首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The postnatal development of Leydig cell precursors is postulated to be controlled by Sertoli cell secreted factors, which may have a determinative influence on Leydig cell number and function in sexually mature animals. One such hormone, Mullerian inhibiting substance (MIS), has been shown to inhibit DNA synthesis and steroidogenesis in primary Leydig cells and Leydig cell tumor lines. To further delineate the effects of MIS on Leydig cell proliferation and steroidogenesis, we employed the established ethylene dimethanesulphonate (EDS) model of Leydig cell regeneration. Following EDS ablation of differentiated Leydig cells in young adult rats, recombinant MIS or vehicle was delivered by intratesticular injection for 4 days (Days 11-14 after EDS). On Days 15 and 35 after EDS (1 and 21 days post-MIS injections), endocrine function was assessed and testes were collected for stereology, immunohistochemistry, and assessment of proliferation and steroidogenesis. Although serum testosterone and luteinizing hormone (LH) were no different, intratesticular testosterone was higher on Day 35 in MIS-treated animals. At both time points, intratesticular 5alpha-androstan-3alpha,17beta-diol concentrations were much higher than that of testosterone. MIS-treated animals had fewer mesenchymal precursors on Day 15 and fewer differentiated Leydig cells on Day 35 with decreased numbers of BrdU+ nuclei. Apoptotic interstitial cells were observed only in the MIS-treated testes, not in the vehicle-treated group on Day 15. These data suggest that MIS inhibits regeneration of Leydig cells in EDS-treated rats by enhancing apoptotic cell death as well as by decreasing proliferative capacity.  相似文献   

2.
Leydig cells in the adult rat testis differentiate during the neonatal-prepubertal period. However, the stimulus for the initiation of their differentiation is still not clear. In the present study our objectives were to test the effects of thyroid hormone and LH on the initiation of precursor cell differentiation into Leydig cells in the prepubertal rat testis. Four groups of Sprague-Dawley rats were used. All treatments began at postnatal Day 1. Rats in groups I, II, and III received daily s.c. injections of saline (200 microl, controls), triiodothyronine (T(3), 50 microg/kg body weight, hyperthyroid), and LH (ovine LH 10 microg/rat/day), respectively. Rats in group IV were made hypothyroid from postnatal Day 1 by adding 0.1% propylthiouracil (PTU) to their mother's drinking water. Testes of rats were collected at 7, 8, 9, 10, 11, 12, 16, and 21 days of age, fixed in Bouin's solution, and embedded in paraffin for immunocytochemical studies. Immunoexpression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and LH receptors (LHR) in testicular interstitial cells (other than the fetal Leydig cells) was observed using the avidin-biotin method. In control rats, out of all spindle-shaped cell types in the testis interstitium, only the peritubular mesenchymal cells showed positive immunolabeling for 3beta-HSD, beginning from the postnatal Day 11. However, positive immunolabeling for LHR was first detected in these cells at Day 12, i.e., after acquiring the steroidogenic enzyme activity. In T(3)-treated rats 3beta-HSD positive spindle-shaped cells were first observed at Day 9 (i.e., 2 days earlier than controls), and LHR-positive cells were first observed on Day 11 (2 days later than obtaining 3beta-HSD immunoactivity); they were exclusively the peritubular mesenchymal cells. The 3beta-HSD- and LHR-positive spindle-shaped cells were absent in the testis interstitium of LH-injected rats from Days 7 through 12 but were present at postnatal Day 16. In addition, more fetal Leydig cell clusters and fetal Leydig cells in mitosis were present in LH-treated rats compared to rats in all other treatment groups. Following their first detection, the number of positive cells for each protein continued to increase at each subsequent age in controls, T(3)-, and LH-injected groups. In PTU rats, 3beta-HSD and LHR-positive spindle-shaped cells were absent throughout the experimental period. From these observations, it is possible to suggest the following regarding the developing rat testis interstitium. 1) The precursor cells for the adult generation of Leydig cells in the postnatal rat testis are the peritubular mesenchymal cells. 2) Luteinizing hormone does not initiate the onset of mesenchymal cell differentiation into Leydig cells, instead it delays this process. However, daily LH treatment causes mitosis in fetal Leydig cells and increase in fetal Leydig cell clusters. 3) Thyroid hormone is critical to initiate the onset of mesenchymal cell differentiation into adult Leydig cells.  相似文献   

