首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of fusicoccin binding were investigated in microsomes from 24-h-old radish (Raphanus sativus L.) seedlings. The time course of fusicoccin binding depended on fusicoccin concentration: equilibrium was reached much faster at 10 nanomolar fusicoccin than at 0.3 nanomolar fusicoccin. Scatchard analysis of equilibrium binding as a function of fusicoccin concentration indicated a single class of receptor sites with a Kd of 1.8 nanomolar and a site density of 6.3 picomoles per milligram protein. Similar values (Kd 1.7 nanomolar and site density 7 picomoles per milligram protein) were obtained from the analysis of the dependence of equilibrium binding on membrane concentration at fixed fusicoccin concentrations. Fusicoccin binding comigrated with the plasma membrane H+-ATPase in an equilibrium sucrose density gradient: both activities formed a sharp peak (1.18 grams per milliliter) clearly distinct from that of markers of other membranes which all peaked at lower densities. The saturation profiles of fusicoccin binding and of fusicoccin-induced activation of the plasma membrane H+-ATPase, measured under identical conditions, were similar, supporting the view that fusicoccin-induced activation of the plasma membrane H+-ATPase is mediated by fusicoccin binding to its plasma membrane receptor.  相似文献   

2.
Specific binding of the Ca2+-channel antagonist nitrendipine, a close structural analog of nifedipine, has been measured in microsomal membrane fractions from guinea pig ileal longitudinal smooth muscle. The dissociation constant was 0.18 nanomole per liter and maximum binding was 1.14 picomoles per milligram of protein. Binding with very similar characteristics was found in a rat ventricle preparation. This high affinity binding was sensitive to displacement by a series of 1,4-dihydropyridine analogs of nifedipine with an activity sequence correlating well with that determined for inhibition of mechanical responses in the intact smooth muscle.  相似文献   

3.
The [14C] moiety from [3H]UDP[14C]glucose was incorporated by intact cotton fibers into hot water soluble, acetic-nitric reagent soluble and insoluble components, and chloroform-methanol soluble lipids; the [3H] UDP moiety was not incorporated. The 3H-label can be exchanged rapidly with unlabeled substrate in a chase experiment. The cell wall apparent free space of cotton fibers was in the order of 30 picomoles per milligram of dry fibers; 25 picomoles per milligram easily exchanged and about 5 picomoles per milligram more tightly adsorbed. At 50 micromolar UDPglucose, 70% of the [14C]glucose was found in the lipid fraction after both a short labeling period and chase. The percent of [14C]glucose incorporated into total glucan increased slightly with chase, but the fraction of total glucans incorporated into insoluble acetic-nitric reagent (cellulose) did increase within a 30-minute chase period. The data supports the concept that glucan synthesis, including cellulose, as well as the synthesis of steryl glucosides, acetylated steryl glucosides, and glucosyl-phosphoryl-polyprenol from externally supplied UDPglucose occurs at the plasma membrane-cell wall interface. The synthase enzymes for such synthesis must be part of this interfacial membrane system.  相似文献   

4.
Hydrogen peroxide steady state levels of 5 micromolar were determined in soybean (Glycine max) embryonic axes incubated for 2 hours and in axes pretreated with aminotriazole or cyanide, where these levels were 50 and 1 micromolar, respectively. The activities of catalase (105 picomoles H2O2 per minute per axis), peroxidase (10-44 picomoles H2O2 per minute per axis), glutathione peroxidase (3 picomoles H2O2 per minute per axis) and superoxide dismutase (3.5 units per axis), were also determined. Catalase seems to be the most important H2O2 consuming enzyme at the physiological concentration of H2O2. A short treatment with aminotriazole, while substantially increasing H2O2 level, did not affect the growth of the axes. The production of superoxide anion by the mitochondria isolated from soybean axes was measured from the superoxide dismutase-sensitive rate of adrenochrome formation in the presence of NADH or succinate as substrate and amounted to 1.3 and 0.8 nanomole O2 per minute per milligram protein, respectively. According to the stoichiometry of O2 and H2O2 dismutation reactions, it is apparent that about 0.9 to 1.5% of the total oxygen uptake proceeds through the formation of the free intermediates of the partial reduction of oxygen.  相似文献   

