首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Dermaptera (earwigs) is a cosmopolitan order of insects, the phylogenetic relationships of which are poorly understood. The phylogeny of Dermaptera was inferred from large subunit ribosomal (28S), small subunit ribosomal (18S), histone-3 (H3) nuclear DNA sequences, and forty-three morphological characters. Sequence data were collected for thirty-two earwig exemplar taxa representing eight families in two suborders: Hemimeridae (suborder Hemimerina); Pygidicranidae, Anisolabididae, Labiduridae, Apachyidae, Spongiphoridae, Chelisochidae and Forficulidae (suborder Forficulina). Eighteen taxa from ten additional orders were also included, representing Ephemeroptera, Odonata, Orthoptera, Phasmida, Embiidina, Mantodea, Isoptera, Blattaria, Grylloblattodea and Zoraptera. These data were analysed via direct optimization in poy under a range of gap and substitution values to test the sensitivity of the data to variations in parameter values. These results indicate that the epizoic Hemimerus is not sister to the remaining Dermaptera, but rather nested as sister to Forficulidae + Chelisochidae. These analyses support the paraphyly of Pygidicranidae and Spongiphoridae and the monophyly of Chelisochidae, Forficulidae, Anisolabididae and Labiduridae.  相似文献   

2.
The Dermaptera is an insect order with ca. 2200 described species classified in 11 families. Interestingly, recent morphological and molecular data suggest that at least three dermapteran families (Diplatyidae, Pygidicranidae and Spongiphoridae) are paraphyletic. Here we present results of histological analyses of ovaries and ovarioles in two representatives of Spongiphoridae: Chaetospania borneensis and Irdex chapmani. We show that both the ovaries and ovarioles of studied species are morphologically disparate. The ovaries of C. borneensis consist of shortened ovarioles attached to elongated lateral oviducts and are apparently similar to the ovaries of the Eudermaptera. In contrast, I. chapmani share all the important ovarian characters with more basal taxa, i.e. Anisolabididae and Labiduridae. These findings lend additional support to the paraphyly of Spongiphoridae.  相似文献   

3.
The taxonomic validity of the genus Hydropuntia Montagne (1843) (including Polycavernosa) within the Gracilariaceae (Gracilariales, Rhodophyta) is controversial. Morphological characters that define species of Hydropuntia are said to be variable and to overlap with those of Gracilaria. Here we present a global phylogenetic study of the family based on a Bayesian analysis of a large rbc L DNA sequence dataset indicating that the genus Hydropuntia forms a well supported monophyletic clade within the family, and recognize Hydropuntia as a genus distinct from Gracilaria. We also conducted smaller phylogenetic analyses in which thirty four Hydropuntia rbc L sequences resulted in two major clades within the genus, comprising a Caribbean clade and an Indo-Pacific clade. Diagnostic reproductive stages that separate these two clades will be illustrated.  相似文献   

4.
Abstract.  A two-stage cladistic analysis of 114 characters from adult and immature stage morphology provided phylogenetic hypotheses for the diverse Neotropical nymphalid butterfly genus Adelpha Hübner. Higher-level cladistic relationships were inferred for thirty Adelpha species and twenty other species of Limenitidini, confirming the monophyly of Adelpha as currently conceived and indicating several montane Asian species as potential sister taxa for the genus. Cladistic relationships between all eighty-five Adelpha species were then inferred using three outgroup combinations. Basal and terminal nodes were reasonably resolved and supported, but a low proportion of non-wing pattern characters resulted in weak resolution and support in the middle of the tree. The most basal members of Adelpha feed on the temperate or montane plant family Caprifoliaceae, suggesting that a switch from this family early in the evolutionary history was important in subsequent diversification into tropical lowland habitats. The cladograms confirm suspicions of earlier authors that dorsal mimetic wing patterns have convergently evolved a number of times in Adelpha . The subtribal classification of Limenitidini is discussed and both Lebadea (from Parthenina) and Neptina are transferred to Limenitidina, whereas Cymothoe , Bhagadatta and Pseudoneptis (all formerly Limenitidina) are regarded as incertae sedis .  相似文献   

5.
国产五味子科五种植物叶片脉序研究   总被引:4,自引:0,他引:4  
首次报道了国产五味子科5种植物的叶脉特征,对科、属、种的特征作了描述,编排有分种检索表.通过与八角科叶脉的比较,支持建立五味子科与八角科的观点,认为五味子属的系统位置在南五味子属之后,并讨论了八角目的演化趋势  相似文献   