3.
Male rats were injected with 50 mg ethylene-1,2-dimethanesulphonate/kg from Day 5 to Day 16 after birth and control rats received injections of the same volume of vehicle. Testes were studied at various times from Day 6 to Day 108 using histochemistry, light and electron microscopy. Fine structural degenerative changes were observed in the Leydig cells and seminiferous tubules of EDS-treated animals as early as Day 6. By Day 11 no Leydig cells could be detected and the interstitia of EDS-treated testes contained large numbers of fibroblast-like cells which formed peritubular collars 3-5 cells thick; the tubules contained Sertoli cells with heterogeneous inclusions and large numbers of lipid droplets. A small number of Leydig cells was found at Day 14 and their numbers increased so that, in animals of 28 days and older, large clusters of Leydig cells were present between severely atrophic tubules. These tubules contained Sertoli cells with few organelles; germinal cells were not observed after 28 days in EDS-treated animals. These results show that EDS destroys the fetal population of Leydig cells postnatally and this mimics the well documented effect of EDS on adult Leydig cells. The seminiferous tubules were permanently damaged by EDS in the present experiments. Tubular damage could have been due to a direct cytotoxic effect of multiple injections of EDS on the tubule before the blood-testis barrier develops or due to withdrawal of androgen support secondary to Leydig cell destruction.  相似文献   

4.
Changes in Sertoli cell numbers and testicular structure during normal development and compensatory hypertrophy were assessed in crossbred Meishan x White Composite males. Boars were assigned at birth to unilateral castration at 1, 10, 56, or 112 days or to remain as intact controls through 220 days. The first testes removed were compared to assess testicular development. At 220 days, testicular structure was evaluated in boars representing the 25% with the largest (Lg) testis and the 25% with the smallest (Sm) testis in each treatment group. The number of Sertoli cells per testis reached a maximum by Day 56 in Sm testis but not until Day 112 in Lg testis boars, indicating a longer duration of Sertoli cell proliferation in Lg testis boars. Unilateral castration of Lg testis boars on Days 1, 10, 56, and 112 caused the weight of the remaining testis to hypertrophy by 149%, 135%, 119%, and 120%, respectively, and total sperm production to increase to 127%, 128%, 97%, and 106%, respectively. However, Sertoli cell numbers changed little in hemicastrate boars. In Lg testis boars, compensatory hypertrophy primarily involved proliferation of Leydig cells and expansion of existing Sertoli cells with little increase in Sertoli cell numbers, but in Sm testis boars, it involved expansion of existing Leydig and Sertoli cells without increase in cell numbers. These results indicate that Lg and Sm testis boars display intriguing differences during both development and compensatory hypertrophy, and they identify a unique animal model for further studies of factors that program and control Sertoli cell proliferation.  相似文献   

5.
The presence of bisphenol A (BPA) in consumer products has raised concerns about potential adverse effects on reproductive health. Testicular Leydig cells are the predominant source of the male sex steroid hormone testosterone, which supports the male phenotype. The present report describes the effects of developmental exposure of male rats to BPA by gavage of pregnant and lactating Long-Evans dams at 2.5 and 25 μg/kg body weight from Gestational Day 12 to Day 21 postpartum. This exposure paradigm stimulated Leydig cell division in the prepubertal period and increased Leydig cell numbers in the testes of adult male rats at 90 days. Observations from in vitro experiments confirmed that BPA acts directly as a mitogen in Leydig cells. However, BPA-induced proliferative activity in vivo is possibly mediated by several factors, such as 1) protein kinases (e.g., mitogen-activated protein kinases or MAPK), 2) growth factor receptors (e.g., insulin-like growth factor 1 receptor-beta and epidermal growth factor receptors), and 3) the Sertoli cell-secreted anti-Mullerian hormone (also called Mullerian inhibiting substance). On the other hand, BPA suppressed protein expression of the luteinizing hormone receptor (LHCGR) and the 17beta-hydroxysteroid dehydrogenase enzyme (HSD17B3), thereby decreasing androgen secretion by Leydig cells. We interpret these findings to mean that the likely impact of deficits in androgen secretion on serum androgen levels following developmental exposure to BPA is alleviated by increased Leydig cell numbers. Nevertheless, the present results reinforce the view that BPA causes biological effects at environmentally relevant exposure levels and its presence in consumer products potentially has implication for public health.  相似文献   