5.
Sucrose translocation and storage in the sugar beet   总被引:14,自引:9,他引:5       下载免费PDF全文
Several physiological processes were studied during sugar beet root development to determine the cellular events that are temporally correlated with sucrose storage. The prestorage stage was characterized by a marked increase in root fresh weight and a low sucrose to glucose ratio. Carbon derived from 14C-sucrose accumulation was partitioned into protein and structural carbohydrate fractions and their amino acid, organic acid, and hexose precursors. The immature root contained high soluble acid invertase activity (Vmax 20 micromoles per hour per milligram protein; Km 2 to 3 millimolar) which disappeared prior to sucrose storage. Sucrose storage was characterized by carbon derived from 14C-sucrose uptake being partitioned into the sucrose fraction with little evidence of further metabolism. The onset of storage was accompanied by the appearance of sucrose synthetase activity (Vmax 12 micromoles per hour per milligram protein; Km 7 millimolar). Neither sucrose phosphate synthetase nor alkaline invertase activities were detected during beet development. Intact sugar beet plants (containing a 100-gram beet) exported 70% of the translocate to the beet, greater than 90% of which was retained as sucrose with little subsequent conversions.  相似文献   

6.
7.
The proportion of the total plant radioactivity present in shoots at the end of a 24-hour exposure of the roots to 0.5 milligram per liter 14C-3-amino-2,5-dichlorobenzoic acid (14C-amiben) ranged from 1.4 to 74.3% in 13 species. When roots of 10-day-old wheat (Triticum aestivum L. em. Thell., Triumph) and 13-day-old barnyard grass (Echinochloa crusgalli L. Beauv.) plants were treated with 0.5 milligram per liter 14C-amiben for 12 or 24 hours, barnyard grass shoots contained at least eight times more of the total plant radioactivity than did wheat shoots. In similar experiments with 14C-2-chloro-4-(ethylamino)-6-(isopropylamine)-s-triazine (14C-atrazine), there were no differences in translocation between these two species.  相似文献   

8.
Selenium-accumulator plants synthesize selenium compounds that differ from those produced by nonaccumulators. To determine if there are any subcellular differences between accumulators and nonaccumulators in the use of selenomethionine in vitro, polysomes from Astragalus crotalariae (accumulator) and Astragalus lentiginosis (nonaccumulator) were translated in the presence of selenomethionine. Polysomes from both species efficiently used selenomethionine in vitro during the translation process. Inasmuch as no differences in the incorporation of selenomethionine into protein were observed between polysomes from the two types of Astragalus, it can be inferred that in accumulators there exists a mechanism that either prevents synthesis of selenomethionine or modifies this selenocompound to a derivative that cannot be incorporated into protein.  相似文献   

9.
Hemes destined for cytosolic hemoproteins must originate in one of the cellular compartments which have the capacity for heme synthesis, namely the chloroplast or the mitochondria. Since developing chloroplasts from greening cucumber (Cucumis sativus, cv. Sumter) cotyledons are known to contain complete heme and chlorophyll biosynthetic pathways, they were tested for their capacity export hemes. Picomole quantities of heme were measured by reconstitution of the heme with apo-peroxidase and subsequent determination of peroxidase activity. The assay method was sensitive (as little as 0.7 picomole of heme could be detected in a volume of 100 microliters) and was linear with heme concentration. When intact plastids were incubated with apo-peroxidase, a steady-state rate of efflux between 0.12 and 0.45 picomole heme/minute/milligram plastid protein was measured. The efflux rate was not due to plastid breakage and could be enhanced by incubating with the heme precursor, δ-aminolevulinic acid. Cold acetone extraction removed 47 ± 17 picomoles heme/milligram plastid protein from the total b-type heme pool in the chloroplasts (166 ± 9 picomoles heme/milligram protein, by acid-acetone extraction). The reconstitution technique provided a similar estimate of readily exchangeable heme in the plastid, 37 ± 8 picomoles heme/milligram protein (or 6 micromolar in the plastids). These values may be indicative of a `free heme pool' which exists in the chloroplast.  相似文献   

