首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of biotic interactions in structuring macroinfaunal communities of exposed sandy beaches, an unstable habitat characterized by strong physical forces, is generally considered negligible. We investigated the hypothesis that competitive interactions during burrowing could potentially affect the intertidal distribution and abundance of macroinfaunal animals of sandy beaches using two species of invertebrates, a hippid crab, Emerita analoga, and a bivalve, Mesodesma donacium, common along the coast of Chile. Spatial overlap in the intertidal distributions of these species was dynamic, varying with abundance, location, time of year and tide. Highest density zones of each species were often distinctly separated at low tide and spatial overlap in their distributions decreased significantly with increasing density, suggesting density dependence of the interactions. Negative relationships between densities of the two species at the smallest spatial scale examined also suggested active interactions among individuals. Over a tidal cycle, peak densities of the two species overlapped suggesting that interactions could occur frequently. Burrowing performance of E. analoga varied between size classes in three experimental densities of clams (5, 10 and 15 clams 0.008 m-2) and in controls with no clams. Burrowing times of large crabs were significantly longer (~twofold) in all densities of clams than in controls, while those of small crabs did not differ significantly among treatments and controls. Large crabs also displaced clams from the sand while burrowing suggesting that two mechanisms of direct interference can occur, both of which could increase exposure of individuals involved to active swash and transport across or along the beach with potentially negative consequences. Our results suggest that competitive interactions capable of affecting zonation and population and community biology on a number of scales can occur among burrowing macroinfauna on exposed sandy beaches. Those interactions could be more ecologically significant than previously appreciated and may contribute to patterns observed in community structure and zonation on sandy beaches. Our results illustrate the potential importance of negative biological interactions in a physically stressful environment.  相似文献   

2.
Species richness in sandy beaches is strongly affected by concurrent variations in morphodynamics and salinity. However, as in other ecosystems, different groups of species may exhibit contrasting patterns in response to these environmental variables, which would be obscured if only aggregate richness is considered. Deconstructing biodiversity, i.e. considering richness patterns separately for different groups of species according to their taxonomic affiliation, dispersal mode or mobility, could provide a more complete understanding about factors that drive species richness patterns. This study analyzed macroscale variations in species richness at 16 Uruguayan sandy beaches with different morphodynamics, distributed along the estuarine gradient generated by the Rio de la Plata over a 2 year period. Species richness estimates were deconstructed to discriminate among taxonomic groups, supralittoral and intertidal forms, and groups with different feeding habits and development modes. Species richness was lowest at intermediate salinities, increasing towards oceanic and inner estuarine conditions, mainly following the patterns shown for intertidal forms. Moreover, there was a differential tolerance to salinity changes according to the habitat occupied and development mode, which determines the degree of sensitivity of faunal groups to osmotic stress. Generalized (additive and linear) mixed models showed a clear increase of species richness towards dissipative beaches. All taxonomic categories exhibited the same trend, even though responses to grain size and beach slope were less marked for crustaceans and insects than for molluscs or polychaetes. However, supralittoral crustaceans exhibited the opposite trend. Feeding groups decreased from dissipative to reflective systems, deposit feeders being virtually absent in the latter. This deconstructive approach highlights the relevance of life history strategies in structuring communities, highlighting the relative importance that salinity and morphodynamic gradients have on macroscale diversity patterns in sandy beaches.  相似文献   

3.
Tidal movements of the macrofauna on an exposed sandy beach in South Africa   总被引:1,自引:0,他引:1  
A. Mclachlan    T. Wooldridge    G. VanDer  Horst 《Journal of Zoology》1979,187(4):433-442
All epifaunal and shallow-burrowing, intertidal macrofauna on an exposed sandy beach appear to undergo tidal migrations which vary in extent but are all upshore on the incoming tide and downshore on the outgoing tide during day and night. In the crustaceans this is probably endogenous rhythmic behaviour and they show increased activity at night. In the molluscs this movement is not synchronised by an intrinsic mechanism but results from behavioural responses to changing physical conditions. The large wedge clam, Donax serra, shows no tidal migrations but does show a semilunar rhythm of movement from just above mean tide level (MTL) during springs to the low tide level during neap tides.  相似文献   

