首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The oxidation of glutathione to a thiyl radical by prostaglandin H synthase was investigated. Ram seminal vesicle microsomes, in the presence of arachidonic acid, oxidized glutathione to its thiyl-free radical metabolite, which was detected by ESR using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide. Oxidation of glutathione was dependent on arachidonic acid and inhibited by indomethacin. Peroxides also supported oxidation, indicating that the oxidation was by prostaglandin hydroperoxidase. Glutathione served as a reducingcofactor for the reduction of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid to 15-hydroxy-5,8,11,13-eicosatetraenoic acid at 1.5-2 times the nonenzymatic rate. Although purified prostaglandin H synthase in the presence of either H2O2 or 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid oxidized glutathione to a thiyl radical, arachidonic acid did not support glutathione oxidation. Glutathione also inhibited cyclooxygenase activity as determined by measuring oxygen incorporation into arachidonic acid. Reverse-phase high pressure liquid chromatography analysis of the arachidonic acid metabolites indicated that the presence of glutathione in an incubation altered the metabolite profile. In the absence of the cofactor, the metabolites were PGD2, PGE2, and 15-hydroperoxy-PGE2 (where PG indicates prostaglandin), while in the presence of glutathione, the only metabolite was PGE2. These results indicate that glutathione not only serves as a cofactor for prostaglandin E isomerase but is also a reducing cofactor for prostaglandin H hydroperoxidase. Assuming that glutathione thiyl-free radical observed in the trapping experiments is involved in the enzymatic reduction of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid to 15-hydroxy-5,8,11,13-eicosatetraenoic acid, then a 1-electron donation from glutathione to prostaglandin hydroperoxidase is indicated.  相似文献   

2.
Prostaglandin synthase is a multi-enzyme complex which catalyzes the oxygenation of arachidonic acid to the various prostaglandins. During the oxygenation, the enzyme is self-deactivated and, on the basis of ESR data, it has been proposed to form a self-destructive free radical. The free radical was suggested to form from the oxygen lost from prostaglandin G2 during its reduction to prostaglandin H2, and the destructive species was therefore thought to be an oxygen-centered free radical, tentatively identified as the hydroxy radical. We have reinvestigated this ESR signal (g = 2.005) and have concluded, with the aid of the known ESR parameters for the hydroxy and other oxygen-centered free radicals, that the free radical formed during the oxygenation is neither a hydroxy nor any known oxygen-centred radical. Prostaglandin synthase is thought to be a hemoprotein, so this unknown ESR signal was compared with the previously observed free radical formed by the reaction of H2O2 with methemoglobin. This comparison indicates that the free radical formed by the reaction of prostaglandin G2 with ram seminal vesicles is hemoprotein-derived and may be formed by the oxidation of an amino acid(s) located near the iron of the heme.  相似文献   

3.
We report here the application of the electron spin resonance technique to detect free radicals formed by the hydroperoxidase activity of prostaglandin H synthase in cells. Studies were done using keratinocytes obtained from hairless mice. These cells can be prepared in large number and possess significant prostaglandin H synthase activity. Initial attempts to directly detect free radical metabolites of several amines in cells were unsuccessful. A technique was developed based on the ability of some free radicals formed by prostaglandin hydroperoxidase to oxidize reduced glutathione (GSH) to a thiyl radical, which was trapped by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Phenol and aminopyrine are excellent hydroperoxidase substrates for this purpose and thus were used for all further experiments. Using this approach we detected the DMPO/GS.thiyl radical adduct catalyzed by cellular prostaglandin hydroperoxidase. The formation of the radical was dependent on the addition of substrate, inhibited by indomethacin, and supported by either exogenous arachidonic acid or endogenous arachidonic acid released from phospholipid stores by Ca2+ ionophore A-23187. The addition of GSH significantly increased the intracellular GSH concentration and concomitantly stimulated the formation of the DMPO/GS.thiyl radical adduct. Phenol, but not aminopyrine, enhanced thiyl radical adduct formation and prostaglandin formation with keratinocytes while both cofactors were equally effective in incubations containing microsomes prepared from keratinocytes. These results suggest that prostaglandin hydroperoxidase-dependent co-oxidation of chemicals can result in the intracellular formation of free radical metabolites.  相似文献   