6.
This study provides quantitative information on the testes of seasonally breeding golden hamsters during active and regressed states of gonadal activity. Seminiferous tubules occupied 92.5% of testis volume in adult gonadally active animals. Leydig cells constituted 1.4% of the testicular volume. The mean volume of an individual Leydig cell was 1092 microns 3, and each testis contained about 25.4 million Leydig cells. The volume of an average Sertoli cell nucleus during stage VII-VIII of the cycle was 502 microns 3. A gram of hamster testis during the active state of gonadal activity contained 44.5 million Sertoli cells, and the entire testis contained approximately 73.8 million Sertoli cells. Testes of the hamsters exposed to short photoperiods for 12-13 wk displayed a 90% reduction in testis volume that was associated with a decrease in the volume of seminiferous tubules (90.8% reduction), tubular lumena (98.8%), interstitium (72.7%), Leydig cell compartment (79.3%), individual Leydig cells (69.7%), Leydig cell nuclei (50.0%), blood vessels (85.5%), macrophages (68.9%), and Sertoli cell nuclei (34.1%). The diameter (61.1%) and the length (36.8%) of the seminiferous tubules were also decreased. Although the number of Leydig cells per testis was significantly lower (p less than 0.02) after short-photoperiod exposure, the number of Sertoli cells per testis remained unchanged. The individual Sertoli cell in gonadally active hamsters accommodated, on the average, 2.27 pre-leptotene spermatocytes, 2.46 pachytene spermatocytes, and 8.17 round spermatids; the corresponding numbers in the regressed testes were 0.96, 0.20, and 0.04, respectively. The striking differences in the testicular structure between the active and regressed states of gonadal activity follow photoperiod-induced changes in endocrine function and suggest that the golden hamster may be used as a model to study structure-function relationships in the testis.  相似文献   

7.
Histometrical evaluation of the testis was performed in 36 Piau pigs from birth to 16 mo of age to investigate Sertoli cell, Leydig cell, and germ cell proliferation. In addition, blood samples were taken in seven animals from 1 wk of age to adulthood to measure plasma levels of FSH and testosterone. Sertoli cell proliferation in pigs shows two distinct phases. The first occurs between birth and 1 mo of age, when the number of Sertoli cells per testis increases approximately sixfold. The second occurs between 3 and 4 mo of age, or just before puberty, which occurs between 4 to 5 mo of age, when Sertoli cells almost double their numbers per testis. The periods of Sertoli cell proliferation were concomitant with high FSH plasma levels and prominent elongation in the length of seminiferous cord/tubule per testis. Leydig cell volume increased markedly from birth to 1 mo of age and just before puberty. In general, during the first 5 mo after birth, Leydig cell volume growth showed a similar pattern as that observed for testosterone plasma levels. Also, the proliferation of Leydig cells per testis before puberty showed a pattern similar to that observed for Sertoli cells. However, Leydig cell number per testis increased up to 16 mo of age. Substantial changes in Leydig cell size were also observed after the pubertal period. From birth to 4 mo of age, germ cells proliferated continuously, increasing their number approximately two- to fourfold at each monthly interval. A dramatic increase in germ cells per cross-section of seminiferous tubule was observed from 4 to 5 mo of age; their number per tubule cross-section stabilized after 8 mo. To our knowledge, this is the first longitudinal study reporting the pattern of Sertoli cell, germ cell, and Leydig cell proliferative activity in pigs from birth to adulthood and the first study to correlate these events with plasma levels of FSH and testosterone.  相似文献   