6.
It has been shown that increased character sampling betters the accuracy of phylogenetic reconstructions in the case of molecular data. A recently published analysis of avian higher-level phylogenetics based on 2954 morphological characters now provides an empirical example to test whether this is also true in the case of morphological characters. Several clades are discussed which are supported by multiple analyses of mutually independent molecular data (sequences of nuclear genes on different chromosomes and mitochondrial genes) as well as morphological apomorphies, but did not result from parsimony analysis of the large morphological data set. Incorrect character scorings in that analysis notwithstanding, it is concluded that in the case of morphological data, increased character sampling does not necessarily better the accuracy of a phylogenetic reconstruction. Because morphological characters usually have a strongly varying complexity, many simple and homoplastic characters may overrule fewer ones of greater phylogenetic significance in large data sets, thus producing a low ratio of phylogenetic signal to 'noise' in the data.  相似文献   

7.
Phylogenetic relationships among major clades of butterflies and skippers have long been controversial, with no general consensus even today. Such lack of resolution is a substantial impediment to using the otherwise well studied butterflies as a model group in biology. Here we report the results of a combined analysis of DNA sequences from three genes and a morphological data matrix for 57 taxa (3258 characters, 1290 parsimony informative) representing all major lineages from the three putative butterfly super-families (Hedyloidea, Hesperioidea and Papilionoidea), plus out-groups representing other ditrysian Lepidoptera families. Recently, the utility of morphological data as a source of phylogenetic evidence has been debated. We present the first well supported phylogenetic hypothesis for the butterflies and skippers based on a total-evidence analysis of both traditional morphological characters and new molecular characters from three gene regions (COI, EF-1alpha and wingless). All four data partitions show substantial hidden support for the deeper nodes, which emerges only in a combined analysis in which the addition of morphological data plays a crucial role. With the exception of Nymphalidae, the traditionally recognized families are found to be strongly supported monophyletic clades with the following relationships: (Hesperiidae+(Papilionidae+(Pieridae+(Nymphalidae+(Lycaenidae+Riodinidae))))). Nymphalidae is recovered as a monophyletic clade but this clade does not have strong support. Lycaenidae and Riodinidae are sister groups with strong support and we suggest that the latter be given family rank. The position of Pieridae as the sister taxon to nymphalids, lycaenids and riodinids is supported by morphology and the EF-1alpha data but conflicted by the COI and wingless data. Hedylidae are more likely to be related to butterflies and skippers than geometrid moths and appear to be the sister group to Papilionoidea+Hesperioidea.  相似文献   

8.
Currently, 49 families of scale insects are recognised, 33 of which are extant. Despite more than a decade of DNA sequence‐based phylogenetic studies of scales insects, little is known with confidence about relationships among scale insects families. Multiple lines of evidence support the monophyly of a group of 18 scale insect families informally referred to as the neococcoids. Among neococcoid families, published DNA sequence‐based estimates have supported Eriococcidae paraphyly with respect to Beesoniidae, Dactylopiidae, and Stictococcidae. No other neococcoid interfamily relationship has been strongly supported in a published study that includes exemplars of more than ten families. Likewise, no well‐supported relationships among the 15 extant scale insect families that are not neococcoids (usually referred to as ‘archaeococcoids’) have been published. We use a Bayesian approach to estimate the scale insect phylogeny from 162 adult male morphological characters, scored from 269 extant and 29 fossil species representing 43/49 families. The result is the most taxonomically comprehensive, most resolved and best supported estimate of phylogenetic relationships among scale insect families to date. Notable results include strong support for (i) Ortheziidae sister to Matsucoccidae, (ii) a clade comprising all scale insects except for Margarodidae s.s., Ortheziidae and Matsucoccidae, (iii) Coelostomidiidae paraphyletic with respect to Monophlebidae, (iv) Eriococcidae paraphyletic with respect to Stictococcidae and Beesoniidae, and (v) Aclerdidae sister to Coccidae. We recover strong support for a clade comprising Phenacoleachiidae, Pityococcidae, Putoidae, Steingeliidae and the neococcoids, along with a sister relationship between this clade and Coelostomidiidae + Monophlebidae. In addition, we recover strong support for Pityococcidae + Steingeliidae as sister to the neococcoids. Data from fossils were incomplete, and the inclusion of extinct taxa in the data matrix reduced support and phylogenetic structure. Nonetheless, these fossil data will be invaluable in DNA sequence‐based and total evidence estimates of phylogenetic divergence times.  相似文献   