4.
Polyunsaturated fatty acid (PUFA) peroxyl radicals play a crucial role in lipid oxidation. ESR spectroscopy with the spin-trapping technique is one of the most direct methods for radical detection. There are many reports of the detection of PUFA peroxyl radical adducts; however, it has recently been reported that attempted spin trapping of organic peroxyl radicals at room temperature formed only alkoxyl radical adducts in detectable amounts. Therefore, we have reinvestigated spin trapping of the linoleic, arachidonic, and linolenic acid-derived PUFA peroxyl radicals. The slow-flow technique allowed us to obtain well-resolved ESR spectra of PUFA-derived radical adducts in a mixture of soybean lipoxygenase, PUFA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). However, interpretation of the ESR spectra was complicated by the overlapping of the PUFA-derived alkoxyl radical adduct spectra. In order to understand these spectra, PUFA-derived alkoxyl radical adducts were modeled by various alkoxyl radical adducts. For the first time, we synthesized a wide range of DMPO adducts with primary and secondary alkoxyl radicals. It was found that many ESR spectra previously assigned as DMPO/peroxyl radical adducts based on their close similarity to the ESR spectrum of the DMPO/superoxide radical adduct, in conjunction with their insensitivity to superoxide dismutase, are indeed alkoxyl radical adducts. We have reassigned the PUFA alkylperoxyl radical adducts to their corresponding alkoxyl radical adducts. Using hyperfine coupling constants of model DMPO/alkoxyl radical adducts, the computer simulation of DMPO/PUFA alkoxyl radical adducts was performed. It was found that the trapped, oxygen-centered PUFA-derived radical is a secondary, chiral alkoxyl radical. The presence of a chiral carbon atom leads to the formation of two diastereomers of the DMPO/PUFA alkoxyl radical adduct. Therefore, attempted spin trapping of the PUFA peroxyl radical by DMPO at room temperature leads to the formation of the PUFA alkoxyl radical adduct.  相似文献   

5.
Using two peroxidative systems (prostaglandin H synthase/arachidonic acid and horseradish peroxidase/H2O2) we observed GSH conjugate formation with a number of compounds including polycyclic aromatic hydrocarbon-diols (PAH-diols), insecticides, and steroids. Several of the conjugates were characterized by chromatography, uv-vis spectrophotometry, and FAB mass spectroscopy. Conjugate formation is dependent upon a functioning peroxidase, GSH, and is markedly enhanced (3- to 10-fold) by the inclusion of a number of reducing cosubstrates including phenol, uric acid, phenylbutazone, and acetaminophen. The mechanism of conjugate formation appears to involve addition of thiyl radical to alkene bonds conjugated to an electron releasing group probably by resonance stabilization of the carbon-centered radical intermediate. Thiyl radicals are formed either directly by GSH reduction of the peroxidase or indirectly by GSH reduction of radicals formed from reducing cosubstrates. The nitrone spin trap, 5,5-dimethyl-1-pyrroline N-oxide, which traps thiyl radicals, totally inhibits production of GSH conjugates in both peroxidative systems. Conjugation of PAH-diols, some of which are penultimate carcinogens, would prevent their metabolism to the diol-epoxides, an ultimate carcinogenic species of PAH. Conjugation by peroxidases appears to be a general pathway for glutathione conjugate formation that may lead to potential detoxification of chemicals.  相似文献   

