. Owing to the Russian program Human Genome, St. Petersburg researchers laid the foundations for theoretical and applied predictive medicine, which is aimed at identifying and analyzing the genes associated with predisposition to high-incidence multifactorial disorders. Experiments with mdx mice providing a model of Duchenne muscular dystrophy were carried out to select the optimal way of delivering a transgene (cDNA of the dystrophin gene) contained in various constructs for the purpose of gene therapy.  相似文献   

2.
New trends in molecular medicine that have emerged owing to the success of the national Human Genome program are characterized. The major attention is paid to molecular diagnostics, preventive medicine, and gene therapy. Preventive medicine is a product of synthesis of the current notions on genetics and biochemistry of human diseases; it comprises pharmacogenetics, presymptomatic diagnosis, and testing of genes of predisposition to the most frequent multifactor diseases. In the Gene Therapy section, advantages and drawbacks of the main methods of delivery of nucleic acids into the cells are considered; diseases that are attempted to be rectified using gene therapy are listed. Exemplified with Duchenne myodystrophy, the problems encountered in correction of a genetic defect with the aid of foreign genes are considered. Results are summarized for assessing the efficiency of various methods of introduction of dystrophin cDNA (gene gun, liposomes, microspheres, viral oligopeptides, and lactoferrin) conducted on the Duchenne myodystrophy model, mdx mice.  相似文献   

3.
An X‐linked muscular dystrophy, with deficiency of full‐length dystrophin and expression of a low molecular weight dystrophin‐related protein, has been described in Japanese Spitz dogs. The aim of this study was to identify the causative mutation and develop a specific test to identify affected cases and carrier animals. Gene expression studies in skeletal muscle of an affected animal indicated aberrant expression of the Duchenne muscular dystrophy (dystrophin) gene and an anomaly in intron 19 of the gene. Genome‐walking experiments revealed an inversion that interrupts two genes on the X chromosome, the Duchenne muscular dystrophy gene and the retinitis pigmentosa GTPase regulator gene. All clinically affected dogs and obligate carriers that were tested had the mutant chromosome, and it is concluded that the inversion is the causative mutation for X‐linked muscular dystrophy in the Japanese Spitz breed. A PCR assay that amplifies mutant and wild‐type alleles was developed and proved capable of identifying affected and carrier individuals. Unexpectedly, a 7‐year‐old male animal, which had not previously come to clinical attention, was shown to possess the mutant allele and to have a relatively mild form of the disease. This observation indicates phenotypic heterogeneity in Japanese Spitz muscular dystrophy, a feature described previously in humans and Golden Retrievers. With the availability of a simple, fast and accurate test for Japanese Spitz muscular dystrophy, detection of carrier animals and selected breeding should help eliminate the mutation from the breed.  相似文献   

4.
Mammalian Genome - Dystrophin is a key cytoskeletal protein coded by the Duchenne muscular dystrophy (DMD) gene located on the X-chromosome. Truncating mutations in the DMD gene cause loss of...  相似文献   

5.
The results of the analysis of exon deletions and duplications in the dystrophin gene sequences from 121 Duchenne and Becker muscular dystrophy patients from Ukraine are presented. It is shown that the level of de novo deletions in these families reaches 53%, and most of the deletions are localized in the distal part of the gene. It is important to take into account these data in genetic counseling to assess the risk of birth of patients with DMD/BMD, including in prenatal diagnostics, in families with Duchenne and Becker muscular dystrophy patients.  相似文献   

6.
7.
Matsuo M 《IUBMB life》2002,53(3):147-152
Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked muscular dystrophies. The isolation of the defective gene in DMD/BMD has led to a better understanding of the disease process and has promoted studies regarding the application of molecular therapy. The purpose of this review is to present the progress made in this area of research with particular reference to dystrophin Kobe. Based on the results from the molecular analysis of dystrophin Kobe, we propose a novel molecular therapeutic method for DMD in which antisense oligonucleotides transform DMD into a milder phenotype by inducing exon skipping. In addition, current proposals for the molecular therapy of DMD are discussed.  相似文献   

8.
An isolated case of Duchenne muscular dystrophy in a female who has a de novo t(X;5)(p21;q35) translocation is described. The similarities between this patient and four previously reported females with Duchenne muscular dystrophy are discussed. It is concluded that the locus for Duchenne muscular dystrophy is at Xp21 and, furthermore, that this site may be particularly susceptible both to chromosome breakage and exchange and to gene mutation.  相似文献   