9.
The taxonomic validity of the genus Hydropuntia Montagne (1843) (including Polycavernosa) within the Gracilariaceae (Gracilariales, Rhodophyta) is controversial. Morphological characters that define species of Hydropuntia are said to be variable and to overlap with those of Gracilaria. Here we present a global phylogenetic study of the family based on a Bayesian analysis of a large rbcL DNA sequence dataset indicating that the genus Hydropuntia forms a well supported monophyletic clade within the family, and recognize Hydropuntia as a genus distinct from Gracilaria. We also conducted smaller phylogenetic analyses in which thirty four Hydropuntia rbcL sequences resulted in two major clades within the genus, comprising a Caribbean clade and an Indo‐Pacific clade. Diagnostic reproductive stages that separate these two clades will be illustrated.  相似文献   

10.
We present a molecular phylogeny for the genus Hemileuca (Saturniidae), based on 624 bp of mitochondrial cytochrome oxidase I (COI) and 932 bp of the nuclear gene elongation factor 1 alpha (EF1alpha). Combined analysis of both gene sequences increased resolution and supported most of the phylogenetic relationships suggested by separate analysis of each gene. However, a maximum parsimony (MP) model for just COI sequence from one sample of most taxa produced a phylogeny incongruent with EF1alpha and combined dataset analyses under either MP or ML models. Time of year and time of day during which adult moths fly corresponded strongly with the phylogeny. Although most Hemileuca are diurnal, ancestral Hemileuca probably were nocturnal, fall-flying insects. The two-gene molecular phylogeny suggests that wing morphology is frequently homoplastic. There was no correlation between the primary larval hostplants and phylogenetic placement of taxa. No phylogenetic pattern of specialization was evident for single hostplant families across the genus. Our results suggest that phenological behavioral characters may be more conserved than the wing morphology characters that are more commonly used to infer phylogenetic relationships in Lepidoptera. Inclusion of a molecular component in the re-evaluation of systematic data is likely to alter prior assumptions of phylogenetic relationships in groups where such potentially homoplastic characters have been used.  相似文献   

11.
The phylogenetic relationships of the family Congiopodidae are inferred based on morphological characters. The monophyly of this family is supported by 13 unambiguous apomorphic characters, including four autapomorphies among the superfamily Scorpaenoidea. The Congiopodidae shares 26 apomorphic characters with other scorpaenoid taxa, and these characters are considered to also support the monophyly of the family. Upon completion of the phylogenetic analysis using the characters in 39 transformation series, it was assumed that the family is unambiguously supported by five characters (and also by three and one characters when ACCTRAN and DELTRAN are used, respectively) and is branched into two major clades, including Congiopodus and Alertichthys plus Zanclorhynchus, respectively. Based on the phylogenetic relationships, a new classification, recognizing two subfamilies (Congiopodinae and Zanclorhynchinae) in the family Congiopodidae, is proposed. The genus Perryena, that was recently inferred being closely related to the Tetrarogidae (although many authors included it in the Congiopodidae), is provisionally placed into the Congiopodidae as incertae sedis.  相似文献   

12.
Partial DNA and amino acid sequences translated from the mitochondrial cytochrome subunit I gene (408 bp) of 17 mite species have been used for analyzing the phylogenetic relationships within the terrestrial Parasitengona (Trombidia). Due to mutational saturation of the third codon position, only first and second codon positions and amino acid sequences were analyzed, applying neighbor-joining, maximum-parsimony, and maximum-likelihood tree-building methods. The reconstructed trees revealed similar topologies of taxa; however, the phylogenetic relationships could be convincingly resolved only within several trombidioid taxa. The proposed basic relationships within the Parasitengona, in particular those of Calyptostomatoidea, Smarididae, and Erythraeidae, were poorly supported in bootstrap tests. A comparison of the presented gene tree with a phylogenetic tree based upon traditional characters revealed only few contradictions in nodes only weakly supported by morphological data. The most astonishing result is the proposed early derivative position of Microtrombidiidae within the terrestrial Parasitengona.  相似文献   

13.
A phylogenetic hypothesis for the frogs of the genus Telmatobius that includes a comprehensive sample of the morphological and geographical variation is lacking. Obtaining such a hypothesis constitutes the main focus of this contribution. A phylogenetic matrix was generated based on 97 phenotypic characters and 56 terminals. A parsimony analysis of this matrix was performed with TNT. Telmatobius is found to be monophyletic and well supported by 11 synapomorphies. Although the consensus tree shows several polytomies, four main groups have been recovered. The well‐supported T. verrucosus Group includes forest and sub‐paramo species from Bolivia and Peru, and is the sister group of the remaining species. The T. bolivianus Group includes forest and inter‐Andean valley species from Argentina and Bolivia but it is poorly supported. Two supported high‐altitude groups have been recovered, the T. macrostomus Group from the Central Andes of Peru, and the T. marmoratus Group from the Altiplano‐Puna Plateau of Argentina, Bolivia, Peru and Chile and its adjacent Pacific and Northern slopes. The synapomorphies proposed for Telmatobius are discussed as well as the evolution of some of these synapomorphies and other characters within the genus.  相似文献   