6.
We have examined, by low temperature ESR, the protein-derived radicals formed by reaction of purified ram seminal vesicle prostaglandin H synthase (PHS). Upon addition of arachidonic acid or 5-phenyl-4-pentenyl-1-hydroperoxide (PPHP) to PHS reconstituted with Fe(III)-protoporphyrin IX (Fe-PHS) at -12 degrees C, an ESR spectrum was observed at -196 degrees C containing a doublet that rapidly converted into a singlet. These protein-derived radicals were identified as tyrosyl radicals. The addition of a peroxidase substrate, phenol, completely abolished the appearance of the doublet and suppressed the formation of the singlet but did not inhibit eicosanoid formation. Incubation of arachidonic acid with PHS reconstituted with Mn(III)-protoporphyrin IX (Mn-PHS) produced only a broad singlet that exhibited different power saturation behavior than the tyrosyl radicals and decayed more rapidly. This broad singlet does not appear to be a tyrosyl radical. No ESR signals were observed on incubation of PPHP with Mn-PHS, which has cyclooxygenase but not peroxidase activity. Eicosanoid synthesis occurred very rapidly after addition of arachidonic acid and was complete within 1 min. In contrast, the protein-derived radicals appeared at a slower rate and after the addition of the substrate reached maximal levels between 1 and 2 min for Fe-PHS and 4-6 min for Mn-PHS. These results suggest that the observed protein-derived radicals are not catalytically competent intermediates in cyclooxygenase catalysis by either Fe-PHS or Mn-PHS. The peroxidase activity appears to play a major role in the formation of the tyrosyl radicals with Fe-PHS.  相似文献   

7.
Quin2 and its analogs BAPTA, 5,5'-dimethyl BAPTA, 5,5'-difluoro BAPTA, fura-2, and indo-1 were developed to measure intracellular calcium concentrations. In this study we investigated whether quin2 and its analogs are susceptible to peroxidase-catalyzed oxidation. The hydroperoxidase activity of prostaglandin H synthase, like other peroxidases, is capable of oxidizing a wide variety of substrates. It was found that quin2 and its analogs served as reducing cofactors for the hydroperoxidase activity of prostaglandin H synthase, undergoing oxidation in the process. Furthermore, arachidonic acid metabolism was stimulated. Oxidation of quin2 and its analogs resulted in the formation of a carbon-centered radical, as could be detected by ESR, and in the formation of formaldehyde. Quin2 fluorescence decreased upon addition of arachidonic acid and prostaglandin H synthase. Furthermore, addition of calcium no longer resulted in an increase in quin2 fluorescence, as was observed prior to the addition of arachidonic acid and the enzyme. This indicates that one or more of the -N-CH2-COOH groups, which are responsible for the binding of calcium, were oxidized by the hydroperoxidase. Since prostaglandin H synthase is present in many cellular systems in which calcium concentrations are modulated, oxidation of the calcium probe might not only affect the measurement of intracellular calcium but could activate arachidonic acid metabolism as well.  相似文献   

8.
The oxidation of aminopyrine to an aminopyrine cation radical was investigated using a solubilized microsomal preparation or prostaglandin H synthase purified from ram seminal vesicles. Aminopyrine was oxidized to an aminopyrine cation radical in the presence of arachidonic acid, hydrogen peroxide, t-butyl hydroperoxide or 15-hydroperoxyarachidonic acid. Highly purified prostaglandin H synthase, which processes both cyclo-oxygenase and hydroperoxidase activity, oxidized aminopyrine to the free radical. Purified prostaglandin H synthase reconstituted with Mn2+ protoporphyrin IX, which processes only cyclo-oxygenase activity, did not catalyze the formation of the aminopyrine free radical. Aminopyrine stimulated the reduction of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid to 15-hydroxy-5,8,11-13-eicosatetraenoic acid. Approximately 1 molecule of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid was reduced for every 2 molecules of aminopyrine free radical formed, giving a stoichiometry of 1:2. The decay of the aminopyrine radical obeyed second-order kinetics. These results support the proposed mechanism in which aminopyrine is oxidized by prostaglandin H synthase hydroperoxidase to the aminopyrine free radical, which then disproportionates to the iminium cation. The iminium cation is further hydrolyzed to the demethylated amine and formaldehyde. Glutathione reduced the aminopyrine radical to aminopyrine with the concomitant oxidation of GSH to its thiyl radical as detected by ESR of the glutathione thiyl radical adduct.  相似文献   