4.
Wrack deposits are a common feature of sandy beaches worldwide. Despite their relevance, the habitat features of wrack debris and their potential influence on the distribution of upper shore arthropods remain poorly understood. In this study, the distribution of supralittoral arthropods was analysed by sampling areas covered and not covered by wrack on two tidal levels during winter and summer from two sandy beaches of south-western Spain. Despite the differences between beaches and seasons, density, species richness and diversity were significantly higher in wrack patches than in bare sand. Moreover, community structure and composition varied between both microhabitats due to the influence of wrack deposits on the habitat selection by arthropod species. Food availability combined with temperature or moisture mostly explained the distribution pattern of assemblages. Moreover, these habitat features varied between wrack bands, the lower band being fresher and wetter than upper band. The density of the main species inhabiting wrack was correlated mainly with moisture. The present study provides evidences about the role of algal wrack structuring diversity and composition of supralittoral arthropods stressing the importance of the habitat heterogeneity to maintain abundant and diverse communities on exposed sandy beaches.  相似文献   

5.
Many sandy beaches worldwide receive large amounts of drift seaweed, known as wrack, from offshore algal beds and closer rocky intertidal shores. Despite the important influence of algal wrack on macrofaunal assemblages from different coastal systems, relatively little attention has been paid to the macrofaunal responses in sandy beaches to macrophyte wrack supplies. Algal wrack is a key resource, i.e. for food and/or refuge, for beach invertebrates while its availability can affect diversity and abundance of intertidal animals including shorebirds, but the role of certain types of wrack and its location on the shore has not been examined experimentally to date. In this paper, we use experimental manipulation of two species of brown seaweeds, i.e. artificial wrack patches made up of the native macroalgae Saccorhiza polyschides and the invasive species Sargassum muticum, to test hypotheses about influences on macrofaunal assemblages inhabiting the drift line and supratidal levels of exposed beaches. Results pointed out that different types of wrack deposits were not used uniformly by invertebrates. Nutritional value differed between the two species of wrack. In most cases, the carbohydrates, lipids and organic carbon content were greater in patches of S. muticum than in patches of S. polyschides. Data also provided evidences that nutritional content and microclimatic conditions of wrack deposits, i.e. temperature and humidity, might affect macrofaunal assemblages.  相似文献   

6.
This study shows that patterns in some community assemblages are not mainly governed by local factors but also by regional ones. Using field data from 36 floodplain forest lakes in the Amazon basin, we present transect count data on the richness, abundance and distribution of floodplain lake fish species. A total of 194 fish species were collected, of which 43 were classified as short-distance migrants. A positive relation was found for local migratory and sedentary species abundances with distribution at a regional scale. The study also suggests that the probability of the presence of a migratory species is more affected by aspects of river-lake connectivity than sedentary species. Our results seem to indicate that migratory species play an important role in local dynamics of floodplain lakes.  相似文献   

7.
8.
Most of the macroinfauna from sandy beaches is highly mobile, emerging out of the sediment when the tide rises, and using the swash to migrate up and down the beach face or feed (searching for prey or carrion). After swash excursions, they usually burrow back into the sediment, maintaining zonation at low tide. Therefore, the different species abilities to emerge, move around and burrow under different swash climates and sediment conditions are expected to influence observed distribution patterns. Nonetheless, few attempts have been made to understand behavioral mechanisms of these organisms in moving fluids.In this study, we used a flume tunnel to investigate the orientation, swimming ability and burrowing time of two similar species of cirolanid isopods, Excirolana armata Dana and Excirolana braziliensis Richardson, under current velocities ranging from 5 to 30 cm·s−1. E. armata inhabits middle levels of dissipative to intermediate beaches, while E. braziliensis is found towards the upper level of a wider range of beach states. Both species oriented countercurrent above a threshold velocity, which turned out to be significantly lower for E. armata than for E. braziliensis. E. armata proved to be a stronger swimmer as shown by the higher velocities surmounted, and the less drags experienced at the highest current velocity. E. armata also burrowed faster than E. braziliensis. Burrowing time was affected by sediment grain size and water content, but not by water flow. Once organisms managed to begin burrowing under different flow conditions, they were not affected by current velocity. Nonsaturated sand precluded burial, while coarse sand retarded it. Differences in the observed patterns of across-beach distribution may thus be the result of species-specific behavioral responses to swash climate, manifested in swimming ability, burying and orientation in directional flows.  相似文献   