14.
This contribution is the first comparative SEM study of tarsal and pretarsal structures of 18 dermapteran species, including epizoic Hemimeridae, rare Apachyidae, as well as basal Pygidicranidae. Our data reject the apparent uniformity of this taxon and show that representatives of Dermaptera have independently evolved both types of attachment mechanisms: hairy and smooth. Dermaptera possess a wide spectrum of attachment devices: arolia, euplantulae, tarsal surfaces covered with specialised tenent setae and other types of cuticular outgrowths. The groundpattern of the pretarsal and tarsal attachment structures was reconstructed by mapping their characters onto a cladogram, generated without tarsal characters. In the groundpattern of recent Dermaptera, the tarsus consists of three tarsomeres. Presumably, the last common ancestor of the Dermaptera possessed an arolium, since this structure occurs in the most basal taxa: Diplatyidae, Karschiellidae (partim, adults), Pygidicranidae partim, and Apachyidae. The absence of arolium in two of the pygidicranid taxa is probably due to a secondary loss. The arolium seems to be reduced in the 'higher Dermaptera' and amongst them, only the Geracinae, which belong to the Spongiphoridae and, hence, to the well supported Eudermaptera [European Journal of Entomology, 98 (2001), 445], evolved this structure convergently. The character state distribution for euplantulae suggests their evolution being similar to that of the arolium. All species of Tagalina possess a specialised tarsus with a strongly dilated second tarsomere. The same applies to the Forficulidae. However, their relatively remote phylogenetic position to Tagalina burri is a convincing reason to assume convergent evolution of this character. The Chelisochidae, with a slender, elongated second tarsomere, possess a unique structure, which supports their monophyly. The special, heart shaped structure of the second tarsal segments in the Forficulidae suggests their monophyly. The attachment structures of Hemimerus vosseleri are highly derived and probably autapomorphic for this taxon.  相似文献   

15.
PHYLOGENETIC RELATIONSHIPS AMONG EXTANT BRACHIOPODS   总被引:1,自引:0,他引:1  
Abstract— The monophyletic status of the Brachiopoda and phylogenetic relationships within the phylum have long been contentious issues for brachiopod systematists. The relationship of brachiopods to other lophophore-bearing taxa is also uncertain; results from recent morphological and molecular studies are in conflict. To test current hypotheses of relationship, a phylogenetic analysis was completed (using PAUP 3.1.1) with 112 morphological and embryological characters that vary among extant representatives of seven brachiopod superfamilies, using bryozoans, phoronids, pterobranchs and sipunculids as outgroups. In the range of analyses performed, brachiopod monophyly is well supported, particularly by characters of soft anatomy. Arguments concerning single or multiple origins of a bivalved shell are not relevant to recognizing brachiopods as a clade. Articulate monophyly is very strongly supported, but inarticulate monophyly receives relatively weak support. Unlike previous studies, the nature of uncertainties about the clade status of Inarticulata are detailed explicitly here, making them easier to test in the future. Calcareous inarticulates appear to share derived characters with the other inarticulates, while sharing many primitive characters with other calcareous brachiopods (the articulates). Experimental manipulation of the data matrix reveals potential sources of bias in previous hypotheses of brachiopod phylogeny. Although not tested explicitly, lophophorate monophyly is very tentatively supported. Molecular systematic studies of a diverse group of brachiopods and other lophophorates will be particularly welcome in providing a test of the conclusions presented here.  相似文献   