9.
The ESR spin-trapping technique has been used to identify a free radical involved in the oxygenation of arachidonic acid by ram seminal vesicle microsomes. The ESR spectrum of the radical adduct indicates that a carbon-centered arachidonic acid free radical has been observed. The formation of this species is inhibited by indomethacin, but not by phenol, and it is probably the first intermediate formed during the prostaglandin synthetase-catalyzed oxidation of arachidonic acid. The chemical identity of the trapped radical was substantiated with an independent synthesis of a closely related radical adduct.  相似文献   

10.
Direct evidence for the detection of intermediate radicals of nucleic acid constituents induced by ultrasound in argon-saturated aqueous solution is presented. The method of spin trapping with 3,5-dibromo-4-nitrosobenzene sulphonate, which is a water-soluble, non-volatile, aromatic nitroso spin trap, combined with ESR, was used for the detection of sonochemically induced radicals. Spin adducts were also generated by OH radicals produced by UV photolysis of aqueous solution containing H2O2. ESR spectra observed from these photolysis experiments were identical to those after sonolysis. The ESR spectra of the spin adducts suggest that the major spin-trapped radical of thymine and thymidine was the 5-yl radical, and that of cytosine, cytidine, uracil, and uridine was the 6-yl radical. To compare the radicals induced by sonolysis and photolysis, the decay of the ESR spectra of the thymine and thymidine spin adducts was investigated. The decay curves of thymine and thymidine after sonolysis indicated biphasic decay. However, after photolysis the spin adducts from both compounds showed very little decay. These results suggest that the observed spin adducts in the sonolysis of pyrimidine bases and nucleosides were formed by OH radical and H atom addition to the 5,6 double-bond.  相似文献   

11.
When diaziquone was irradiated with 500 nm visible light, hydroxyl free radicals as well as the diaziquone semiquinone were produced. The diaziquone semiquinone is a stable free radical that exhibits a characteristic 5-line electron spin resonance (ESR) spectrum. Since hydroxyl free radicals are short lived, and not observable by conventional ESR, the nitrone spin trap 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) was used to convert hydroxyl radicals into longer lived ESR detectable spin adducts. The formation of hydroxyl radicals was further confirmed by investigating reactions in which hydroxyl radical scavangers, sodium formate and dimethylsulfoxide, compete with the spin traps DMPO or POBN (alpha-(4-Pyridyl-1-oxide)-N- tert-butylnitrone) for hydroxyl free radicals. The products of these scavenging reactions were also trapped with DMPO or POBN. If drug free radicals and hydroxyl free radicals are important in the activity of quinone-containing antitumor agents, AZQ may have a potential in photoirradiation therapy or photodynamic therapy.  相似文献   

12.
We have analyzed the low temperature EPR spectra of the protein-derived tyrosyl radicals detected upon addition of arachidonic acid or 5-phenyl-4-pentenyl-1-hydroperoxide (PPHP) to prostaglandin H synthase. With either arachidonic acid or PPHP the initial radical detected is a doublet (peak-to-trough = 35 Gauss) that disappears rapidly and is replaced by a broad singlet (peak-to-trough = 30 Gauss) followed by a narrow singlet (peak-to-trough = 26.5 Gauss). The relative amounts of these signals vary with time and concentration of arachidonic acid. The three tyrosyl radical signals were subjected to computer simulation and power saturation analysis. The data establish that there are only two distinct tyrosyl radical species, the doublet and the narrow singlet. The broad singlet seen at intermediate times and at low arachidonic acid concentrations is a composite of the doublet and the narrow singlet. The composition of the broad singlet in incubations of prostaglandin H synthase with 0.5 mM arachidonic acid is approximately 40% doublet and 60% singlet. The broad singlet signal does not represent a distinct tyrosyl radical species.  相似文献   

