首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Absorption (ABS) and circular dichroism (CD) spectra were recorded for 3 concentrations (2.3, 19 and ca. 75 M) of 4-isobutyl homologs. Monomer spectra were the same as those for 4-n-propyl-5-ethyl farnesyl bacteriochlorophyll c. Pure polymer spectra were obtained by subtracting the 2.3-M spectra appropriately scaled from the ca. 75-M spectra. The polymer showed an ABS peak at 742 nm and a CD trough at ca. 742 nm. These properties are in harmony with the aggregate model proposed by Smith KM, Kehrs LA and Fajer J (1983, J Am Chem Soc 105: 1387–1389). A log-logplot of absorbance at 742 nm vs. monomer concentration could be fitted by a straight line of slope 1.6.Abbreviations ABS absorbance - BChl bacteriochlorophyll - CD circular dichroism - iBM/EF 4-isobutyl-5-methyl/ethyl farnesyl - PEF 4-n-propyl-5-ethyl farnesyl  相似文献   

2.
Bacteriochlorophyll c in vivo is a mixture of at least 5 homologs, all of which form aggregates in CH2Cl2, CHCl3 and CCl4. Three homologs exist mainly in the 2-R-(1-hydroxyethyl) configuration, whereas the other two homologs, 4-isobutyl-5-ethyl and 4-isobutyl-5-methyl farnesyl bacteriochlorophyll c, exist mainly in the 2-S-(1-hydroxyethyl) configuration (Smith KM, Craig GW, Kehres LA and Pfennig N (1983) J. Chromatograph. 281: 209–223). In CCl4 the S-homologs form an aggregate of 2–3 molecules whose absorption (747 nm maximum) and circular dichroism spectra resemble those of the chlorosome. In CH2Cl2, CHCl3 and CCl4 the 4-n-propyl homolog (R-configuration) forms dimers absorbing at ca. 680 nm and higher aggregates absorbing at 705–710 nm. In CCl4 the dimerization constant is approx. 10 µM–1 (1000 times that for chlorophyll a). The difference between the types of aggregates formed by the 4-n-propyl and 4-isobutyl homologs is attributed to the difference between the R- and S-configurations of the 2-(1-hydroxyethyl) groups in each chlorophyll.Abbreviations BChl bacteriochlorophyll - CD circular dichroism - Chl chlorophyll - DNS data not shown - EEF 4-ethyl-5-ethyl farnesyl - iBM/EF 4-isobutyl-5-methyl/ethyl farnesyl - MEF 4-methyl-5-ethyl farnesyl - PEP 4-n-propyl-5-ethyl farnesyl  相似文献   

3.
Three homologs of BChl c, 2-(R)-(1-hydroxyethyl)-4-n-propyl-5-ethyl-farnesyl BChl c (PEF-BChl c), 2-(R)-(1-hydroxyethyl)-4-ethyl-5-ethyl-farnesyl BChl c (EEF-BChl c), and 2-(S)-(1-hydroxyethyl)-4-isobutyl-5-methyl/ethyl-farnesyl BChl c (iBM/EF-BChl c), formed aggregates in water-saturated carbon tetrachloride (H2O-satd CCl4). The water content was about 100 times higher than that of the dried CCl4 previously used. Absorption spectra were recorded for 8 concentrations for the three homologs of BChl c and were deconvoluted in terms of standard spectra of monomer, dimer, tetramer and polymer (747-nm aggregate, Olson and Pedersen (1990) Photosynthe Res 25: 25). PEF- and EEF-BChl c formed dimers (680 nm maximum) and tetramers (705–710 nm maximum), but iBM/EF-BChl c formed polymers. Inhibition of dimer formation by water faciliated the study of the initial stages of the polymerization of BChl c. When the logarithm of polymer concentration was plotted versus the logarithm of the monomer concentration for iBM/EF-BChl c, the initial slope was 30±10 and indicated the cooperation of 20–40 BChl c molecules to form a polymer from a seed. Circular dichroism spectra of the polymers with positive and negative bands at 743 and 760 nm, respectively, were similar to those for chlorosomes (Brune et al. (1990) Photosynth Res 24: 253).Abbreviations BChl bacteriochlorophyll - CD circular dichroism - EEF 4-ethyl-5-ethyl farnesyl - iBM/EF 4-isobutyl-5-methyl/ethyl farnesyl - H2O-satd CCl4 water saturated carbon tetrachloride - PEF 4-n-propyl-5-ethyl farnesyl  相似文献   

