首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A newly developed cell-free system was used to study DNA repair synthesis carried out by extracts from human cell lines in vitro. Extracts from a normal human lymphoid cell line and from cell lines established from individuals with hereditary dysplastic nevus syndrome perform damage-dependent repair synthesis in plasmid DNA treated with cis- or trans-diamminedichloro-platinum(II) or irradiated with ultraviolet light. Cell extracts of xeroderma pigmentosum origin (complementation groups A, C, D, and G) are deficient in DNA repair synthesis. When damaged plasmid DNA was pretreated with purified Escherichia coli UvrABC proteins, xeroderma pigmentosum cell extracts were able to carry out DNA repair synthesis. The ability of E. coli UvrABC proteins to complement xeroderma pigmentosum cell extracts indicates that the extracts are deficient in incision, but can carry out later steps of repair. Thus the in vitro system provides results that are in agreement with the incision defect found from studies of xeroderma pigmentosum cells.  相似文献   

2.
To investigate the repair of oxidative damage in DNA, we have established an in vitro assay utilizing human lymphoblastoid whole cell extracts and plasmid DNA damaged by exposure to methylene blue and visible light. This treatment has been shown to produce predominantly 7-hydro-8-oxodeoxyguanosine (8-oxodG) in double-stranded DNA at low levels of modification. DNA containing 1. 6 lesions per plasmid is substrate for efficient repair synthesis by cell extracts. The incorporation of dGMP is 2.7 +/- 0.5 times greater than the incorporation of dCMP, indicating an average repair patch of 3-4 nucleotides. Damage-specific nicking occurs within 15 min, while resynthesis is slower. The incorporation of dGMP increases linearly, while the incorporation of dCMP exhibits a distinct lag. Extracts from xeroderma pigmentosum (XP) complementation groups A and B exhibit 25 and 40%, respectively, of the incorporation of dCMP compared with normal extracts, but extracts from an XP-D cell line exhibit twice the activity. These data suggest that the efficient repair of 8-oxodG lesions observed in human cell extracts involves more than one pathway of base excision repair.  相似文献   

3.
R D Wood  P Robins  T Lindahl 《Cell》1988,53(1):97-106
Soluble extracts from human lymphoid cell lines that perform repair synthesis on covalently closed circular DNA containing pyrimidine dimers or psoralen adducts are described. Short patches of nucleotides are introduced by excision repair of damaged DNA in an ATP-dependent reaction. Extracts from xeroderma pigmentosum cell lines fail to act on damaged circular DNA, but are proficient in repair synthesis of ultraviolet-irradiated DNA containing incisions generated by Micrococcus luteus pyrimidine dimer-DNA glycosylase. Repair is defective in extracts from all xeroderma pigmentosum cell lines investigated, representing the genetic complementation groups A, B, C, D, H, and V. Mixing of cell extracts of group A and C origin leads to reconstitution of the DNA repair activity.  相似文献   

4.
Proliferating cell nuclear antigen is required for DNA excision repair.   总被引:95,自引:0,他引:95  
K K Shivji  M K Kenny  R D Wood 《Cell》1992,69(2):367-374
Fractionation of extracts from human cell lines allows nucleotide excision repair of damaged DNA to be resolved into discrete incision and polymerization stages. Generation of incised intermediates depends on the XP-A protein, a polypeptide that recognizes sites of damaged DNA, and on the human single-stranded DNA-binding protein HSSB. The proliferating cell nuclear antigen (PCNA) is required for the DNA synthesis that converts the nicked intermediates to completed repair events. This need for PCNA implies that repair synthesis is carried out by DNA polymerase delta or epsilon. The ability to visualize repair intermediates in the absence of PCNA facilitates dissection of the multiprotein reaction that leads to incision of damaged DNA in a major pathway of cellular defense against mutagens.  相似文献   