9.
The abundance and diversity of species of microfungi was investigated on the beaches of Delfines, Km 24 Veracruz-Alvarado Highway, and El Coco, located on the coasts of the Caribbean Sea, Gulf of Mexico, and the Pacific Ocean, respectively. On each beach a sample composed of sand, subtidal wood or washed-up detritus with moist sand was collected. The samples were analyzed by three different methods, resulting in a total of 1,160 occurrences that fluctuated between 340 and 441 occurrences/sample. The number of species/sample fluctuated between 20 and 32. A total of 52 species was found, of which 12 were marine, and 40 nomarine, of terrestrial origin, and of these 15 were ascomycetes, 34 were hyphomycetes, 2 were blastomycetes and one was a coelomycete. The abundance distribution showed few species with high or low values, with the greates proportion having intermediate values. In order to compare species diversity among the samples frequency curves were utilized, based on the number of species expected from samples taken at random; the results showed that the beach at El Coco was richest in species.  相似文献   

10.
11.
1. The positive abundance-occupancy and abundance-variance relationships are two of the most widely documented patterns in population and community ecology. 2. Recently, a general model has been proposed linking the mean abundance, the spatial variance in abundance, and the occupancy of species. A striking feature of this model is that it consists explicitly of the three variables abundance, variance and occupancy, and no extra parameters are involved. However, little is known about how well the model performs. 3. Here, we show that the abundance-variance-occupancy model fits extremely well to data on the abundance, variance and occupancy of a large number of arthropod species in natural forest patches in the Azores, at three spatial extents, and distinguishing between species of different colonization status. Indeed, virtually all variation about the bivariate abundance-occupancy and abundance-variance relationships is effectively explained by the third missing variable (variance in abundance in the case of the abundance-occupancy relationship, and occupancy in the case of the abundance-variance relationship). 4. Introduced species tend to exhibit lower densities, less spatial variance in these densities, and occupy fewer sites than native and endemic species. None the less, they all lie on the same bivariate abundance-occupancy and abundance-variance, and trivariate abundance-variance-occupancy, relationships. 5. Density, spatial variance in density, and occupancy appear to be all the things one needs to know to describe much of the spatial distribution of species.  相似文献   

12.
The universal occurrence and abundance of nematodes provides opportunities to investigate ecological factors that may influence biodiversity. Clarke and Warwick (2001) have proposed diversity indices average taxonomic distance(AvTD), variation in taxonomic distinctness (VarTD) for computing marine nematode biodiversity based on classification trees. Faith [Biological Conservation 61 (1992) 1] had previously proposed a diversity index based on phylogenetic trees, though not applied to nematodes. Clarke and Warwick (2001) also considered an index AvPD analogous to AvTD. These indices have been applied to five very large collections of free-living nematodes from three exposed sandy beaches in Australia. Two were from a beach close to Darwin in northern Australia, two from the temperate southeast coast of Australia and one from the south of the Australian mainland. The collections extend over a considerable range of latitude, from 12°26S to 38°33S and the controversial hypothesis that latitudinal gradients per se influence the biodiversity of marine nematode assemblages is examined. AvTD did not vary among collections and its value for any collection was indistinguishable from that of random samples of the same size drawn from the total species pool. VarTD showed no variation for three of the collections, but was slightly higher than expected for the mid-latitude beach, attributed to unevenness in the classification trees. AvTD and VarTD were not greatly affected by differences in sampling intensity. PD varied directly with the number of species found but observed PD did not differ from the PD of random samples of the same number of species taken from the total species pool. Thus, the observed variation in PD is wholly accounted for by variations in species richness. The number of species found increased with decreasing latitude. It appears that species richness by itself is an adequate index of biodiversity for the free-living nematodes of these sandy beaches, and more complex indices such as AvTD, VarTD and PD are unnecessary.  相似文献   

