首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA localization is an important event that is essential for the polarization and differentiation of a cell. Although several methods are currently used to detect localized RNAs, a simplified detection system has not yet been developed for Schizosaccharomyces pombe. In the present study, we describe a new vector system for the visualization of localized RNAs in S. pombe using a U1A-tag-GFP system. A pREP1-U1A-tag vector plasmid to express U1A-tagged RNA and a pREP2-U1AGFP plasmid to produce a U1A-GFP fusion protein were constructed for this system. Since the U1A-GFP protein binds U1A-tagged RNA, fluorescence is observed at the location of U1A-tagged RNA in cells expressing both of these. The nucleolar localization of U3 snoRNA was successfully detected using this system, and a novel RNA localized at the DNA region of the nucleus was found by screening localized RNAs. This system will accelerate the study of localized RNAs in S. pombe.  相似文献   

2.
3.
Most eukaryotic mRNAs depend upon precise removal of introns by the spliceosome, a complex of RNAs and proteins. Splicing of pre-mRNA is known to take place in Dictyostelium discoideum, and we previously isolated the U2 spliceosomal RNA experimentally. In this study, we identified the remaining major spliceosomal RNAs in Dictyostelium by a bioinformatical approach. Expression was verified from 17 small nuclear RNA (snRNA) genes. All these genes are preceded by a putative noncoding RNA gene promoter. Immunoprecipitation showed that snRNAs U1, U2, U4, and U5, but not U6, carry the conserved trimethylated 5' cap structure. A number of divergent U2 species are expressed in Dictyostelium. These RNAs carry the U2 RNA hallmark sequence and structure motifs but have an additional predicted stem-loop structure at the 5' end. Surprisingly, and in contrast to the other spliceosomal RNAs in this study, the new U2 variants were enriched in the cytoplasm and were developmentally regulated. Furthermore, all of the snRNAs could also be detected as polyadenylated species, and polyadenylated U1 RNA was demonstrated to be located in the cytoplasm.  相似文献   

4.
5.
The 3′ untranslated region of mRNA encoding PHAX, a phosphoprotein required for nuclear export of U-type snRNAs, contains cis-acting sequence motifs E2 and VM1 that are required for localization of RNAs to the vegetal hemisphere of Xenopus oocytes. However, we have found that PHAX mRNA is transported to the opposite, animal, hemisphere. A set of proteins that cross-link to the localization elements of vegetally localized RNAs are also cross-linked to PHAX and An1 mRNAs, demonstrating that the composition of RNP complexes that form on these localization elements is highly conserved irrespective of the final destination of the RNA. The ability of RNAs to bind this core group of proteins is correlated with localization activity. Staufen1, which binds to Vg1 and VegT mRNAs, is not associated with RNAs localized to the animal hemisphere and may determine, at least in part, the direction of RNA movement in Xenopus oocytes.  相似文献   

6.
7.
8.
9.
Nuclear RNP complex assembly initiates cytoplasmic RNA localization   总被引:1,自引:0,他引:1  
Cytoplasmic localization of mRNAs is a widespread mechanism for generating cell polarity and can provide the basis for patterning during embryonic development. A prominent example of this is localization of maternal mRNAs in Xenopus oocytes, a process requiring recognition of essential RNA sequences by protein components of the localization machinery. However, it is not yet clear how and when such protein factors associate with localized RNAs to carry out RNA transport. To trace the RNA-protein interactions that mediate RNA localization, we analyzed RNP complexes from the nucleus and cytoplasm. We find that an early step in the localization pathway is recognition of localized RNAs by specific RNA-binding proteins in the nucleus. After transport into the cytoplasm, the RNP complex is remodeled and additional transport factors are recruited. These results suggest that cytoplasmic RNA localization initiates in the nucleus and that binding of specific RNA-binding proteins in the nucleus may act to target RNAs to their appropriate destinations in the cytoplasm.  相似文献   