10.
Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.  相似文献   

11.
Transport of dicarboxylic acids in castor bean mitochondria   总被引:1,自引:1,他引:0       下载免费PDF全文
Mitochondria from castor bean (Ricinus communis cv Hale) endosperm, purified on sucrose gradients, were used to investigate transport of dicarboxylic acids. The isolated mitochondria oxidized malate and succinate with respiratory control ratios greater than 2 and ADP/O ratios of 2.6 and 1.7, respectively. Net accumulation of 14C from [14C]malate or [14C]succinate into the mitochondrial matrix during substrate oxidation was examined by the silicone oil centrifugation technique. In the presence of ATP, there was an appreciable increase in the accumulation of 14C from [14C]malate or [14C]succinate accompanied by an increased oxidation rate of the respective dicarboxylate. The net accumulation of dicarboxylate in the presence of ATP was saturable with apparent Km values of 2 to 2.5 millimolar. The ATP-stimulated accumulation of dicarboxylate was unaffected by oligomycin but inhibited by uncouplers (2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone) and inhibitors of the electron transport chain (antimycin A, KCN). Dicarboxylate accumulation was also inhibited by butylmalonate, benzylmalonate, phenylsuccinate, mersalyl and N-ethylmaleimide. The optimal ATP concentration for stimulation of dicarboxylate accumulation was 1 millimolar. CTP was as effective as ATP in stimulating dicarboxylate accumulation, and other nucleotide triphosphates showed intermediate or no effect on dicarboxylate accumulation. Dicarboxylate accumulation was phosphate dependent but, inasmuch as ATP did not increase phosphate uptake, the ATP stimulation of dicarboxylate accumulation was apparently not due to increased availability of exchangeable phosphate.

The maximum rate of succinate accumulation (14.5 nanomoles per minute per milligram protein) was only a fraction of the measured rate of oxidation (100-200 nanomoles per minute per milligram protein). Efflux of malate from the mitochondria was shown to occur at high rates (150 nanomoles per minute per milligram protein) when succinate was provided, suggesting dicarboxylate exchange. The uptake of [14C]succinate into malate or malonate preloaded mitochondria was therefore determined. In the absence of phosphate, uptake of [14C]succinate into mitochondria preloaded with malate was rapid (27 nanomoles per 15 seconds per milligram protein at 4°C) and inhibited by butylmalonate, benzylmalonate, and phenylsuccinate. Uptake of [14C]succinate into mitochondria preloaded with malonate showed saturation kinetics with an apparent Km of 2.5 millimolar and Vmax of 250 nanomoles per minute per milligram protein at 4°C. The measured rates of dicarboxylate-dicarboxylate exchange in castor bean mitochondria are sufficient to account for the observed rates of substrate oxidation.

  相似文献   

12.
Soll J 《Plant physiology》1988,87(4):898-903
An ATP-dependent protein kinase was partially purified from isolated outer envelope membranes of pea (Pisum sativum L., Progress No. 9) chloroplasts. The purified kinase had a molecular weight of 70 kilodaltons, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was of the cyclic nucleotide and Ca2+, calmodulin-independent type. The purification involved the detergent solubilization of purified outer envelopes by 0.5% cholate and 1% octylglycoside, followed by centrifugation on a linear 6 to 25% sucrose gradient. Active enzyme fractions were further purified by affinity chromatography on histone III-S Sepharose 4B and ion exchange chromatography on diethylaminoethyl cellulose. The protein kinase eluted at 100 millimolar and 50 millimolar NaCl, respectively. The protein kinase was essentially pure as judged by Western blot analysis. The enzyme has a KM of 450 micromolar for ATP and a Vmax of 25 picomoles of 32P incorporated into histone III-S per minute per microgram. Inhibition by ADP is competitive (Ki 150 micromolar).  相似文献   

13.
Yoshida S 《Plant physiology》1976,57(5):710-715
Upon dehardening of stem bark of black locust (Robinia pseudoacacia), a significant decrease in phospholipid content on a milligram protein basis was observed in various crude particulate cell fractions. To ascertain this with a defined membrane, microsomal preparations were separated into several membrane fractions on a discontinuous sucrose gradient. Based on the distribution of various enzymes on the gradient, Golgi apparatus membranes, tonoplast, and unidentified membranes containing acid protease were separated with less contamination by other membranes. The subfraction, with an apparent density of 1.10 g/cc, which was enriched in fragmented tonoplast, contained the most phospholipid per milligram protein. Dehardening resulted in a significant quantitative reduction in protein and phospholipid in the submicrosomal fractions. Significant decreases in phospholipid content per milligram protein were observed during dehardening in tonoplast, Golgi apparatus, and unidentified membranes containing acid protease as well as other membrane fractions. During dehardening, marked decreases in inosine diphosphatase and NADH cytochrome c reductase activities were observed, suggesting a marked degradation of the membranes containing those enzymes. The transition of cell membranes from a phospholipid-enriched state to a phospholipid depleted state is apparently involved in the dehardening process concomitant with a decrease in tissue hardiness.  相似文献   