13.
Information on the distribution of species richness, faunal density, biomass and estimated productivity of benthic invertebrates in Tasmanian estuaries was quantified at a variety of spatial and temporal scales to assess general hypothesis relating community metrics to such environmental variables as salinity, seagrass biomass and sediment particle size. An associated aim was to assess appropriate scales of investigation for soft-sediment biota distributed in estuaries, including whether patterns identified at individual sites, estuaries, tidal levels or times are likely to have more general relevance. Faunal biomass and productivity varied principally at between-estuary (10 to 1000 km) and replicate-sample (1 m) scales, indicating that these two community metrics were largely responding to estuary-wide effects, such as nutrient loading, and to microhabitat features, rather than to locality characteristics at intermediate scales such as salinity, anoxia or sediment particle size. By contrast, faunal density showed greater response to tidal height (1 to 100 m) and to factors distributed at the locality scale within estuary (10 km) than to factors between estuary. Both faunal density and species richness in estuaries declined over three- and fivefold ranges down the shore from high water mark to the shallow sublittoral, while estimated productivity and biomass showed highest overall levels at low water mark. The greatest component of variance in species richness was associated with tidal height, with variance then distributed approximately evenly between other spatial scales examined. At the low-tide and shallow subtidal levels, species richness, faunal biomass and estimated productivity were all highly correlated with salinity and biomass of macrophytes, whereas faunal density was highly correlated with biomass of macrophytes only. Relationships between environmental and biological variables examined were poorly defined at high tidal levels. Seasonal plus interannual variance was much lower than spatial variance—a clear indication that sampling effort in studies would generally be better directed across a range of localities than for a single locality to be repeatedly investigated over time.  相似文献   

14.
15.
A field experiment was established to examine the effects of temperature and moisture modifications on the nematode fauna of a semiarid grassland. Several combinations of drying, wetting, warming and cooling were applied to plots and compared with untreated control plots. The experiment was performed from July to October 1996. A significant shift was observed in the structure of the nematode fauna between late summer and early autumn. This shift was manifested in the disappearance of four rare genera; Ecumenicus, Eucephalobus, Paraphelenchus and Pungentus. A significant decrease was found in the density of Acrobeles, Aphelenchoides, Ditylenchus and Prismatolaimus; in addition there was a significant increase in the density of Cephalobus, Helicotylenchus, Paratylenchus and Tylenchorhynchus. Community structural change was represented by an initial decrease in nematode generic richness of 30–50%, and in a statistically significant decrease of nematode diversity in the control and all treated plots. Thereafter, emergence of a new community was demonstrated. Data show that temperature manipulation was the main factor to influence nematode diversity, Maturity Index, and Plant Parasite Index. However, nematode population density was influenced predominantly by the soil moisture content. Coenological analysis of soil nematode fauna appears to be a useful tool for the biological monitoring of the effects of global change on semiarid grasslands.  相似文献   

16.
The present study was carried out in Faxinal Reservoir, a warm monomictic, meso-eutrophic reservoir in subtropical southern Brazil, with a long-standing, well-stratified condition, low epilimnetic nutrient concentrations, and a relatively clear epilimnion. In this study, we analyzed the dynamics of the phytoplankton functional groups, recognizing their driving forces in Faxinal Reservoir. Samples were taken at monthly intervals from January 2004 to January 2005 in surface waters. According to the reservoir’s mixing regime, three periods were identified during the study: stratification 1 (January–May 2004); mixing period (June–August 2004); and stratification 2 (September 2004–January 2005). The nutrient dynamics were driven by the mixing regime. The H1, F, and C phytoplankton functional groups were the most important in biomass, mainly represented by the N-fixing cyanobacterium Anabaena crassa, the colonial green alga with thick mucilaginous sheaths Nephrocytium sp., and the diatom Asterionella formosa, respectively. Tendencies pointed out by redundancy analysis (RDA) indicated that the mixing regime was the main determining factor of the seasonal dynamics of the phytoplankton community. The dominant functional groups showed a close relationship with the relative water-column stability (RWCS), and also, as a consequence of the mixing regime, with nutrient availability. The study also revealed the important role of physical processes in the seasonal gradient, in selecting for phytoplankton functional groups and, consequently, in the assessment of ecological status. Q index (assemblage index) of water quality based on functional groups revealed ecological status varying from very poor to tolerable in the stratification 1 period and from tolerable to medium in the mixing and stratification 2 periods. Handling editor: Judit Padisak  相似文献   