8.
Changes in the rat testis interstitium from birth to adulthood were studied using Sprague Dawley rats of 1, 7, 14, 21, 28, 40, 60, and 90 days of age. Our objectives were 1) to understand the fate of the fetal Leydig cells (FLC) in the postnatal rat testis, 2) to determine the volume changes in testicular interstitial components and testicular steroidogenic capacity in vitro with age, 3) to differentially quantify FLC, adult Leydig cells (ALC), and different connective tissue cell types by number and average volume, and 4) to investigate the relationship between mesenchymal and ALC numbers during testicular development. FLC were present in rat testes from birth to 90 days, and they were the only steroidogenic cells in the testis interstitium at Days 1 and 7. Except for FLC, all other interstitial cell numbers and volumes increased from birth to 90 days. The average volume of an FLC and the absolute volume of FLC per testis were similar at all ages except at Day 21, when lower values were observed for both parameters. FLC number per testis remained constant from birth through 90 days. The observations suggested that the significance of FLC in the neonatal-prepubertal rat testis is to produce testosterone to activate the hypothalamo-hypophyseal-testicular axis for the continued development of the male reproductive system. ALC were the abundant Leydig cell type by number and absolute volume per testis from Day 14 onwards. The absolute numbers of ALC and mesenchymal cells per testis increased linearly from birth to 90 days, with a slope ratio of 2:1, respectively, indicating that the rate of production of Leydig cells is 2-fold greater than that of mesenchymal cells in the postnatal rat testis through 90 days. In addition, this study showed that the mesenchymal cells are an active cell population during testis development and that their numbers do not decrease but increase with Leydig cell differentiation and testicular growth up to sexual maturity (90 days).  相似文献   

9.
Two-day-old rats were stimulated with a single dose of human chorionic gonadotropin (hCG). Changes in the Leydig cell number, mitotic activity, cell size, and number of luteinizing hormone (LH) receptors were studied. The Leydig cell number of the hCG-treated animals was 1.8 times that of the control on Day 1 and remained elevated for the rest of the 5-day experiment (p less than 0.0001). On Day 1 the number of Leydig cell mitoses in the hCG group was greater (p less than 0.05) than in the controls. The Leydig cell size increased transiently to two times that of the control (p less than 0.01) within the first day after the treatment and returned to control size by Day 5. The number of LH receptors per testis decreased 81% in 1 day (p less than 0.01), but returned to control level by Day 3. Since Leydig cell numbers were constant after Day 1, the rapid receptor recovery was obviously due to restoration of the binding sites rather than increased cell number. The present results demonstrate a rapid proliferative response and rapid LH receptor replenishment in the fetal-neonatal Leydig cells after gonadotropic stimulation. These responses of fetal-type Leydig cells are in clear contrast to those observed in adult testes after a similar stimulation.  相似文献   

10.
The aim of this study is to examine the influence of Sertoli cells on LH binding to Leydig cells in culture in immature mice. Leydig cells and Sertoli cells were obtained from the testes of immature C57BL/6Ncrj mice and were cultured in serum-free medium for 7 days. The LH binding to Leydig cells and the FSH binding to Sertoli cells were dependent on incubation time, the number of cells, and the amount of labelled hormone added. The dissociation constant for LH binding to Leydig cells was 7.3 x 10(-10) M. Co-culture of Leydig cells with Sertoli cells for 7 days decreased LH binding to Leydig cells. The binding was 34.9% of that to Leydig cells cultured alone. After cultivation of Leydig cells with spent Sertoli cell-cultured medium (SM) for the last 4 days of the 7-day culture period, LH binding to Leydig cells decreased to as low as 17.4% of that of the controls. For the controls, LH binding was measured in Leydig cells cultured in spent Leydig cell-cultured medium (LM). There was no difference between SM- and LM-cultures in the final survival rate or the percentage of cells showing histochemically demonstrated 3 beta-hydroxysteroid dehydrogenase activity. These data suggest that some factor or factors are secreted from the cultured Sertoli cells and inhibit the binding of LH to Leydig cells in culture.  相似文献   