5.
The repair of in vitro UV-irradiated DNA of plasmid pBB29 was studied in excision defective yeast mutants rad1, rad2, rad3, rad4, rad10 and in Escherichia coli mutants uvr- and recA-, by measuring the cell transformation frequency. Rad2, rad3, rad4, and rad10 mutants could repair plasmid DNA despite their inability to repair nuclear DNA, whereas the reduced ability of rad1 mutant for plasmid DNA repair demonstrated alone the same dependence on the host functions that are needed for nuclear DNA repair. In E. coli the repair of UV-irradiated plasmid DNA is carried out only by the excision-repair system dependent on uvr genes. Treatment of UV-irradiated plasmid DNA with UV endonuclease from Micrococcus luteus greatly enhances the efficiency of transformation of E. coli uvr- mutants. Similar treatment with cell-free extracts of yeast rad1 mutant or wild-type strains as well as with nuclease BaL31, despite their ability for preferential cutting of UV damaged DNA, showed no influence on cell transformation.  相似文献   

6.
Numerous rodent cell lines exist that have defects in nucleotide excision repair of DNA caused by alterations in genes that fall into 10 different complementation groups. The precise roles in the repair of these genes are unknown. We report here that extracts from Chinese hamster ovary cells of excision repair-defective complementation groups 1 and 3 are defective in DNA excision repair in a cell-free system. In vitro complementation can be achieved by mixing extracts from the two groups with one another. In addition, extracts from a human cell line representing xeroderma pigmentosum complementation group B could complement rodent complementation group 1 extracts, but not group 3 extracts. This is consistent with an identity of the ERCC-3 and xeroderma pigmentosum group B genes. Cellular evidence points toward a defect in the incision of damaged DNA in group 1 and 3 mutants. Since the ERCC-1 and ERCC-3 proteins are required for the in vitro reaction, it appears that both gene products are directly involved in the enzymatic incision of damaged DNA, or in preincision reactions. The experiments reported here provide the biochemical basis of an approach to analyze the function of these nucleotide excision repair proteins.  相似文献   

7.
In mammalian cells, damaged bases in DNA are corrected by the base excision repair pathway which is divided into two distinct pathways depending on the length of the resynthesized patch, replacement of one nucleotide for short-patch repair, and resynthesis of several nucleotides for long-patch repair. The involvement of poly(ADP-ribose) polymerase-1 (PARP-1) in both pathways has been investigated by using PARP-1-deficient cell extracts to repair single abasic sites derived from uracil or 8-oxoguanine located in a double-stranded circular plasmid. For both lesions, PARP-1-deficient cell extracts were about half as efficient as wild-type cells at the polymerization step of the short-patch repair synthesis, but were highly inefficient at the long-patch repair. We provided evidence that PARP-1 constitutively interacts with DNA polymerase beta. Using cell-free extracts from mouse embryonic cells deficient in DNA polymerase beta, we demonstrated that DNA polymerase beta is involved in the repair of uracil-derived AP sites via both the short and the long-patch repair pathways. When both PARP-1 and DNA polymerase beta were absent, the two repair pathways were dramatically affected, indicating that base excision repair was highly inefficient. These results show that PARP-1 is an active player in DNA base excision repair.  相似文献   

8.
Mammalian cell extracts have been shown to carry out damage-specific DNA repair synthesis induced by a variety of lesions, including those created by UV and cisplatin. Here, we show that a single psoralen interstrand cross-link induces DNA synthesis in both the damaged plasmid and a second homologous unmodified plasmid coincubated in the extract. The presence of the second plasmid strongly stimulates repair synthesis in the cross-linked plasmid. Heterologous DNAs also stimulate repair synthesis to variable extents. Psoralen monoadducts and double-strand breaks do not induce repair synthesis in the unmodified plasmid, indicating that such incorporation is specific to interstrand cross-links. This induced repair synthesis is consistent with previous evidence indicating a recombinational mode of repair for interstrand cross-links. DNA synthesis is compromised in extracts from mutants (deficient in ERCC1, XPF, XRCC2, and XRCC3) which are all sensitive to DNA cross-linking agents but is normal in extracts from mutants (XP-A, XP-C, and XP-G) which are much less sensitive. Extracts from Fanconi anemia cells exhibit an intermediate to wild-type level of activity dependent upon the complementation group. The DNA synthesis deficit in ERCC1- and XPF-deficient extracts is restored by addition of purified ERCC1-XPF heterodimer. This system provides a biochemical assay for investigating mechanisms of interstrand cross-link repair and should also facilitate the identification and functional characterization of cellular proteins involved in repair of these lesions.  相似文献   