4.
Butterbach-Bahl  K.  Rothe  A.  Papen  H. 《Plant and Soil》2002,240(1):91-103
Complete annual cycles of N2O and CH4 flux in forest soils at a beech and at a spruce site at the Höglwald Forest were followed in 1997 by use of fully automatic measuring systems. In order to test if on a microsite scale differences in the magnitude of trace gas exchange between e.g. areas in direct vicinity of stems and areas in the interstem region at both sites exist, tree chambers and gradient chambers were installed in addition to the already existing interstem chambers at our sites. N2O fluxes were in a range of –4.6–473.3 g N2O-N m–2 h–1 at the beech site and in a range of –3.7–167.2 g N2O-N m–2 h–1 at the spruce site, respectively. Highest N2O emissions were observed during and at the end of a prolonged frost period, thereby further supporting previous findings that frost periods are of crucial importance for controlling annual N2O losses from temperate forests. Fluxes of CH4 were in a range of +10.4––194.0 g CH4 m–2 h–1 at the beech site and in a range of –4.4––83.5 g CH4 m–2 h–1 at the spruce site. In general, both N2O-fluxes as well as CH4-fluxes were higher at the beech site. On a microsite scale, N2O and CH4 fluxes at the beech site were highest within the stem area (annual mean: 49.6±3.3 g N2O-N m–2 h–1; –77.2±3.1 g CH4 m–2 h–1), and significantly lower within interstem areas (18.5±1.4 g N2O-N m–2 h–1; –60.2±1.8 g CH4 m–2 h–1). Significantly higher values of total N, C and pH in the organic layer, as well as increased soil moisture, especially in spring, in the stem areas, are likely to contribute to the higher N2O fluxes within the stem area of the beech. Also for the spruce site, such differences in trace gas fluxes could be demonstrated to exist (mean annual N2O emission within (a) stem areas: 9.7±0.9 g N2O-N m–2 h–1 and (b) interstem areas: 6.2±0.6 g N2O-N m–2 h–1; mean annual CH4 uptake within (a) stem areas: –26.1±0.6 g CH4 m–2 h–1 and (b) interstem areas: –38.4±0.8 g CH4 m–2 h–1), though they were not as pronounced as at the beech site.  相似文献   

5.
Cytochromes b, c, d, and o were identified by spectroscopic analysis of respiratory membrane fragments from Vitreoscilla sp., strain C1. Carbon monoxide difference spectra of the reduced membranes had absorption maxima at 416, 534, and 571 nm (ascribed to cytochrome o) and 632 nm (cytochrome d). Derivative spectra of the pyridine hemochromogen spectra of the membranes identified the presence of b- and c-type cytochromes in Vitreoscilla. The cyanide binding curve of the membranes was biphasic with dissociation constants of 2.14 mM and 10.7 mM which were assigned to cytochrome o and cytochrome d, respectively. Membranes bound carbon monoxide with dissociation constant 3.9 M, which was assigned to cytochrome o. Cytochrome c 556 and a NADH-p-iodonitrotetrazolium violet reductase component were partially purified from Vitreoscilla membranes.Abbreviations INT p-iodonitrotetrazolium violet - RMF respiratory membrane fragments - K d dissociation constant - CHAPS 3-[(3-cholamido propyl) dimethylammonio]-1-propanesulfonate - DOC sodium deoxycholate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