9.
Duchenne muscular dystrophy is one of the most common lethal monogenic disorders and is caused by dystrophin deficiency. The disease is transmitted as an X-linked recessive trait; however, recent biochemical and clinical studies have shown that many girls and women with a primary myopathy have an underlying dystrophinopathy, despite a negative family history for Duchenne dystrophy. These isolated female dystrophinopathy patients carried ambiguous diagnoses with presumed autosomal recessive inheritance (limbgirdle muscular dystrophy) prior to biochemical detection of dystrophin abnormalities in their muscle biopsy. It has been assumed that these female dystrophinopathy patients are heterozygous carriers who show preferential inactivation of the X chromosome harboring the normal dystrophin gene, although this has been shown for only a few X:autosome translocations and for two cases of discordant monozygotic twin female carriers. Here we study X-inactivation patterns of 13 female dystrophinopathy patients—10 isolated cases and 3 cases with a positive family history for Duchenne dystrophy in males. We show that all cases have skewed X-inactivation patterns in peripheral blood DNA. Of the nine isolated cases informative in our assay, eight showed inheritance of the dystrophin gene mutation from the paternal germ line. Only a single case showed maternal inheritance. The 10-fold higher incidence of paternal transmission of dystrophin gene mutations in these cases is at 30-fold variance with Bayesian predictions and gene mutation rates. Thus, our results suggest some mechanistic interaction between new dystrophin gene mutations, paternal inheritance, and skewed X inactivation. Our results provide both empirical risk data and a molecular diagnostic test method, which permit genetic counseling and prenatal diagnosis of this new category of patients.  相似文献   

10.
Congenital muscular dystrophies involving the O-mannose pathway   总被引:1,自引:0,他引:1  
A number of forms of congenital muscular dystrophy (CMD) have been identified that involve defects in the glycosylation of dystroglycan with O-mannosyl-linked glycans. There are at least six genes that can affect this type of glycosylation, and defects in these genes give rise to disorders that have many aspects of muscle and brain pathology in common. Overexpression of one gene implicated in CMD, LARGE, was recently shown to increase dystroglycan glycosylation and restore its function in cells taken from CMD patients. Overexpression of Galgt2, a glycosyltransferase not implicated in CMD, also alters dystroglycan glycosylation and inhibits muscular dystrophy in a mouse model of Duchenne muscular dystrophy. These findings suggest that a common approach to therapy in muscular dystrophies may be to increase the glycosylation of dystroglycan with particular glycan structures.  相似文献   

11.
Since the initial characterization of the genetic defect for Duchenne muscular dystrophy, much effort has been expended in attempts to develop a therapy for this devastating childhood disease. Gene therapy was the obvious answer but, initially, the dystrophin gene and its product seemed too large and complex for this approach. However, our increasing knowledge of the organization of the gene and the role of dystrophin in muscle function has indicated ways to manipulate them both. Gene therapy for Duchenne muscular dystrophy now seems to be in reach.  相似文献   

12.
We synthesized a peptide designated R8 (amino acid residues 1157-1201) based on the primary structure presumed from the nucleotide sequence of the cDNA clone from the gene for Duchenne muscular dystrophy. Antibody to the synthetic R8 generated by immunization of rabbits was tested on human and mouse skeletal muscle by Western blotting analysis. The antibody reacted with a component of the 400K dystrophin of normal human and mouse skeletal muscles, but not with components of the muscles of Duchenne muscular dystrophy patients and mdx mice. Thus we established that this peptide sequence is in fact missing in the protein product 'dystrophin' encoded by the DMD gene. The antibody may prove useful for the diagnosis of the Duchenne types of muscular dystrophy.  相似文献   

13.
Mice carrying mutations in both the dystrophin and utrophin genes die prematurely as a consequence of severe muscular dystrophy. Here, we show that intravascular administration of recombinant adeno-associated viral (rAAV) vectors carrying a microdystrophin gene restores expression of dystrophin in the respiratory, cardiac and limb musculature of these mice, considerably reducing skeletal muscle pathology and extending lifespan. These findings suggest rAAV vector-mediated systemic gene transfer may be useful for treatment of serious neuromuscular disorders such as Duchenne muscular dystrophy.  相似文献   