9.
10.
Salles B  Rodrigo G  Li RY  Calsou P 《Biochimie》1999,81(1-2):53-58
The development of in vitro repair assays with human cell-free extracts led to new insights on the mechanism of excision of DNA damage which consists of incision/excision and repair synthesis/ligation. We have adapted the repair synthesis reaction with cells extracts incubated with damaged plasmid DNA performed in liquid phase to solid phase by DNA adsorption into microplate wells. Since cells extracts are repair competent in base excision and nucleotide excision repair, all types of substrate DNA lesions were detected with chemiluminescence measurement after incorporation of biotin-deoxynucleotide during the repair synthesis step. Derivatives of our initial 3D-assay (DNA damage detection) have been set up to: i) screen antioxidative compounds and NER inhibitors; ii) capture genomic DNA (3D(Cell)-assay) that allows detection of alkylated base and consequently determines the kinetics of the cellular repair; and iii) immunodetect the repair proteins in an ELISA reaction (3D(Rec)-assay). The 3D derived assays are presented and discussed.  相似文献   

11.
P Calsou  P Frit    B Salles 《Nucleic acids research》1992,20(23):6363-6368
During reaction of cis-diamminedichloroplatinum(II) (cis-DDP) with DNA, a number of adducts are formed which may be discriminated by the excision-repair system. An in vitro excision-repair assay with human cell-free extracts has been used to assess the relative repair extent of monofunctional adducts, intrastrand and interstrand cross-links of cis-DDP on plasmid DNA. Preferential removal of cis-DDP 1,2-intrastrand diadducts occurred in the presence of cyanide ions. In conditions where cyanide treatment removed 85% of total platinum adducts while approximately 70% of interstrand cross-links remained in plasmid DNA, no significant variation in repair synthesis by human cell extracts was observed. Then, we constructed three types of plasmid DNA substrates containing mainly either monoadducts, 1,2-intrastrand cross-links or interstrand cross-links lesions. The three plasmid species were modified in order to obtain the same extent of total platinum DNA adducts per plasmid. No DNA repair synthesis was detected with monofunctional adducts during incubation with human whole cell extracts. However, a two-fold increase in repair synthesis was found when the proportion of interstrand cross-links in plasmid DNA was increased by 2-3 fold. These findings suggest that (i) cis-DDP 1,2-intrastrand diadducts are poorly repaired by human cell extracts in vitro, (ii) among other minor lesions potentially cyanide-resistant, cis-DDP interstrand cross-links represent a major lesion contributing to the repair synthesis signal in the in vitro assay. These results could account for the drug efficiency in vivo.  相似文献   

12.
The human single-stranded DNA binding protein (HSSB/RPA) is involved in several processes that maintain the integrity of the genome including DNA replication, homologous recombination, and nucleotide excision repair of damaged DNA. We report studies that analyze the role of HSSB in DNA repair. Specific protein-protein interactions appear to be involved in the repair function of HSSB, since it cannot be replaced by heterologous single-stranded DNA binding proteins. Anti-HSSB antibodies that inhibit the ability of HSSB to stimulate DNA polymerase alpha also inhibit repair synthesis mediated by human cell-free extracts. However, antibodies that neutralize DNA polymerase alpha do not inhibit repair synthesis. Repair is sensitive to aphidicolin, suggesting that DNA polymerase epsilon or delta participates in nucleotide excision repair by cell extracts. HSSB has a role other than generally stimulating synthesis by DNA polymerases, as it does not enhance the residual damage-dependent background synthesis displayed by repair-deficient extracts from xeroderma pigmentosum cells. Significantly, when damaged DNA is incised by the Escherichia coli UvrABC repair enzyme, human cell extracts can carry out repair synthesis even when HSSB has been neutralized with antibodies. This suggests that HSSB functions in an early stage of repair, rather than exclusively in repair synthesis. A model for the role of HSSB in repair is presented.  相似文献   