14.
Selenium (Se) hyperaccumulator plants can accumulate and tolerate Se up to 1% of their dry weight. Since little is known about below-ground processes of Se uptake and metabolism in hyperaccumulators, X-ray absorption spectromicroscopy was used to characterize the chemical composition and spatial distribution of Se in roots of Astragalus and Stanleya hyperaccumulators. Selenium was present throughout the roots, with the highest levels in the cortex. The main form of Se (48–95%) in both species collected from naturally seleniferous soil was an organic CSeC compound, likely methyl-selenocysteine. In addition, surprisingly high fractions (up to 35%) of elemental Se (Se0) were found, a form so far not reported in plants but commonly produced by Se-tolerant bacteria and fungi. Four fungi collected from hyperaccumulator roots were characterized with respect to their Se tolerance and ability to produce Se0, and then used to inoculate hyperaccumulators in a controlled greenhouse study. The roots of the greenhouse-grown Astragalus and Stanleya contained mainly CSeC; in most plants no Se0 was detected, with the exception of Astragalus nodules and roots of Astragalus inoculated with Alternaria astragali, an Se0-producing fungus. Apparently, Se0-producing endosymbionts including nitrogen-fixing bacteria and endophytic fungi or bacteria in the root can affect Se speciation in hyperaccumulator roots. Microbes that affect plant Se speciation may be applicable in phytoremediation and biofortification, especially if they are promiscuous and affect Se tolerance in crop species.  相似文献   

15.
Osmotically permeabilized potato (Solanum tuberosum L.) tuber slices were used to study the biosynthesis of starch under semi in vivo conditions. Criteria to distinguish the various enzymes involved in starch biosynthesis were developed based on the characteristics of the enzymes in in vitro experiments. Branching enzyme activity was inhibited at pH 8.5 or higher, while the starch synthases functioned optimally between pH 8.8 and 9.1. Unprimed soluble starch synthase activity was only apparent in the presence of sodium citrate (0.4 molar or higher). Granulebound and primed soluble starch synthase were active in the absence of sodium citrate. Primed soluble starch synthase activity was susceptible to inhibition by 10 millimolar zinc sulfate, while granule-bound starch synthase activity was not. The incorporation of the Glc moiety of ADP-Glc into starch in tissue slices by the various starch synthases was consistent with in vitro data with respect to the affinity of the enzymes for substrate, the pH profile, the stimulation by citrate, and the inhibition by zinc sulfate. These data were used to determine the activity of each of the starch synthases in tissue slices: granule-bound and soluble starch synthase transferred 37 and 55 picomoles ADP-Glc per hour per milligram fresh weight into starch of permeabilized tissue slices at 30°C and pH 9.1. In the presence of 0.5 molar sodium citrate, at least 40 picomoles ADP-Glc per hour per milligram fresh weight as transferred into starch by unprimed soluble starch synthase activity.  相似文献   

16.
This study was conducted to examine protein synthesis and l-[35S] methionine incorporation into the endosperm of Zea mays L. kernels developing in vitro. Two-day-old kernels of the inbred line W64A were placed in culture on a defined medium containing 10 microCuries l-[35S] methionine per milliliter (13 milliCuries per millimole) and harvested at 10, 15, 20, 25, 30, 35, and 40 days after pollination. Cultured kernels attained a final endosperm mass of 120 milligrams compared to 175 milligrams for field-grown controls. Field and cultured kernels had similar concentrations (microgram per milligram endospern) for total protein, albumin plus globulin, zein, and glutelin fractions at most kernel ages.  相似文献   