14.
This commentary highlights the promising results of recent studies in animal models of Duchenne muscular dystrophy and amyotrophic lateral sclerosis that have clearly demonstrated the potential of gene therapy for tackling these diseases. In the absence of effective drugs or other treatments, these advances in gene therapy technology represent the best hope for those patients and families that are blighted by these diseases. BACKGROUND: Diseases characterized by progressive muscle degeneration are often incurable and affect a relatively large number of individuals. The progressive deterioration of muscle function is like the sword of Damocles that constantly reminds patients suffering from these diseases of their tragic fate, since most of them will eventually die from cardiac or pulmonary dysfunction. Some of these disorders are due to mutations in genes that directly influence the integrity of muscle fibers, such as in Duchenne muscular dystrophy (DMD), a recessive X-linked genetic disease. Others result from a progressive neurodegeneration of the motoneurons that are essential for maintaining muscle function, such as in amyotrophic lateral sclerosis (ALS), also commonly known as Lou Gehrig's disease. The genetic basis of DMD is relatively well understood as it is due to mutations in the dystrophin gene that encodes the cognate sarcolemmal protein. In contrast, the cause of ALS is poorly defined, with the exception of some dominantly inherited familial cases of ALS that are due to gain-of-function mutations in the gene encoding superoxide dismutase (SODG93A). Gene therapy for these disorders has been hampered by the inability to achieve widespread gene transfer. Moreover, since familial ALS is due to a dominant gain-of-function mutation, inhibition of gene expression (rather than gene augmentation) would be required to correct the phenotype, which is particularly challenging.  相似文献   

15.
16.
Duchenne muscular dystrophy (DMD) and other types of muscular dystrophies are caused by the loss or alteration of different members of the dystrophin protein complex. Understanding the molecular mechanisms by which dystrophin-associated protein abnormalities contribute to the onset of muscular dystrophy may identify new therapeutic approaches to these human disorders. By examining gene expression alterations in mouse skeletal muscle lacking α-dystrobrevin (Dtna−/−), we identified a highly significant reduction of the cholesterol trafficking protein, Niemann-Pick C1 (NPC1). Mutations in NPC1 cause a progressive neurodegenerative, lysosomal storage disorder. Transgenic expression of NPC1 in skeletal muscle ameliorates muscular dystrophy in the Dtna−/− mouse (which has a relatively mild dystrophic phenotype) and in the mdx mouse, a model for DMD. These results identify a new compensatory gene for muscular dystrophy and reveal a potential new therapeutic target for DMD.  相似文献   

17.
Limb-girdle muscular dystrophy type 2D (LGMD2D) is caused by autosomal recessive mutations in the alpha-sarcoglycan gene. The clinical, biochemical, histological, imunohistochemical and molecular genetic data in 2 Albanian siblings with LGMD2D (adhalinopathy or alpha-sarcoglycanopathy) are presented and the resemblance with Duchenne muscular dystrophy (DMD) is discussed. Both siblings had very high level of CK and a negative molecular test for DMD deletions and duplications. The muscle biopsy showed dystrophic features as well as deficiency in two different proteins, the Gamma sarcoglycan protein (-SG) and the Alpha -SG protein (-SG). DNA analysis demonstrated homozygosity for a pathogenic point mutation (574C>T) in the alpha-sarcoglycan gene, confirming the diagnosis of limb-girdle muscular dystrophy type 2D. We believe it is the first confirmed case of primary alpha-sarcoglycanopathy identified in Albania which support the assumption of a wide geographic prevalence of severe childhood onset of autosomal recessive muscular dystrophy, We show that muscle biopsy and DNA diagnosis remains the most sensitive and specific method for differential diagnosis.  相似文献   

18.
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive genetic disorders resulting from mutations in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central region of the gene. The remaining DMD/BMD cases show no deletions, so they cannot be easily identified by current strategies. In these DMD/BMD families, a linkage analysis that involves DNA markers of the flanking and intragenic dystrophin gene are necessary for carrier and prenatal diagnosis. We analyzed eighteen deletion-prone exons of the gene by a polymerase chain reaction (PCR) in order to characterize the molecular defects of the dystrophin gene in Korean DMD/BMD families. We also performed a linkage analysis to assess the usefulness and application of six short tandem repeat markers for molecular diagnosis in the families. We observed a deletion that eliminated the exon 50. Also, a linkage analysis in the families with six short tandem repeat (STR) markers showed heterozygosity at most of the STR markers. The haplotype analysis was useful for detecting the carrier status. This study will be helpful for a molecular diagnosis of DMD/BMD families in the Korean population.  相似文献   

19.
Summary A DNA deletion in a patient with Becker muscular dystrophy (BMD) has been delineated by restriction endonuclease mapping. The deletion is unusually small, removing six kilobases (kb) of DNA distal to pERT 87-1 (DXS164). This region has previously been shown to contain an exon of a candidate gene which, when defective, causes Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy. Removal of this exon and surrounding DNA is apparently sufficient, in this case, to cause a BMD phenotype. The occurrence of this deletion in DXS164 would appear to confirm that this region is part of the BMD locus. Many DMD patients have deletions in and around this region, adding further evidence for the allelic nature of the two disorders. This fortuitous deletion may identify a functionally important domain of the protein product in terms of the severity of phenotype manifested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号