11.
Female Wistar rats were treated with busulfan or with solvent on Day 20 of pregnancy. Thirty male offspring of each group were killed at 38 days of age. In busulfan-treated rats, compared to controls, hypothalamic LH-RH content was decreased by 52%, whereas pituitary LH and FSH concentrations were increased by 60 and 43% respectively. Plasma LH and FSH were increased by 112 and 275% respectively. Prolactin concentrations were not changed, but plasma testosterone concentration was decreased by 48%. The total number of Leydig cells per testis was decreased by 52%, and LH binding sites per testis were decreased by 70%. The total number of Sertoli cells was decreased by 44%, while FSH binding sites per testis were decreased by 62%. Spermatogenesis was practically absent after prenatal exposure to busulfan. These data demonstrate that on Day 20 of pregnancy all the dividing cells in the fetal testes were depleted by an antimitotic treatment. The stimulation of the hypothalamo-pituitary axis could have been partly induced by the decrease in testosterone production, and by the aplasia of germ cells involving modifications of the remaining Sertoli and Leydig cells.  相似文献   

12.
The regulating effect of follicle-stimulating hormone (FSH) on Leydig cell function was studied using a model of immature porcine Leydig and Sertoli cells cultured in a hormone supplemented defined medium. FSH pretreatment for 2 days of Leydig cells cultured alone was with no effect. FSH pretreatment of Leydig cells cocultured with Sertoli cells increases Leydig cell activity in an FSH dose-dependent manner with a maximal effect observed at 50 ng/ml porcine FSH (pFSH). Leydig cells cultured for 2 days in conditioned medium (CM) by FSH stimulated (FSH-CM) Sertoli cells, as compared to CM by unstimulated (control) (C-CM) Sertoli cells show an increase of their activity with a maximal effect observed at 50 ng/ml pFSH. Leydig cells cultured in CM as compared to non CM, show a marked development of organelles (smooth endoplasmic reticulum and mitochondria) involved in the steroidogenic activity. The activity of FSH-CM as compared to C-CM on Leydig cell function was non dialyzable and trypsin sensitive. These data suggest that Sertoli cells exert a regulatory action on Leydig cell steroidogenic activity via FSH dependent secreted proteins.  相似文献   

13.
14.
The effects of follicular stimulating hormone (FSH) on testicular steroidogenic activity has been studied by testing the capacity of conditioned medium (CM) by both unstimulated (control) Sertoli cells (C-CM) and FSH stimulated Sertoli cells (FSH-CM) to influence porcine cultured Leydig cell activity. Leydig cells cultured in FSH-CM for 48 hrs, as compared to C-CM, show a significant (P less than 0.05) increase in [125I]-hCG binding (150% +/- 4) and hCG-stimulated testosterone (T) secretion (266% +/- 42). In addition, the stimulating effect of FSH-CM on Leydig cell function as compared to C-CM, is trypsin sensitive, non dialyzable, heat stable, acid resistant and is chromatographed following gel filtration (Sephadex G 100) into two different peaks of activity. These data suggest that FSH regulates Leydig cell function via (at least two types of) Sertoli cell secreted proteins.  相似文献   

15.
Interaction between Leydig and Sertoli cells in vitro   总被引:3,自引:0,他引:3  
B Bilińska 《Cytobios》1989,60(241):115-126
The interaction between Leydig and Sertoli cells grown in co-culture was studied. After 3 to 4 days in culture, Leydig and Sertoli cells formed monolayers. To distinguish functional Leydig cells from Sertoli cells, a histochemical test for delta 5,3 beta-HSD activity was performed, and cells which showed a positive reaction were defined as Leydig cells, in contrast to Sertoli cells which did not manifest enzyme activity. Testosterone and oestradiol levels in culture media were determined by radioimmunological assays. Sertoli cells in co-culture showed a tendency to organize themselves as in vivo, forming a kind of pseudo-wall of the tubule. This process becomes more evident with the time of culture. Co-cultures secreted more androgens than Leydig cells alone and more oestradiol than Sertoli cells alone. This influence was strengthened by the presence of follicle stimulating hormone (FSH) in the culture medium, which was not the case in cultures of Leydig and Sertoli cells cultured separately.  相似文献   