10.
Moloney murine leukemia virus (MLV) particles contain both viral genomic RNA and an assortment of host cell RNAs. Packaging of virus-encoded RNA is selective, with virions virtually devoid of spliced env mRNA and highly enriched for unspliced genome. Except for primer tRNA, it is unclear whether packaged host RNAs are randomly sampled from the cell or specifically encapsidated. To address possible biases in host RNA sampling, the relative abundances of several host RNAs in MLV particles and in producer cells were compared. Using 7SL RNA as a standard, some cellular RNAs, such as those of the Ro RNP, were found to be enriched in MLV particles in that their ratios relative to 7SL differed little, if at all, from their ratios in cells. Some RNAs were underrepresented, with ratios relative to 7SL several orders of magnitude lower in virions than in cells, while others displayed intermediate values. At least some enriched RNAs were encapsidated by genome-defective nucleocapsid mutants. Virion RNAs were not a random sample of the cytosol as a whole, since some cytoplasmic RNAs like tRNA(Met) were vastly underrepresented, while U6 spliceosomal RNA, which functions in the nucleus, was enriched. Real-time PCR demonstrated that env mRNA, although several orders of magnitude less abundant than unspliced viral RNA, was slightly enriched relative to actin mRNA in virions. These data demonstrate that certain host RNAs are nearly as enriched in virions as genomic RNA and suggest that Psi- mRNAs and some other host RNAs may be specifically excluded from assembly sites.  相似文献   

11.
12.
13.
Circular RNAs are abundant,conserved, and associated with ALU repeats   总被引:10,自引:0,他引:10  
Circular RNAs composed of exonic sequence have been described in a small number of genes. Thought to result from splicing errors, circular RNA species possess no known function. To delineate the universe of endogenous circular RNAs, we performed high-throughput sequencing (RNA-seq) of libraries prepared from ribosome-depleted RNA with or without digestion with the RNA exonuclease, RNase R. We identified >25,000 distinct RNA species in human fibroblasts that contained non-colinear exons (a “backsplice”) and were reproducibly enriched by exonuclease degradation of linear RNA. These RNAs were validated as circular RNA (ecircRNA), rather than linear RNA, and were more stable than associated linear mRNAs in vivo. In some cases, the abundance of circular molecules exceeded that of associated linear mRNA by >10-fold. By conservative estimate, we identified ecircRNAs from 14.4% of actively transcribed genes in human fibroblasts. Application of this method to murine testis RNA identified 69 ecircRNAs in precisely orthologous locations to human circular RNAs. Of note, paralogous kinases HIPK2 and HIPK3 produce abundant ecircRNA from their second exon in both humans and mice. Though HIPK3 circular RNAs contain an AUG translation start, it and other ecircRNAs were not bound to ribosomes. Circular RNAs could be degraded by siRNAs and, therefore, may act as competing endogenous RNAs. Bioinformatic analysis revealed shared features of circularized exons, including long bordering introns that contained complementary ALU repeats. These data show that ecircRNAs are abundant, stable, conserved and nonrandom products of RNA splicing that could be involved in control of gene expression.  相似文献   

14.
Four novel U RNAs are encoded by a herpesvirus   总被引:23,自引:0,他引:23  
Marmoset T lymphocytes transformed by herpesvirus saimiri contain the first virally encoded U RNAs (called HSURs) to be identified. HSURs assemble into small nuclear ribonucleoproteins of low abundance (less than or equal to 2 x 10(4) copies/cell). They bind proteins with Sm determinants and acquire a 5' trimethylguanosine cap structure. The sequences of HSUR 1 (143 nucleotides), HSUR 2 (115 nucleotides), HSUR 3 (76 nucleotides), and HSUR 4 (106 nucleotides) are related to each other but are distinct from any previously characterized cellular U RNA. The viral genes encoding the HSURs possess conserved enhancer, promoter, and 3' end formation signals unique to U RNA genes. HSUR 1 and HSUR 2 have a similar 5' end sequence that exhibits perfect complementarity to the highly conserved AAUAAA polyadenylation signal. Oligonucleotide directed RNAase H degradation indicates that this 5' end region is available for base pairing interactions within the HSUR 1 and HSUR 2 snRNP particles.  相似文献   

15.
As the genomes of more eukaryotic pathogens are sequenced, understanding how molecular differences between parasite and host might be exploited to provide new therapies has become a major focus. Central to cell function are RNA-containing complexes involved in gene expression, such as the ribosome, the spliceosome, snoRNAs, RNase P, and telomerase, among others. In this article we identify by comparative genomics and validate by RNA analysis numerous previously unknown structural RNAs encoded by the Plasmodium falciparum genome, including the telomerase RNA, U3, 31 snoRNAs, as well as previously predicted spliceosomal snRNAs, SRP RNA, MRP RNA, and RNAse P RNA. Furthermore, we identify six new RNA coding genes of unknown function. To investigate the relationships of the RNA coding genes to other genomic features in related parasites, we developed a genome browser for P. falciparum (http://areslab.ucsc.edu/cgi-bin/hgGateway). Additional experiments provide evidence supporting the prediction that snoRNAs guide methylation of a specific position on U4 snRNA, as well as predicting an snRNA promoter element particular to Plasmodium sp. These findings should allow detailed structural comparisons between the RNA components of the gene expression machinery of the parasite and its vertebrate hosts.  相似文献   