13.
The NADPH-supported enzymatic reduction of molecular oxygen by ferredoxin-ferredoxin:NADP+ oxidoreductase was investigated. The ESR spin trapping technique was employed to identify the free radical metabolites of oxygen. The spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used to trap and identify the oxygen-derived free radicals. [17O]Oxygen was employed to demonstrate that the oxygen-centered radicals arose from molecular oxygen. From the data, the following scheme is proposed: (Formula:see text). The formation of the free hydroxyl radical during the reduction of oxygen was demonstrated with quantitative competition experiments. The hydroxyl radical abstracted hydrogen from ethanol or formate, and the resulting scavenger-derived free radical was trapped with known rate constants. If H2O2 was added to the enzymatic reaction, a stimulation of the production of the hydroxyl radical was obtained. This stimulation was manifested in both the concentration and the rate of formation of the DMPO/hydroxyl radical adduct. Catalase was shown to inhibit formation of the hydroxyl radical adduct, further supporting the formation of hydrogen peroxide as an intermediate during the reduction of oxygen. All three components, ferredoxin, ferredoxin:NADP+ oxidoreductase, and NADPH, were required for reduction. Ferredoxin:NADP+ oxidoreductase reduces ferredoxin, which in turn is responsible for the reduction of oxygen to hydrogen peroxide and ultimately the hydroxyl radical. The effect of transition metal chelators on the DMPO/hydroxyl radical adduct concentration suggests that the reduction of chelated iron by ferredoxin is responsible for the reduction of hydrogen peroxide to the hydroxyl radical via Fenton-type chemistry.  相似文献   

14.
We have proposed, using styrene as a model, a new mechanism for the formation of glutathione conjugates that is independent of epoxide formation but dependent on the oxidation of glutathione to a thiyl radical by peroxidases such as prostaglandin H synthase or horseradish peroxidase. The thiyl radical reacts with styrene to yield a carbon-centered radical which subsequently reacts with molecular oxygen to give the styrene-glutathione conjugate. We have used electron spin resonance spin trapping techniques to detect the proposed free radical intermediates. A styrene carbon-centered radical was trapped using the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and t-nitrosobutane. The position of the carbon-centered radical was confirmed to be at carbon 7 by the use of specific 2H-labeled styrenes. The addition of the spin trap DMPO inhibited both the utilization of molecular oxygen and the formation of styrene-glutathione conjugates. Under anaerobic conditions additional styrene-glutathione conjugates were formed, one of which was identified by fast atom bombardment mass spectrometry as S-(2-phenyl)ethylglutathione. The glutathione thiyl radical intermediate was observed by spin trapping with DMPO. These results support the proposed free radical-mediated formation of styrene-glutathione conjugates by peroxidase enzymes.  相似文献   

15.
Several free radical intermediates formed during synthesis of prostaglandin H synthase (PGHS) catalyze the biosynthesis of prostaglandins from arachidonic acid (AA). We attempted to directly detect free radical intermediates of PGHS in cells. Studies were carried out using human platelets, which possess significant PGHS activity. Electron spin resonance (ESR) spectra showed a g = 2.005 signal radical, which was formed by the incubation of collagen, thrombin, AA, and a variety of peroxides with human platelets. The ESR spectra obtained using 5,5-dimethyl-1 pyrroline N-oxide (DMPO) and alpha-phenyl N-tert.-butylnitron (PBN) were typical of an immobilized nitroxide. Extensive Pronase digestion of both the DMPO and PBN adducts allowed us to deduce that it was a carbon-centered radical. The formation of this radical was inhibited by potassium cyanide and by desferroxamine. Peroxides stimulated formation of the g = 2.005 signal radical and inhibited platelet aggregation induced by AA. PGHS cosubstrates increased the intensity of the radical signal but inhibited platelet aggregation induced by AA. Both S-nitro-L-glutathione and reduced glutathione quenched the g = 2.005 radical but could not restore platelet aggregatory activity. These results suggest that the carbon-centered radical is a self-destructing free radical formed during peroxide-mediated deactivation of PGHS in human platelets.  相似文献   