16.
Both the cell and the species specificities of the steroidogenic potentiating activity (SPA) of Sertoli cells on Leydig cells were studied using a coculture system. Coculture of purified pig Leydig cells with rat or pig Sertoli cells in the presence of FSH led in both cases, to a significant increase in hCG receptor number and in hCG-stimulated testosterone production. Similarly, coculture of bovine adrenal cells with rat or pig Sertoli cells enhanced the steroidogenic response of adrenal cells to ACTH and angiotensin II. Such effects were not observed when pig Leydig cells or bovine adrenal cells were cocultured with bovine aortic endothelial cells. Coculture of Sertoli and Leydig cells in the presence of hCG, resulted in a significant increase in FSH receptor number and in FSH-induced plasminogen activator activity. Such effects did not occur when Sertoli cells were cocultured with either adrenal or aortic endothelial cells.  相似文献   

17.
Summary Interactions between Leydig and Sertoli cells, as well as a stimulatory effect of FSH on Leydig cell activity, have been reported in many studies. In order to investigate these interactions, the ultrastructure of immature pig Leydig cells under different culture conditions has been studied. When cultured alone in a chemically defined medium, there is a marked regression of the Leydig cell smooth endoplasmic reticulum and a swelling of the mitochondria. Addition of FSH or hCG does not prevent these phenomena. Co-culturing of Leydig cells with Sertoli cells from the same animal maintains the smooth endoplasmic reticulum at the level seen in vivo and in freshly isolated Leydig cells. The addition of FSH to the co-culture stimulates its development and increases Leydig cell activity, as assessed by an increase in hCG binding sites and an increased steroidogenic response to hCG. These results suggest that Sertoli cells exert a trophic effect on Leydig cells, and that the stimulatory effect of FSH on Leydig cell function is mediated via the Sertoli cells. These results reinforce the concept of a local regulatory control of Leydig cell steroidogenesis.Post-Doctoral fellow supported by CIRIT, Generalitat de Catalunya, Spain  相似文献   

18.
A simple and reliable method was developed to determine the neutral cholesteryl ester hydrolase (CEH) activity in rat testes, using cholesteryl-[1-14C]-oleate as substrate. The activity was due to a soluble enzyme present in the cytoplasm of predominantly Sertoli cells, which could be shown after depleting the testes of Leydig cells with ethane dimethyl sulphonate. This treatment also revealed that the loss of CEH activity in abdominal testes of experimentally cryptorchid rats takes place in the Sertoli cells. In prepubertal rats made unilaterally cryptorchid at birth, the CEH activity was significantly higher in the abdominal than in the scrotal testes at 16 days of age. This is earlier than any previously described biochemical change and coincides with, or may even precede, the earliest morphological changes which are accumulation of lipid droplets in the Sertoli cells. The testicular CEH activity then decreased to 30 days of age in the abdominal testes, whereas the activity increased in the contralateral, scrotal testes. When adult rats were made unilaterally cryptorchid for 24 h, the CEH activity decreased rapidly in the abdominal testes. These results suggest that a derangement in cholesteryl ester metabolism is an early event in the pathogenesis of testicular degeneration in cryptorchidism.  相似文献   

19.
In previous histoimmunochemical studies we reported that transferrin (TF) and insulin-like growth factor I (IGF-I) are present in the cytoplasm of the Sertoli cells of the adult human testis. Receptors for TF were found mainly in adluminal germ cells and type I receptors for IGF-I both in Sertoli and germ cells. Using electron microscopy, evidence of transfer of both TF and IGF-I from the Sertoli to the germ cells through a receptor-mediated endocytosis mechanism was also found. In this paper we report the results of the histoimmunochemical localization of alpha inhibin in the human fetal, prepubertal and adult testis. In 8- to 14-week-old fetal testes a positive immunostaining was found mainly in the interstitial cells, whereas no staining was found in the germ cords. In the prepubertal testis the immunostaining was present in the Sertoli cells but not in the interstitial cells. In the adult human testis the immunostaining was present not only in the Sertoli cells but also in the spermatocytes and in several Leydig cells. Using electron microscopy and immunogold labeling the presence of alpha inhibin immunoreactivity was found in the rough endoplasmic reticulum and in the Golgi cisternae of both Sertoli and Leydig cells. Moreover we found evidence of transfer of alpha inhibin from the Sertoli to the germ cells through receptor-mediated endocytosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号