16.
mRNA localization is a powerful mechanism for targeting factors to different regions of the cell and is used in Drosophila to pattern the early embryo. During oogenesis of the wasp Nasonia, mRNA localization is used extensively to replace the function of the Drosophila bicoid gene for the initiation of patterning along the antero-posterior axis. Nasonia localizes both caudal and nanos to the posterior pole, whereas giant mRNA is localized to the anterior pole of the oocyte; orthodenticle1 (otd1) is localized to both the anterior and posterior poles. The abundance of differentially localized mRNAs during Nasonia oogenesis provided a unique opportunity to study the different mechanisms involved in mRNA localization. Through pharmacological disruption of the microtubule network, we found that both anterior otd1 and giant, as well as posterior caudal mRNA localization was microtubule-dependent. Conversely, posterior otd1 and nanos mRNA localized correctly to the posterior upon microtubule disruption. However, actin is important in anchoring these two posteriorly localized mRNAs to the oosome, the structure containing the pole plasm. Moreover, we find that knocking down the functions of the genes tudor and Bicaudal-D mimics disruption of microtubules, suggesting that tudor's function in Nasonia is different from flies, where it is involved in formation of the pole plasm.  相似文献   

17.
18.
19.
Subcellular localization of messenger RNAs (mRNAs) to correct sites and translational activation at appropriate timings are crucial for normal progression of various biological events. However, a molecular link between the spatial regulation and temporal regulation remains unresolved. In immature zebrafish oocytes, translationally repressed cyclin B1 mRNA is localized to the animal polar cytoplasm and its temporally regulated translational activation in response to a maturation-inducing hormone is essential to promote oocyte maturation. We previously reported that the coding region of cyclin B1 mRNA is required for the spatio-temporal regulation. Here, we report that a sequence, CAGGAGACC, that is conserved in the coding region of vertebrate cyclin B1 mRNA is involved in the regulation. Like endogenous cyclin B1 mRNA, reporter mRNAs harboring the sequence CAGGAGACC were localized to the animal polar cytoplasm of oocytes, while those carrying mutations in the sequence (with no change in the coding amino acids) were dispersed in the animal hemisphere of oocytes. Furthermore, translational activation of the mutant mRNAs was initiated at a timing earlier than that of endogenous and wild-type reporter mRNAs during oocyte maturation. Interaction of CAGGAGACC with proteins in vitro suggests that this sequence functions in collaboration with a trans-acting protein factor(s) in oocytes. These findings reveal that the sequence in the coding region of cyclin B1 mRNA plays an important role as a cis-acting element in both subcellular localization and translational timing of mRNA, providing a direct molecular link between the spatial and temporal regulation of mRNA translation.  相似文献   

20.
A common maturation pathway for small nucleolar RNAs.   总被引:24,自引:7,他引:17       下载免费PDF全文
M P Terns  C Grimm  E Lund    J E Dahlberg 《The EMBO journal》1995,14(19):4860-4871
We have shown that precursors of U3, U8 and U14 small nucleolar RNAs (snoRNAs) are not exported to the cytoplasm after injection into Xenopus oocyte nuclei but are selectively retained and matured in the nucleus, where they function in pre-rRNA processing. Our results demonstrate that Box D, a conserved sequence element found in these and most other snoRNAs, plays a key role in their nuclear retention, 5' cap hypermethylation and stability. Retention of U3 and U8 RNAs in the nucleus is saturable and relies on one or more common factors. Hypermethylation of the 5' caps of U3 RNA occurs efficiently in oocyte nuclear extracts lacking nucleoli, suggesting that precursor snoRNAs are matured in the nucleoplasm before they are localized to the nucleolus. Surprisingly, m7G-capped precursors of spliceosomal small nuclear RNAs (snRNAs) such as pre-U1 and U2, can be hypermethylated in nuclei if the RNAs are complexed with Sm proteins. This raises the possibility that a single nuclear hypermethylase activity may act on both nucleolar and spliceosomal snRNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号