6.
Summary Permeabilities of ammonia (NH3), methylamine (CH3NH2) and ethylamine (CH3CH2NH2) in the cyanobacterium (cyanophyte)Synechococcus R-2 (Anacystis nidulans) have been measured. Based on net uptake rates of DCMU (dichlorophenyldimethylurea) treated cells, the permeability of ammonia was 6.44±1.22 m sec–1 (n=13). The permeabilities of methylamine and ethylamine, based on steady-state14C labeling were more than ten times that of ammonia (P methylamine=84.6±9.47 m sec–1 (76),P ethylamine=109±11 m sec–1 (55)). The apparent permeabilities based on net uptake rates of methylamine and ethylamine uptake were significantly lower, but this effect was partially reversible by ammonia, suggesting that net amine fluxes are rate limited by proton fluxes to an upper limit of about 700 nmol m–2 sec–1. Increasing concentrations of amines in alkaline conditions partially dissipated the pH gradient across the cell membrane, and this property could be used to calculate the relative permeabilities of different amines. The ratio of ethylamine to methylamine permeabilities was not significantly different from that calculated from the direct measurements of permeabilities; ammonia was much less effective in dissipating the pH gradient across the cell membrane than methylamine or ethylamine. An apparent permeability of ammonia of 5.7±0.9 m sec–1 could be calculated from the permeability ratio of ammonia to methylamine and the experimentally measured permeability of methylamine. The permeability properties of ammonia and methylamine are very different; this poses problems in the interpretation of experiments where14C-methylamine is used as an ammonia analogue.  相似文献   

7.
Methanobacterium thermoautotrophicum, growing on medium supplemented with 2 mol 63NiCl2/l, was found to take up 1.2 mol 63Ni per g cells (dry weight). More than 70% of the radioisotope was incorporated into a compound, which dissociated from the protein fraction after heat treatment, was soluble in 70% acetone, and could be purified by chromatography on QAE-Sephadex A-25, Sephadex G-25, and DEAE cellulose. The purified 63Ni labelled compound had an absorption spectrum and properties identical to those of factor F 430 and is therefore considered to be identical with factor F 430.Factor F 430, a compound of molecular weight higher than 1000 with an absorbance maximum at 430 nm, has recently been purified from Methanobacterium thermoautotrophicum (Gunsalus and Wolfe, 1978). The structure and function of this compound are not yet known.  相似文献   

8.
Summary The effects of CO2 enrichment on the growth, biomass partitioning, photosynthetic rates, and leaf nitrogen concentration of a grass, Bromus mollis (C3), were investigated at a favorable and a low level of nitrogen availability. Despite increases in root: shoot ratios, leaf nitrogen concentrations were decreased under CO2 enrichment at both nitrogen levels. For the low-nitrogen treatment, this resulted in lower photosynthetic rates measured at 650 l/l for the CO2-enriched plants, compared to photosynthetic rates measured at 350 l/l for the non-enriched plants. At higher nitrogen availability, photosynthetic rates of plants grown and measured at 650 l/l were greater than photosynthetic rates of the non-enriched plants measured at 350 l/l. Water use efficiency, however, was increased in enriched plants at both nitrogen levels. CO2 enrichment stimulated vegetative growth at both high and low nitrogen during most of the vegetative growth phase but, at the end of the experiment, total biomass of the high and low CO2 treatments did not differ for plants grown at low nitrogen availability. While not statistically significant, CO2 tended to stimulate seed production at high nitrogen and to decrease it at low nitrogen.  相似文献   

9.
Dry weight and Relative Growth Rate of Lemna gibba were significantly increased by CO2 enrichment up to 6000 l CO2 l–1. This high CO2 optimum for growth is probably due to the presence of nonfunctional stomata. The response to high CO2 was less or absent following four days growth in 2% O2. The Leaf Area Ratio decreased in response to CO2 enrichment as a result of an increase in dry weight per frond. Photosynthetic rate was increased by CO2 enrichment up to 1500 l CO2 l–1 during measurement, showing only small increases with further CO2 enrichment up to 5000 l CO2 l–1 at a photon flux density of 210 mol m–2 s–1 and small decreases at 2000 mol m–1 s–1. The actual rate of photosynthesis of those plants cultivated at high CO2 levels, however, was less than the air grown plants. The response of photosynthesis to O2 indicated that the enhancement of growth and photosynthesis by CO2 enrichment was a result of decreased photorespiration. Plants cultivated in low O2 produced abnormal morphological features and after a short time showed a reduction in growth.  相似文献   