17.
We determined major structural properties influencing the food webs of two sandy beaches with contrasting morphodynamics in the Atlantic coast of Uruguay: reflective (narrow and steep) and dissipative beaches (wide and flat). Furthermore, we evaluated how these characteristics could influence the stability of the local food webs. To this end, we examined the correlation of several food web properties with different ecosystem types (including freshwater habitats, estuary, marine, and terrestrial environments) using a principal components analysis. Sandy beach food web components included detritus, phytoplankton, zooplankton, benthic invertebrates, fishes, and seabirds. Our results revealed that the dissipative beach presented higher trophic levels, a higher number of trophic species, more links per species, as well as a higher proportion of intermediate trophic species, but lower connectance and proportion of omnivorous species than the reflective beach. The variation in the food web properties was explained by two principal components. Sandy beach food webs contribute mainly to one dimension of the principal components analysis that was determined by the number of trophic species, links per species, the trophic similarity, and the characteristic path length. We suggest that species and link characteristics, such as predominance of scavengers and detritivorous, the relatively high connectance and the short path length are drivers in the food web structure and may play a role in the community dynamic.  相似文献   

18.
Objectives: To (1) assess the strength of evidence for the role of termites in vegetation heterogeneity in African savannas, and (2) identify the mechanisms by which termites induce such heterogeneity. Location: African savannas. Methods: We conducted a review of the literature, a meta‐analysis and qualitative systems analysis to identify mechanisms to explain the observed patterns. Results: The review provided evidence for termite‐induced heterogeneity in floristic composition and vegetation patterning in savannas across Africa. Termites induced vegetation heterogeneity directly or indirectly through their nest‐building and foraging activities, associated nutrient cycling and their interaction with mammalian herbivores and fire. The literature reviewed indicated that termite mounds essentially act as islands of fertility, which are responsible for ecosystem‐level spatial heterogeneity in savannas. This was supported by the meta‐analysis, which demonstrated that mounds of Ancistrotermes, Macrotermes, Odontotermes (family Macrotermitinae), Cubitermes (family Termitinae) and Trinervitermes (Nasutitermitinae) are significantly enriched in clay (75%), carbon (16%), total nitrogen (42%), calcium (232%), potassium (306%) and magnesium (154%) compared to the surrounding savanna soil. Conclusions: Termite activity is one of the major factors that induce vegetation patterning in African savannas. The implications of this are discussed and research questions for future studies and modelling efforts are indicated.  相似文献   

19.
The massive irruption of the invasive bryozoan Membraniporopsis tubigera (Osburn) in sandy beaches of southern Brazil and Uruguay is reported. The species, originally described from Puerto Rico, Texas and Florida, has also been recorded for Brazilian beaches from 21°S to 26°S as well as for harbours of Australia, New Zealand and the Sea of Japan. The southward spreading rate of this bryozoan along the Brazilian and Uruguayan coasts can be estimated in approximately 183–195 km year−1. The chances that this invasion could proceed southwards in the Southwest Atlantic and the possible impacts that it may be causing are discussed. The case of M. tubigera seems to be qualitatively and quantitatively different from those of other alien bryozoans previously recorded for this region, since it appeared massively in exposed sandy beaches, a habitat regarded to date as apparently free from the pervasive ecological impact of invasion by exotic species in the Southwest Atlantic.  相似文献   

20.
The surf-zones of sandy beaches near Perth, Western Australia often harbour huge accumulations of detached macrophyte detritus. During 2.5 yr sampling, 29 species of fishes were captured over two sandy beaches in this region and the fish community was dominated by juveniles. There was a highly significant positive relationship between the number of fishes and the quantity of detached macrophytes taken in each surf-zone netting. Comparisons of total fish abundance on beaches with and without surf-zone accumulations of detached plants, showed that fishes were two to 10 times more abundant on the beach with weed accumulations, depending on the time of day, and date of sampling. However, despite the overall lower abundance of fishes on the open sandy beach, there was a significant increase in the number of fishes captured over the sandy beach at night. There were also two to five times the number of species over the beach with weed during the day, as opposed to equal numbers of species at night. Seven fish species made up >95% of the total catch and these species fell into two groups with regard to diurnal distribution patterns; those that were equally abundant in weed dominated or open surf-zones, and those that were weed-associated. Analyses of the diets of these fishes and the daytime distribution of an important avian piscivore in the surf-zone suggested that the large quantities of weed in the surf-zone of sandy beaches in this region provide both a rich feeding site for fishes, as well as a refuge from diurnal predators. At night, when visual feeding predators are absent, some fish species move to open sandy areas to feed. Because the majority of fishes in this surf-zone community feed on weed-associated prey, and the input of macrophyte detritus is the major source of primary production in the surf-zone, we argue that the food chain dynamics in the surf-zone in this region are fundamentally different to those of sandy beaches that have been studied previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号