13.
Choudhury S  Pan J  Amin S  Chung FL  Roy R 《Biochemistry》2004,43(23):7514-7521
trans-4-Hydroxynonenal (HNE) is a major peroxidation product of omega-6 polyunsaturated fatty acids. The reaction of HNE with DNA produces four diastereomeric 1,N(2)-gamma-hydroxypropano adducts of deoxyguanosine (HNE-dG); background levels of these adducts have been detected in tissues of animals and humans. There is evidence to suggest that these adducts are mutagenic and involved in liver carcinogenesis in patients with Wilson's disease and in other human cancers. Here, we present biochemical evidence that in human cell nuclear extracts the HNE-dG adducts are repaired by the nucleotide excision repair (NER) pathway. To investigate the recognition and repair of HNE-dG adducts in human cell extracts, we prepared plasmid DNA substrates modified by HNE. [(32)P]-Postlabeling/HPLC determined that the HNE-dG adduct levels were approximately 1200/10(6) dG of plasmid DNA substrate. We used this substrate in an in vitro repair-synthesis assay to study the complete repair of HNE-induced DNA adducts in cell-free extracts. We observed that nuclear extracts from HeLa cells incorporated a significant amount of alpha[(32)P]dCTP in DNA that contained HNE-dG adducts by comparison with UV-irradiated DNA as the positive control. Such repair synthesis for UV damage or HNE-dG adducts did not occur in XPA cell nuclear extracts that lack the capacity for NER. However, XPA cells complemented with XPA protein restored repair synthesis for both of these adducts. To verify that HNE-dG adducts in DNA were indeed repaired, we measured HNE-dG adducts in the post-repaired DNA substrates by the [(32)P]-postlabeling/HPLC method, showing that 50-60% of HNE-dG adducts were removed from the HeLa cell nuclear extracts after 3 h at 30 degrees C. The repair kinetics indicated that the excision rate is faster than the rate of gap-filling/DNA synthesis. Furthermore, the HNE-dG adduct isomers 2 and 4 appeared to be repaired more efficiently at early time points than isomers 1 and 3.  相似文献   

14.
Fluorescent light (FL) has been shown to generate free radicals within cells, however, the specific chemical nature of DNA damage induced by FL has not previously been determined. Using gas chromatography/isotope dilution mass spectrometry, we have detected induction of the oxidative DNA lesions 5-hydroxycytosine (5-OH-Cyt), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) and 4, 6-diamino-5-formamidopyrimidine (FapyAde) in cultured cells irradiated with FL. We followed the repair of these lesions in normal and xeroderma pigmentosum group A (XP-A) cells. 5-OH-Cyt and FapyGua were repaired efficiently in normal cells within 6 h following FL exposure. XP-A cells were unable to repair these oxidative DNA base lesions. Additionally, to compare the repair of oxidative lesions induced by various sources, in vitro repair studies were performed using plasmid DNA damaged by FL, gamma-irradiation or OsO(4)treatment. Whole cell extracts from normal cells repaired damaged substrates efficiently, whereas there was little repair in XP-A extracts. Our data demon-strate defective repair of oxidative DNA base lesions in XP-A cells in vivo and in vitro.  相似文献   

15.
W Zimmermann  A Weissbach 《Biochemistry》1982,21(14):3334-3343
Isolated chloroplasts are capable of synthesizing chloroplast DNA in the presence of Mg2+ and deoxynucleoside triphosphates. The in vitro reaction proceeds for at least 60 min and is inhibited by KC1 and N-ethylmaleimide. Stretches of several hundred nucleotides in length are synthesized within an hour. Little or no inhibition is shown by aphidicolin (an inhibitor of eukaryotic DNA polymerase alpha), dideoxythymidine triphosphate (an inhibitor of eukaryotic DNA polymerases beta and gamma), nalidixic acid, or rifampicin. Ethidium bromide is a moderate inhibitor of DNA synthesis in the isolated chloroplast. Soluble extracts of chloroplasts will copy exogenously added recombinant plasmid circular DNA containing fragments of chloroplast DNA, and this reaction is strongly inhibited by ethidium bromide. Copying of the plasmid DNA takes place on the relaxed circular or linear forms of the DNA, but no specific initiation sites on the chloroplasts' DNA fragments of the recombinant plasmids have been detected. Our data are consistent with a repair mechanism operating in vitro but may also represent incomplete replicative DNA synthesis.  相似文献   