10.
Butterbach-Bahl  K.  Papen  H. 《Plant and Soil》2002,240(1):77-90
In order to gain information about seasonal and interannual variations of CH4-fluxes at a spruce control site, a limed spruce site and a beech site of the Höglwald Forest, Bavaria, Germany, complete annual cycles of CH4-exchange between the soil and the atmosphere with 2-hourly resolution were followed for 4 consecutive years. The ranges of CH4 fluxes observed for the different sites were: +12.4 to –69.4 g CH4 m–2 h–1 (spruce control site), +11.7 to –51.4 g CH4 m–2 h–1 (limed spruce site), and –4.4 to –167.3 g CH4 m–2 h–1 (beech site). Lowest rates of atmospheric CH4-uptake or even a weak net-emission of CH4 by the soils were observed during winter/spring times, whereas highest rates of CH4-uptake were always found in summer/spring. Over the entire observation period of 4 years, mean CH4-uptake rates were –1.82 kg CH4-C ha–1 yr–1 at the spruce control site, –1.31 kg CH4-C ha–1 yr–1 at the limed spruce site, and –4.84 kg CH4-C ha–1 yr–1 at the beech site. The results obtained in this study demonstrate that in view of the huge interannual variations in CH4-fluxes of approx. 1 kg CH4-C ha–1 yr–1, multiple year measurements of CH4-fluxes are necessary to accurately characterize the sink strength of temperate forest for atmospheric CH4. By comparison of CH4-fluxes measured at the spruce control site and the limed spruce site, a significant negative effect of forest floor liming on CH4-uptake could be demonstrated. Compared to the spruce stand, the beech stand showed on average approx. 3 times higher rates of atmospheric CH4-uptake, most likely due to pronounced differences between both sites with regard to the organic layer structure and bulk density of the mineral soil. Regression analysis between CH4-fluxes and environmental parameters revealed that at all sites the dominating factors regulating temporal variations of CH4 fluxes were soil moisture and soil temperature. Field measurements of CH4 concentrations in the soil profile and laboratory measurements of CH4-oxidation and CH4-production activity on soil samples taken from different soil depths showed that the CH4-flux at the Höglwald Forest sites is the net-result of simultaneous occurring production and consumption of CH4 within the soil. Highest CH4-oxidation activity was found in the uppermost centimeters of the mineral soil, whereas highest potential CH4-production activity was found in the organic layer.  相似文献   

11.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

12.
Fluorescence lifetimes have been measured for bacteriochlorophyll (BChl) c isolated from Chlorobium limicola in different states of aggregation in non-polar solvents. Two different homologs of BChl c were used, one with an isobutyl group at the 4 position, the other with n-propyl. Species previously identified as dimers (Olson and Pedersen 1990, Photosynth Res, this issue) decayed with lifetimes of 0.64 ns for the isobutyl homolog, 0.71 ns for n-propyl. Decay-associated spectra indicate that the absorption spectrum of the isobutyl dimer is slightly red-shifted from that of the n-propyl dimer. Aggregates absorbing maximally at 710 nm fluoresced with a principal lifetime of 3.1 ns, independent of the homolog used. In CCl4, only the isobutyl homolog forms a 747-nm absorbing oligomer spectrally similar to BChl c in vivo. This oligomer shows non-exponential fluorescence decay with lifetimes of 67 and 19 ps. Because the two components show different excitation spectra, the higher oligomer is probably a mixture of more than one species, both of which absorb at 747 nm.Abbreviations BChl bacteriochlorophyll - Chl chlorophyll - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaW% baaSqabeaacaaIYaaaaaaa!3777!\[\chi ^2 \] chi-square - FWHM full-width at half-maximum  相似文献   