16.
Hydroperoxides are known to induce the formation of tyrosyl free radicals in prostaglandin (PG) H synthase. To evaluate the role of these radicals in cyclooxygenase catalysis we have analyzed the temporal correlation between radical formation and substrate conversion during reaction of the synthase with arachidonic acid. PGH synthase reacted with equimolar levels of arachidonic acid generated sequentially the wide doublet (34 G peak-to-trough) and wide singlet (32 G peak-to-trough) tyrosyl radical signals previously reported for reaction with hydroperoxide. The kinetics of formation and decay of the doublet signal corresponded reasonably well with those of cyclooxygenase activity. However, the wide singlet free radical signal accumulated only after prostaglandin formation had ceased, indicating that the wide singlet is not likely to be an intermediate in cyclooxygenase catalysis. When PGH synthase was reacted with 25 equivalents of arachidonic acid, the wide doublet and wide singlet radical signals were not observed. Instead, a narrower singlet (24 G peak-to-trough) tyrosyl radical was generated, similar to that found upon reaction of indomethacin-treated synthase with hydroperoxide. Only about 11 mol of prostaglandin were formed per mol of synthase before complete self-inactivation of the cyclooxygenase, far less than the 170 mol/mol synthase produced under standard assay conditions. Phenol (0.5 mM) increased the extent of cyclooxygenase reaction by only about 50%, in contrast to the 460% stimulation seen under standard assay conditions. These results indicate that the narrow singlet tyrosyl radical observed in the reaction with high levels of arachidonate in this study and by Lassmann et al. (Lassmann, G., Odenwaller, R., Curtis, J.F., DeGray, J.A., Mason, R.P., Marnett, L.J., and Eling, T.E. (1991) J. Biol. Chem. 266, 20045-20055) is associated with abnormal cyclooxygenase activity and is probably nonphysiological. In titrations of the synthase with arachidonate or with hydroperoxide, the loss of enzyme activity and destruction of heme were linear functions of the amount of titrant added. Complete inactivation of cyclooxygenase activity was found at about 10 mol of arachidonate, ethyl hydrogen peroxide, or hydrogen peroxide per mol of synthase heme; maximal bleaching of the heme Soret absorbance peak was found with 10 mol of ethyl hydroperoxide or 20 mol of either arachidonate or hydrogen peroxide per mol of synthase heme. The peak concentration of the wide doublet tyrosyl radical did not change appreciably with increased levels of ethyl hydroperoxide. In contrast, higher levels of hydroperoxide gave higher levels of the wide singlet radical species, in parallel with enzyme inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Prostaglandin H synthase oxidizes arachidonic acid to prostaglandin G2 (PGG2) via its cyclooxygenase activity and reduces PGG2 to prostaglandin H2 by its peroxidase activity. The purpose of this study was to determine if endogenously generated PGG2 is the preferred substrate for the peroxidase compared with exogenous PGG2. Arachidonic acid and varying concentrations of exogenous PGG2 were incubated with ram seminal vesicle microsomes or purified prostaglandin H synthase in the presence of the reducing cosubstrate, aminopyrine. The formation of the aminopyrine cation free radical (AP.+) served as an index of peroxide reduction. The simultaneous addition of PGG2 with arachidonic acid did not alter cyclooxygenase activity of ram seminal vesicle microsomes or the formation of the AP.+. This suggests that the formation of AP.+, catalyzed by the peroxidase, was supported by endogenous endoperoxide formed from arachidonic acid oxidation rather than by the reduction of exogenous PGG2. In addition to the AP.+ assay, the reduction of exogenous versus endogenous PGG2 was studied by using [5,6,8,9,11,12,14,15-2H]arachidonic acid and unlabeled PGG2 as substrates, with gas chromatography-mass spectrometry techniques to measure the amount of reduction of endogenous versus exogenous PGG2. Two distinct results were observed. With ram seminal vesicle microsomes, little reduction of exogenous PGG2 was observed even under conditions in which all of the endogenous PGG2 was reduced. In contrast, studies with purified prostaglandin H synthase showed complete reduction of both exogenous and endogenous PGG2 using similar experimental conditions. Our findings indicate that PGG2 formed by the oxidation of arachidonic acid by prostaglandin H synthase in microsomal membranes is reduced preferentially by prostaglandin H synthase.  相似文献   