16.
Much uncertainty still exists regarding higher level phylogenetic relationships in the insect order Diptera, and the need for independent analyses is apparent. In this paper, I present a parsimony analysis that is based on details of the nervous system of flies. Because neural characters have received little attention in modern phylogenetic analyses and the stability of neural traits has been debated, special emphasis is given to testing the robustness of the analysis itself and to evaluating how neurobiological constraints (such as levels of neural processing) influence the phylogenetic information content. The phylogenetic study is based on 14 species in three nematoceran and nine brachyceran families. All characters used in the analysis are based on anatomical details of the neural organization of the fly visual system. For the most part they relate to uniquely identifiable neurons, which are cells or cell types that can be confidently recognized as homologues among different species and thus compared. Parsimony analysis results in a phylogenetic hypothesis that favors specific previously suggested phylogenetic relationships and suggests alternatives regarding other placements. For example, several heterodactylan families (Bombyliidae, Asilidae, and Dolichopodidae) are supported in their placement as suggested by Sinclair et al. (1993), but Tipulidae and Syrphidae are placed differently. Tipulidae are placed at a derived rather than ancestral position within the Nematocera, and Syrphidae are placed within the Schizophora. The analysis suggests that neural characters generally maintain phylogenetic information well. However, by "forcing" neural characters onto conventional phylogenetic analyses it becomes apparent that not all neural centers maintain such information equally well. For example, neurons of the second-order visual neuropil, the medulla, contain stronger phylogenetic "signal" than do characters of the deeper visual center, the lobula plate. These differences may relate to different functional constraints in the two neuropils.  相似文献   

17.
Using different data sets mainly from the plant family Rubiaceae, but in parts also from the Apocynaceae, Asteraceae, Lardizabalaceae, Saxifragaceae, and Solanaceae, we have investigated the effect of number of characters, number of taxa, and kind of data on bootstrap values within phylogenetic trees. The percentage of supported nodes within a tree is positively correlated with the number of characters, and negatively correlated with the number of taxa. The morphological analyses are based on few characters and weakly supported trees are expected. The percentage of supported nodes is also dependent on the kind of data analyzed. In analyses of Rubiaceae based on the same number of characters, RFLP data give trees with higher percentage of supported nodes than rbcL and morphological data. We also discuss the support values for particular nodes at the familial and subfamilial levels. Two new data sets of ndhF and rbcL sequences of Rubiaceae are analyzed and together with earlier studies of the family we can conclude that the monophyly of the Rubiaceae is supported and within the family there are three well supported, but not easily characterized, large subfamilies, Rubioideae, Cinchonoideae s.s. and Ixoroideae s.l. There are also a few genera (Luculia and Coptosapelta) unclassified to subfamily.  相似文献   

18.
19.
A phylogenetic analysis of Neuroptera using thirty‐six predominantly morphological characters of adults and larvae is presented. This is the first computerized cladistic analysis at the ordinal level. It included nineteen species representing seventeen families of Neuroptera, three species representing two families (Sialidae and both subfamilies of Corydalidae) of Megaloptera, two species representing two families of Raphidioptera and as prime outgroup one species of a family of Coleoptera. Ten equally most parsimonious cladograms were found, of which one is selected and presented in detail. The results are discussed in light of recent results from mental phylogenetic cladograms. The suborders Nevrorthi‐ formia, Myrmeleontiformia and Hemerobiiformia received strong support, however Nevrorthiformia formed the adelphotaxon of Myrmeleontiformia + Hemerobiiformia (former sister group of Myrmeleontiformia only). In Myrmeleontiformia, the sister‐group relationships between Psychopsidae + Nemopteridae and Nymphidae + (Myrmeleontidae + Ascalaphidae) are corroborated. In Hemerobiiformia, Ithonidae + Polystoechotidae is confirmed as the sister group of the remaining families. Dilaridae + (Mantispidae + (Rhachiberothidae + Berothidae)), which has already been proposed, is confirmed. Chrysopidae + Osmylidae emerged as the sister group of a clade comprising Hemerobiidae + ((Coniopterygidae + Sisyridae) + (dilarid clade)). Despite the sister‐group relationship of Coniopterygidae + Sisyridae being only weakly supported, the position of Coniopterygidae within the higher Hemerobiiformia is corroborated. At the ordinal level, the analysis provided clear support for the hypothesis that Megaloptera + Neuroptera are sister groups, which upsets the conventional Megaloptera + Raphidioptera hypothesis.  相似文献   

20.
The phylogeny of the New Zealand hepialid moths was estimated from a cladistic analysis of sixty‐three morphological characters, from all life cycle stages. One hundred and sixteen maximum parsimony trees were produced. The phylogenetic reconstruction indicated that the currently recognized generic concepts, and the four informal lineages hypothesized in a previous morphological taxonomic revision, were monophyletic. The relationships of species within genus Wiseana were not fully resolved. Analysis of a data set of thirty‐nine adult male characters from the New Zealand taxa and the Australian genera Jeana, Oxycanus and Trictena supported the monophyly of the New Zealand ‘Oxycanus’ s.s lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号