13.
Methane in sulfate-rich and sulfate-poor wetland sediments   总被引:2,自引:1,他引:1  
Wetlands of northern Belize provide a unique opportunity to study methane production and emissions from marshes dominated by identical species (Typha domingensis, Cladium jamaicense) and genus (Eleocharis spp.), but differing substantially in the amount of sulfates present in the sediments. Some marshes occur on limestone marls rich in gypsum (CaSO4) while others are underlain by alluvial sands poor in sulfates. Concentrations of methane and sulfates in the sediment interstitial water are one or more orders of magnitude different for these two geological substrata averaging 139.2 and 14.9 M of CH4, and 0.08 and 11.53 mM of SO4 –2 2 on alluvial sands and limestone respectively. The amount of methane found in the internal atmosphere of plants from alluvial sands is significantly higher (6.3 M) than in plants from limestone (0.19 M). The average methane emissions measured in wetlands located on alluvial sands were 25.2 mg m–2 h–1 while emissions from marshes on limestone were only 2.4 mg m–2 h–1. These values extrapolated for the entire year and the respective wetland areas resulted in the estimate of total CH4 emissions from northern Belize of 0.066 Tg per year.  相似文献   

14.
The basis for the outcome of competition between sulfidogens and methanogens for H2 was examined by comparing the kinetic parameters of representatives of each group separately and in co-culture. Michaelis-Menten parameters (V max and K m) for four methanogens and five sulfate-reducing bacteria were determined from H2-depletion data. Further, Monod growth parameters (max, K s, Y H2) for Desulfovibrio sp. G11 and Methanospirillum hungatei JF-1 were similarly estimated. H2 K m values for the methanogenic bacteria ranged from 2.5 M (Methanospirillum PM1) to 13 M for Methanosarcina barkeri MS; Methanospirillum hungatei JF-1 and Methanobacterium PM2 had intermediate H2 K m estimates of 5 M. Average H2 K m estimates for the five sulfidogens was 1.2 M. No consistent difference among the V max estimates for the above sulfidogens (mean=100 nmol H2 min-1 mg-1 protein) and methanogens (mean=110 nmol H2 min-1 mg-1 protein) was found. A two-term Michaelis-Menten equation accurately predicted the apparent H2 K m values and the fate of H2 by resting co-cultures of sulfate-reducers and methanogens. Half-saturation coefficients (K s) for H2-limited growth of Desulfovibrio sp. G11 (2–4 M) and Methanospirillum JF-1 (6–7 M) were comparable to H2 K m estimates obtained for these organisms. Maximum specific growth rates for Desulfovibrio sp. G11 (0.05 h-1) were similar to those of Methanospirillum JF-1 (0.05–0.06 h-1); whereas G11 had an average yield coefficient 4 x that of JF-1. Calculated max and V max/K m values for the methanogens and sulfidogens studied predict that the latter bacterial group will process more H2 whether these organisms are in a growing or resting state, when the H2 concentration is in the first-order region.  相似文献   

15.
Ferric ethylenediamine di-(o-hydroxyphenylacetate) (FeEDDHA) and ferric hydroxyethylethylenediaminetriacetic acid (FeHEDTA) were evaluated as Fe sources for hydroponic growth of alfalfa (Medicago sativa L., cv. Mesilla), either dependent on N2 fixation or supplied with NO3. The hydroponic medium was maintained at pH 7.5 by addition of CaCO3. Nitrogen-fixing cultures were inoculated with Rhizobium meliloti 102 F51 and grown in medium without added nitrogen. After five to seven weeks of growth under greenhouse conditions, plants were harvested. Nitrogen fixation was measured by the acetylene reduction method.When FeEDDHA was supplied, growth of alfalfa, whether dependent on N2 fixation or supplied with NO3, was severely limited at concentrations typically used in hydroponic medium (10 or 20 M). Maximum yield of NO3-supplied alfalfa was obtained at 100 M while maximum yield of N2-fixing alfalfa was obtained in the range of 33 to 200 M FeEDDHA. Nodule fresh weights and N2 fixation rates increased with FeEDDHA concentration up to 33 M and remained essentially constant up to 200 M. With FeHEDTA, maximum yields of both NO3-grown and N2-fixing alfalfa were obtained at 10 M. Growth of NO3-supplied plants was inhibited at 200 M FeHEDTA while growth of N2-fixing plants was inhibited at 100 M FeHEDTA. The numbers of nodules per plant increased between 3.3 and 10 M FeHEDTA; however, inhibition of nodule formation occurred at a concentration of 33 M or higher. Nodule weights per plant and N2 fixation rates were depressed at 3.3 M as well as at 100 M FeHEDTA. The results suggest that alfalfa dependent on N2 fixation is more sensitive to limited Fe availability than alfalfa supplied with NO3.  相似文献   