17.
SELENIUM: TOXICITY AND TOLERANCE IN HIGHER PLANTS   总被引:14,自引:0,他引:14  
1. Different plant species show considerable variation in their selenium content. Primary indicators, also termed selenium accumulators, many of which are members of the genus Astragalus, are highly tolerant of selenium; they are known to contain tissue levels of several thousand µg selenium/g. Secondary indicators, tolerant to low concentrations of the element, may absorb up to 1000 µg selenium/g. Non-accumulators are poisoned by selenium. 2. The toxicity of selenate (SeO4-) and selenite (SeO3-) to most plants can be attributed to a combination of three factors. Firstly, selenate and selenite are readily absorbed from the soil by roots and translocated to other parts of the plant. Secondly, metabolic reactions convert these anions into organic forms of selenium. Thirdly, the organic selenium metabolites, which act as analogues of essential sulphur compounds, interfere with cellular biochemical reactions. 3. Incorporation into proteins of the amino acid analogues selenocysteine and selenomethionine, in place of the equivalent sulphur amino acids, is considered to be the underlying cause of selenium toxicity. The physical and chemical differences between selenium and sulphur will result in small, but significant, changes in the biological properties of a selenium-substituted protein. 4. Selenium-tolerant accumulator plants differ in at least two respects from sensitive species. Large quantities of Se-methylselenocysteine and selenocystathionine, two non-protein selenoamino acids rarely detected in non-accumulators, have been isolated from the tissues of selenium accumulators. In addition, selenium is kept from entering proteins so that the selenium levels in proteins of accumulator plants is significantly lower than the levels in selenium-sensitive plants. 5. Exclusion of selenium from the proteins of accumulators is thought to be the basis of selenium tolerance. Discrimination against selenocysteine during protein synthesis seems to prevent incorporation of this selenoamino acid into proteins of accumulators. Furthermore, synthesis of Se-methylselenocysteine and selenocystathionine, which results in diversion of selenium away from the synthesis of selenomethionine, will restrict the amount of this compound available for protein synthesis. 6. Selenium accumulation among unrelated plant genera is a striking example of convergent evolution. The possibility that accumulation of this element is associated with a nutritional requirement for selenium, although explored in the past, is still in need of further clarification.  相似文献   

18.
Uptake and Degradation of Cyclic AMP by Chloronema Cells   总被引:1,自引:0,他引:1       下载免费PDF全文
Sharma S  Johri MM 《Plant physiology》1982,69(6):1401-1403
Suspension cultures of intact chloronema cells of the moss Funaria hygrometrica take up [3H]cAMP and degrade it rapidly. The increase in total radioactivity accumulated by the cells was linear up to 30 minutes. Initially, the major degradation products were 5′-AMP and adenosine, but later predominantly ADP and ATP. In spite of rapid degradation, the amount of extracellularly applied cAMP retained by the cells is about 4-fold higher than the maximum endogenous level of cAMP reported previously (Handa, Johri 1977 Plant Physiol 59: 490-496). The uptake showed a distinct dependence on the density of the culture. Cells at a lower cell density (1-2 milligrams per milliliter) accumulated 4 to 6 times more radioactivity than the cells at high density (>10 milligrams per milliliter). The cyclic nucleotide phosphodiesterase (cNPDE) activity of whole cells (18 milliunits per milligram protein) was comparable to that of protoplasts (23 milliunits per milligram protein), but about 4-fold lower than that of lysed protoplasts (80 milliunits per milligram protein), indicating an intracellular degradation of cAMP by chloronema cells.  相似文献   

19.
Diffusion of inorganic carbon into isolated bundle sheath cells from a variety of C4 species was characterized by coupling inward diffusion of CO2 to photosynthetic carbon assimilation. The average permeability coefficient for CO2 (PCO2) for five representatives from the three decarboxylation types was approximately 20 micromoles per minute per milligram chlorophyll per millimolar, on a leaf chlorophyll basis. The average value for the NAD-ME species Panicum miliaceum (10 determinations) was 26 with a standard deviation of 6 micromoles per minute per milligram chlorophyll per millimolar, on a leaf chlorophyll basis. A PCO2 of at least 500 micromoles per minute per milligram chlorophyll per millimolar was determined for cells isolated from the C3 plant Xanthium strumarium. It is concluded that bundle sheath cells are one to two orders of magnitude less permeable to CO2 than C3 photosynthetic cells. These data also suggest that CO2 diffusion in bundle sheath cells may be made up of two components, one involving an apoplastic path and the other a symplastic (plasmodesmatal) path, each contributing approximately equally.  相似文献   

20.
Protein bodies were prepared from the cotyledons of pumpkin (Cucurbita sp.) seeds by employing a nonaqueous isolation method. Both light micrographic examination and the marker enzyme assays have shown that the isolated protein bodies were intact and contamination with other cell organelles or cytoplasmic components was negligible. A proteolytic enzyme catalyzing the limited hydrolysis of carboxymethylated γ′ chain of globulin was found to be present in the protein bodies. The specific activity in the protein body (18 units per milligram protein) was higher than that in the whole cell extract (13 units per milligram protein), indicating that the limited proteolytic enzyme was localized in the protein body.

After lysis of the protein bodies using hypotonic buffer solution, the suborganellar components (matrix, membranes, and crystalloids) were separated by sucrose density gradient centrifugation. The crystalloid was composed of only globulin, a major seed protein. The major proteins of matrix and membrane fractions were shown to have mol wt of approximately 10,000. About 90% of the limited proteolytic activity was found in the matrix region.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号