18.
The effect of hydralazine on the oxygen free radical production was studied in whole cultured murine liver fibroblasts and mitochondrial and microsomal fractions of the cells by ESR spin trapping with DMPO and measurement of Tiron semiquinone formation. Hydralazine itself was found to generate free radicals in phosphate buffer and especially in Eagle's Minimal Essential Medium. Most of the adduct of the spin trap DMPO was due to its reaction with hydralazine-induced hydroxyl radical. Moreover, this compound stimulated free radical formation in fibroblasts. These data suggest that hydralazine alters the cellular free radical metabolism which may have implications for the biological activity of this drug.  相似文献   

19.
《Free radical research》2013,47(6):321-328
The reaction of p-hydroxyanisole with oxyhemoglobin was investigated using electron spin resonance spectroscopy (ESR) and visible spectroscopy. As a reactive reaction intermediate we found the p-methoxyphenoxyl radical, the one-electron oxidation product of p-hydroxyanisole. Detection of this species required the rapid flow device elucidating the instability of this radical intermediate. The second reaction product formed is methemoglobin. Catalase or SOD had no effect upon the reaction kinetics. Accordingly, reactive oxygen species such as hydroxyl radicals or superoxide could not be observed although the spin trapping agent DMPO was used to make these short-lived species detectable. When the sulfhydryl blocking agents N-ethylmaleimide or mersalyl acid were used, an increase of the methemoglobin formation rate and of the phenoxyl radical concentration were observed. We have interpreted this observation in terms of a side reaction of free radical intermediates with thiol groups.  相似文献   

20.
The oxidation of N-substituted aromatic amines by horseradish peroxidase   总被引:1,自引:0,他引:1  
The mechanism of N-dealkylation by peroxidases of the Ca2+ indicator quin2 and analogs was investigated and compared with the mechanism of N-dealkylation of some N-methyl-substituted aromatic amines. Nitrogen-centered cation radicals were detected by ESR spectroscopy for all the compounds studied. Further oxidation of the nitrogen-centered cation radicals, however, was dependent upon the structure of the radical formed. In the case of quin2 and analogs, a carbon-centered radical could be detected using the spin trap 5,5-dimethyl-1-pyrroline N-oxide. By using the spin trap 2-methyl-2-nitrosopropane (tert-nitrosobutane), it was determined that the carbon-centered radical was formed due to loss of a carboxylic acid group. This indicated that bond breakage most likely occurred through a rearrangement reaction. Furthermore, extensive oxygen consumption was detected, which was in agreement with the formation of carbon-centered radicals, as they avidly react with molecular oxygen. Thus, reaction of the carbon-centered radical with oxygen most likely led to the formation of a peroxyl radical. The peroxyl radical decomposed into superoxide that was spin trapped by 5,5-dimethyl-1-pyrroline N-oxide and an unstable iminium cation. The iminium cation would subsequently hydrolyze to the monomethyl amine and formaldehyde. In the case of N-methyl-substituted aromatic amines, carbon-centered radicals were not detected during the peroxidase-catalyzed oxidation of these compounds. Thus, rearrangement of the nitrogen-centered radical did not occur. Furthermore, little or no oxygen consumption was detected, whereas formaldehyde was formed in all cases. These results indicated that the N-methyl-substituted amines were oxidized by a mechanism different from the mechanism found for quin2 and analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号