16.
The aluminium (Al) tolerance of 34 temperate legume species (143 genotypes, including 57 from Trifolium repens) was determined in 60 experiments over a 3 year period in a low ionic strength (2.7 × 10-3 M) solution culture. For each genotype, the relationship between solution Al3+ activity (M) and relative yield was determined and the Al3+ activity associated with a 50% reduction in yield (AlRY50) calculated. In addition, plant chemical concentrations were determined in at least one genotype from most species. For white clover, AlRY50 over all genotypes had an approximately normal distribution with mean of 1.31 M for the tops and 1.51 M for the roots, and a standard deviation of about 0.4. This suggested that Al tolerance had a polygenic inheritance. For the other species tested, AlRY50 ranged from 0.15 to 4.53 M in the tops and from 0.21 to 4.89 M in the roots. In the tops and roots, 37% and 26% respectively of the genotypes had an AlRY50 less than 1 M, including all species tested in the genera Melilotus and Medicago. Only 8% or 23% of the genotypes, based on the tops and roots respectively, had an AlRY50 greater than 2, including all genotypes in the species Lotus pedunculatus. Except for Lotus, there were no consistent differences between genera in plant chemical concentrations. In Lotus, concentrations of Ca, Zn, Mn and Cu in the tops and of all elements except B in the roots were lower than that of the other species. The AlRY50 of the species was not related to plant chemical concentrations in the absence of Al. Depending on the plant element, increasing solution Al concentrations had no significant effect on plant chemical concentrations for 56–94% of the species. When a significant effect did occur, increasing Al in solution generally decreased S and K concentrations and increased Mn, Zn, Cu Fe, B and Al concentrations in the tops and roots and decreased Ca concentrations in the tops. Plant P concentrations decreased in the tops but increased in the roots. Increasing Al in solution increase plant Al at the average rate of 44 g g-1 M -1 (range 20–87) in the tops and 333 g M -1 (range 162–616) in the roots.  相似文献   

17.
Kyei-Boahen  S.  Astatkie  T.  Lada  R.  Gordon  R.  Caldwell  C. 《Photosynthetica》2003,41(4):597-603
Short-term responses of four carrot (Daucus carota) cultivars: Cascade, Caro Choice (CC), Oranza, and Red Core Chantenay (RCC) to CO2 concentrations (C a) were studied in a controlled environment. Leaf net photosynthetic rate (P N), intercellular CO2 (C i), stomatal conductance (g s), and transpiration rate (E) were measured at C a from 50 to 1 050 mol mol–1. The cultivars responded similarly to C a and did not differ in all the variables measured. The P N increased with C a until saturation at 650 mol mol–1 (C i= 350–400 mol mol–1), thereafter P N increased slightly. On average, increasing C a from 350 to 650 and from 350 to 1 050 mol mol–1 increased P N by 43 and 52 %, respectively. The P N vs. C i curves were fitted to a non-rectangular hyperbola model. The cultivars did not differ in the parameters estimated from the model. Carboxylation efficiencies ranged from 68 to 91 mol m–2 s–1 and maximum P N were 15.50, 13.52, 13.31, and 14.96 mol m–2 s–1 for Cascade, CC, Oranza, and RCC, respectively. Dark respiration rate varied from 2.80 mol m–2 s–1 for Oranza to 3.96 mol m–2 s–1 for Cascade and the CO2 compensation concentration was between 42 and 46 mol mol–1. The g s and E increased to a peak at C a= 350 mol mol–1 and then decreased by 17 and 15 %, respectively when C a was increased to 650 mol mol–1. An increase from 350 to 1 050 mol mol–1 reduced g s and E by 53 and 47 %, respectively. Changes in g s and P N maintained the C i:C a ratio. The water use efficiency increased linearly with C a due to increases in P N in addition to the decline in E at high C a. Hence CO2 enrichment increases P N and decreases g s, and can improve carrot productivity and water conservation.  相似文献   

