首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Epstein-Barr virus BRLF1 and BZLF1 genes are the first viral genes transcribed upon induction of the viral lytic cycle. The protein products of both genes (referred to here as Rta and Zta, respectively) activate expression of other viral genes, thereby initiating the lytic cascade. Among the viral antigens expressed upon induction of the lytic cycle, however, Zta is unique in its ability to disrupt viral latency; expression of the BZLF1 gene is both necessary and sufficient for triggering the viral lytic cascade. We have previously shown that Zta can activate its own promoter (Zp), through binding to two Zta recognition sequences (ZIIIA and ZIIIB). Here we describe mutant Zta proteins that do not bind DNA (referred to as Zta DNA-binding mutants [Zdbm]) but retain the ability to transactivate Zp. Consistent with the inability of these mutants to bind DNA, transactivation of Zp by Zdbm is not dependent on the Zta recognition sequences. Instead, transactivation by Zdbm is dependent upon promoter elements that bind cellular factors. An examination of other viral and cellular promoters identified promoters that are weakly responsive or unresponsive to Zdbm. An analysis of a panel of artificial promoters containing one copy of various promoter elements demonstrated a specificity for Zdbm activation that is distinct from that of Zta. These results suggest that non-DNA-binding forms of some transactivators retain the ability to transactivate specific target promoters without direct binding to DNA.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
The Epstein-Barr virus (EBV) BZLF1 gene encodes the immediate-early (IE) protein Zta, which plays a central role in regulating the switch between viral latency and lytic replication. A silencing element, ZIIR, is located between the ZID and ZII positive regulatory elements in the BZLF1 promoter Zp. We report here the phenotypes of variants of EBV strain B95.8 containing base substitution mutations in this ZIIR element. HEK293 cells infected with ZIIR mutant (ZIIRmt) virus produced at least 20-fold more viral IE Zta and Rta and early (E) EAD protein than did cells infected with the parental wild-type (WT) virus, leading to viral DNA replication and production of infectious virus. However, ZIIR mutant virus was 1/10 as efficient as WT virus in establishing proliferating B-cell clones following infection of human primary blood B cells. The ZIIRmt-infected lymphoblastoid cell lines (LCLs) that did grow out exhibited a phenotype similar to the one observed in 293 cells, including marked overproduction of IE and E gene products relative to WT-infected LCLs and lytic replication of the viral genome. Incubation of the ZIIRmt-infected LCLs with the chemical inducer 12-O-tetradecanoyl-phorbol-13-acetate (TPA) led to much greater activation of Zp than did the same treatment of WT- or ZVmt-infected LCLs. Furthermore, a protein kinase C (PKC) inhibitor, bis-indolylmaleimide, eliminated this activation by TPA. Thus, we conclude that ZIIR is a potent silencing element of Zp; it plays a key role in establishment and maintenance of EBV latency by inhibiting activation of Zp through the PKC signal transduction pathway.  相似文献   

12.
13.
Antigens coated with complement fragments coligate the B cell receptor (BCR) with the CD21/CD19 complex which results in synergistic activation of B cells. Previous studies identified PI3K, Vav proteins and PLCgamma as important components of this synergy. We now show that protein kinase D (also known as PKCmu) is also a point of convergence of these signalling pathways. We found that PKD activation upon BCR engagement or coligation of the BCR with CD19 is entirely dependent on PI3K and PLCgamma but differ in the requirement for Vav proteins. Whereas PKD activation is Vav1 and Vav2 dependent in response to BCR cross-linking, PKD activation is sensitive to the lack of Vav1 under synergistic stimulation of BCR and CD19. These findings show that Vav proteins and PI3K regulation of PLCgamma contributes to the activation of PKD in response to BCR and or CD19 cross-linking.  相似文献   

14.
Epstein-Barr virus (EBV) undergoes latent and lytic replication cycles, and its reactivation from latency to lytic replication is initiated by expression of the two viral immediate-early transactivators, Zta and Rta. In vitro, reactivation of EBV can be induced by anti-immunoglobulin, tetradecanoyl phorbol acetate, and histone deacetylase inhibitor (HDACi). We have discovered that protein kinase C delta (PKCδ) is required specifically for EBV reactivation by HDACi. Overexpression of PKCδ is sufficient to induce the activity of the Zta promoter (Zp) but not of the Rta promoter (Rp). Deletion analysis revealed that the ZID element of Zp is important for PKCδ activation. Moreover, the Sp1 putative sequence on ZID is essential for PKCδ-induced Zp activity, and the physiological binding of Sp1 on ZID has been confirmed. After HDACi treatment, activated PKCδ can phosphorylate Sp1 at serine residues and might result in dissociation of the HDAC2 repressor from ZID. HDACi-mediated HDAC2-Sp1 dissociation can be inhibited by the PKCδ inhibitor, Rotterlin. Furthermore, overexpression of HDAC2 can suppress the HDACi-induced Zp activity. Consequently, we hypothesize that HDACi induces PKCδ activation, causing phosphorylation of Sp1, and that the interplay between PKCδ and Sp1 results in the release of HDAC2 repressor from Zp and initiation of Zta expression.  相似文献   

15.
Reactivation of the Epstein-Barr virus from latency is dependent on expression of the BZLF1 viral immediate-early protein. The BZLF1 promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical inducers such as 12-O-tetradecanoylphorbol-13-acetate and calcium ionophore. We found that Jun dimerization protein 2 (JDP2) plays a significant role in suppressing Zp activity. Reporter, EMSA, and ChIP assays of a Zp mutant virus revealed JDP2 association with Zp at the ZII cis-element, a binding site for CREB/ATF/AP-1. Suppression of Zp activity by JDP2 correlated with HDAC3 association and reduced levels of histone acetylation. Although introduction of point mutations into the ZII element of the viral genome did not increase the level of BZLF1 production, silencing of endogenous JDP2 gene expression by RNA interference increased the levels of viral early gene products and viral DNA replication. These results indicate that JDP2 plays a role as a repressor of Zp and that its replacement by CREB/ATF/AP-1 at ZII is crucial to triggering reactivation from latency to lytic replication.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号