16.
Extracts from HeLa cells were used to study the susceptibility of repair synthesis in UV-irradiated plasmid DNA to inhibition by exogenously added nucleic acid. Purified DNA restriction fragments have little inhibitory effect on repair synthesis. However, activated calf thymus DNA fragments, genomic DNA fragments in cell extracts, and sonicated plasmid DNA all inhibited repair synthesis. Degraded DNA fragments arising from E. coli during bacterial plasmid purification were found to be particularly inhibitory. tRNA is not a potent inhibitor of in vitro repair synthesis. In order to observe efficient DNA repair synthesis mediated by human cell extracts, it is essential to prepare highly purified closed circular plasmid DNA, and we describe a reliable method for doing so.  相似文献   

17.
DNA is continuously exposed to damaging agents that can lead to changes in the genetic information with adverse consequences. Nonetheless, eukaryotic cells have mechanisms such as the DNA damage response (DDR) to prevent genomic instability. The DNA of eukaryotic cells is packaged into nucleosomes, which fold the genome into highly condensed chromatin, but relatively little is known about the role of chromatin accessibility in DNA repair. p19INK4d, a cyclin-dependent kinase inhibitor, plays an important role in cell cycle regulation and cellular DDR. Extensive data indicate that p19INK4d is a critical factor in the maintenance of genomic integrity and cell survival. p19INK4d is upregulated by various genotoxics, improving the repair efficiency for a variety of DNA lesions. The evidence of p19INK4d translocation into the nucleus and its low sequence specificity in its interaction with DNA prompted us to hypothesize that p19INK4d plays a role at an early stage of cellular DDR. In the present study, we demonstrate that upon oxidative DNA damage, p19INK4d strongly binds to and relaxes chromatin. Furthermore, in vitro accessibility assays show that DNA is more accessible to a restriction enzyme when a chromatinized plasmid is incubated in the presence of a protein extract with high levels of p19INK4d. Nuclear protein extracts from cells overexpressing p19INK4d are better able to repair a chromatinized and damaged plasmid. These observations support the notion that p19INK4d would act as a chromatin accessibility factor that allows the access of the repair machinery to the DNA damage site.  相似文献   

18.
Nonhomologous end-joining (NHEJ) is one of the repair pathways for double-strand breaks (DSBs) in eukaryotic cells. By using linearized plasmid substrates, we have detected intramolecular NHEJ activity in a cell-free extract from the cultured silkworm cell line BmN4. The efficiency of NHEJ differed according to the structure of DNA ends; approximately 1% of input DNA was repaired when the substrate had cohesive ends. The reaction required the hydrolysis of nucleotide triphosphate; interestingly, all of four rNTPs or four dNTPs could support the reaction. A substrate with non-complementary DNA ends was mainly repaired by the DNA polymerase-mediated pathway. These results indicate that the present cell-free system will be useful to analyze the molecular mechanisms of DSB repair and NHEJ in insect cells.  相似文献   

19.
Revertant cell lines were established from cisplatin (CP) resistant HeLa cells. Expression of CP damaged plasmid DNA carrying bacterial chloramphenicol acetyltransferase (CAT) gene after transfection into cells was measured. Revertant cells showed reduced host cell reactivation of damaged plasmid, as compared to resistant cells. Addition of aphidicolin, an inhibitor for DNA polymerase alpha, to resistant cells effectively blocked enhanced plasmid reactivation and acquired resistance. The results are consistent with the notion that cellular ability in repair CP-damaged DNA is a mechanism for CP resistance.  相似文献   

20.
Complementation group A of xeroderma pigmentosum (XP) represents one of the most prevalent and serious forms of this cancer-prone disorder. Because of a marked defect in DNA excision repair, cells from individuals with XP-A are hypersensitive to the toxic and mutagenic effects of ultraviolet light and many chemical agents. We report here the isolation of the XP-A DNA repair protein by complementation of cell extracts from a repair-defective human XP-A cell line. XP-A protein purified from calf thymus migrates on denaturing gel electrophoresis as a doublet of 40 and 42 kilodaltons. The XP-A protein binds preferentially to ultraviolet light-irradiated DNA, with a preference for damaged over nondamaged nucleotides of approximately 10(3). This strongly suggests that the XP-A protein plays a direct role in the recognition of and incision at lesions in DNA. We further show that this protein corresponds to the product encoded by a recently isolated gene that can restore excision repair to XP-A cells. Thus, excision repair of plasmid DNA by cell extracts sufficiently resembles genomic repair in cells to reveal accurately the repair defect in an inherited disease. The general approach described here can be extended to the identification and isolation of other human DNA repair proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号