18.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

19.
Dose-dependent effect of synthetic heptapeptides Semax (Met-Glu-His-Phe-Pro-Gly-Pro) and Selank (Thr-Lys-Pro-Arg-Pro-Gly-Pro) on the enkephalin-degrading enzymes of human serum was demonstrated. The inhibitory effects of Semax (IC5010 M) and Selank (IC5020 M) are more pronounced than that of puromycin (IC5010 mM), bacitracin, and some other inhibitors of peptidases. Beside the heptapeptides, their pentapeptide fragments also possessed an inhibitory effect; tri-, tetra- and hexapeptide fragments did not display such an effect. As the above enzymes take part in degradation of not only enkephalins but also other regulatory peptides, it can be assumed that one of the mechanisms of biological activity of Semax and Selank is related to this inhibitory activity of theirs.  相似文献   

20.
Compartmentation and flux characteristics of ammonium in spruce   总被引:1,自引:0,他引:1  
Using 13NH 4 + as a tracer, compartmental analyses for NH 4 + were performed in non-mycorrhizal roots of intact Picea glauca (Moench) Voss. seedlings at four different concentration regimes of external NH 4 + ([NH 4 + ]o), i.e. 0, 10, 100, and 1500 M. Three kinetically distinct compartments were identified, with half-lives of exchange of approximately 2 s, 30 s, and 14 min, assumed to represent surface adsorption, Donnan free space, and cytoplasm, respectively. No significant differences were found in half-lives of exchange with changes in [NH 4 + ]o. Influx was calculated to be 0.96 mol·g–1·h–1 in N-deprived plants (measured at 10 M [NH 4 + ]o), while under steady-state conditions it was 0.21 mol·g–1h–1 at 10 M [NH 4 + ]o, 1.96 mol·g–1–1 at 100 M [NH 4 + ]o, and 6.45 mol·g–1·h–1 at 1.5 mM [NH 4 + ]o. Efflux measured over the same range constituted approximately 9% of influx in N-deprived plants, 10% at 10 M, 28% at 100 M, and 35% at 1.5 mM [NH 4 + ]o. Cytoplasmic [NH 4 + ] was estimated at 6 m M in N-deprived plants, 2 mM at 10 M [NH 4 + ]o, 14 mM at 100 M, and 33 mM at 1.5 mM. Free-space [NH 4 + ] was 84 M, 50 M, 700 M, and 8 mM, respectively. In comparison with previously published data on fluxes and compartmentation of NO 3 in white-spruce seedlings, results of this study identify a pronounced physiological preference of this species for NH 4 + over NO 3 as an inorganic N source in terms of uptake and intracellular accumulation. The significant ecological importance of this N-source preference is discussed.The research was supported by a Natural Sciences and Engineering Research Council, Canada, grant to Dr. A.D.M. Glass and a University of British Columbia Graduate Fellowship to Herbert J. Kronzucker. Our thanks go to Dr. M. Adam and Mr. P. Culbert at the particle accelerator facility TRIUMF on the University of British Columbia campus for providing 13N, to Drs. R.D. Guy and S. Silim for providing plant material, and to Dr. M.Y. Wang, Mr. J. Bailey, Mr. J. Mehroke and Mr. P. Poon for essential assistance in experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号