首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The B-cell lymphoma-2 (Bcl-2) family proteins are critical regulators of apoptosis and consist of both proapoptotic and antiapoptotic factors. Within this family, the myeloid cell leukemia factor 1 (Mcl-1) protein exists in two forms as the result of alternative splicing. The long variant (Mcl-1L) acts as an antiapoptotic factor, whereas the short isoform (Mcl-1S) displays proapoptotic activity. In this study, using splice-switching antisense oligonucleotides (ASOs), we increased the synthesis of Mcl-1S, which induced a concurrent reduction of Mcl-1L, resulting in increased sensitivity of cancer cells to apoptotic stimuli. The Mcl-1 ASOs also induced mitochondrial hyperpolarization and a consequent increase in mitochondrial calcium (Ca2+) accumulation. The high Mcl-1S/L ratio correlated with significant hyperfusion of the entire mitochondrial network, which occurred in a dynamin-related protein (Drp1)–dependent manner. Our data indicate that the balance between the long and short variants of the Mcl-1 gene represents a key aspect of the regulation of mitochondrial physiology. We propose that the Mcl-1L/S balance is a novel regulatory factor controlling the mitochondrial fusion and fission machinery.  相似文献   

2.
Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis   总被引:1,自引:0,他引:1       下载免费PDF全文
B cell lymphoma 2 (Bcl-2) homology domain 3 (BH3)–only proteins of the Bcl-2 family are important functional adaptors that link cell death signals to the activation of Bax and/or Bak. The BH3-only protein Nbk/Bik induces cell death via an entirely Bax-dependent/Bak-independent mechanism. In contrast, cell death induced by the short splice variant of Bcl-x depends on Bak but not Bax. This indicates that Bak is functional but fails to become activated by Nbk. Here, we show that binding of myeloid cell leukemia 1 (Mcl-1) to Bak persists after Nbk expression and inhibits Nbk-induced apoptosis in Bax-deficient cells. In contrast, the BH3-only protein Puma disrupts Mcl-1–Bak interaction and triggers cell death via both Bax and Bak. Targeted knockdown of Mcl-1 overcomes inhibition of Bak and allows for Bak activation by Nbk. Thus, Nbk is held in check by Mcl-1 that interferes with activation of Bak. The finding that different BH3-only proteins rely specifically on Bax, Bak, or both has important implications for the design of anticancer drugs targeting Bcl-2.  相似文献   

3.
Release of apoptogenic proteins such as cytochrome c from mitochondria is regulated by pro- and anti-apoptotic Bcl-2 family proteins, with pro-apoptotic BH3-only proteins activating Bax and Bak. Current models assume that apoptosis induction occurs via the binding and inactivation of anti-apoptotic Bcl-2 proteins by BH3-only proteins or by direct binding to Bax. Here, we analyze apoptosis induction by the BH3-only protein Bim(S). Regulated expression of Bim(S) in epithelial cells was followed by its rapid mitochondrial translocation and mitochondrial membrane insertion in the absence of detectable binding to anti-apoptotic Bcl-2 proteins. This caused mitochondrial recruitment and activation of Bax and apoptosis. Mutational analysis of Bim(S) showed that mitochondrial targeting, but not binding to Bcl-2 or Mcl-1, was required for apoptosis induction. In yeast, Bim(S) enhanced the killing activity of Bax in the absence of anti-apoptotic Bcl-2 proteins. Thus, cell death induction by a BH3-only protein can occur through a process that is independent of anti-apoptotic Bcl-2 proteins but requires mitochondrial targeting.  相似文献   

4.
Like Bcl-2, Mcl-1 is an important survival factor for many cancers, its expression contributing to chemoresistance and disease relapse. However, unlike other prosurvival Bcl-2-like proteins, Mcl-1 stability is acutely regulated. For example, the Bcl-2 homology 3 (BH3)-only protein Noxa, which preferentially binds to Mcl-1, also targets it for proteasomal degradation. In this paper, we describe the discovery and characterization of a novel BH3-like ligand derived from Bim, Bim(S)2A, which is highly selective for Mcl-1. Unlike Noxa, Bim(S)2A is unable to trigger Mcl-1 degradation, yet, like Noxa, Bim(S)2A promotes cell killing only when Bcl-x(L) is absent or neutralized. Furthermore, killing by endogenous Bim is not associated with Mcl-1 degradation. Thus, functional inactivation of Mcl-1 does not always require its elimination. Rather, it can be efficiently antagonized by a BH3-like ligand tightly engaging its binding groove, which is confirmed here with a structural study. Our data have important implications for the discovery of compounds that might kill cells whose survival depends on Mcl-1.  相似文献   

5.
Interactions among Bcl-2 family proteins are important for regulating apoptosis. Prosurvival members of the family interact with proapoptotic BH3 (Bcl-2-homology-3)-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the α-helical BH3 region of the proapoptotic proteins to a conserved hydrophobic groove on the prosurvival proteins. Native BH3-only proteins exhibit selectivity in binding prosurvival members, as do small molecules that block these interactions. Understanding the sequence and structural basis of interaction specificity in this family is important, as it may allow the prediction of new Bcl-2 family associations and/or the design of new classes of selective inhibitors to serve as reagents or therapeutics. In this work, we used two complementary techniques—yeast surface display screening from combinatorial peptide libraries and SPOT peptide array analysis—to elucidate specificity determinants for binding to Bcl-xLversus Mcl-1, two prominent prosurvival proteins. We screened a randomized library and identified BH3 peptides that bound to either Mcl-1 or Bcl-xL selectively or to both with high affinity. The peptides competed with native ligands for binding into the conserved hydrophobic groove, as illustrated in detail by a crystal structure of a specific peptide bound to Mcl-1. Mcl-1-selective peptides from the screen were highly specific for binding Mcl-1 in preference to Bcl-xL, Bcl-2, Bcl-w, and Bfl-1, whereas Bcl-xL-selective peptides showed some cross-interaction with related proteins Bcl-2 and Bcl-w. Mutational analyses using SPOT arrays revealed the effects of 170 point mutations made in the background of a peptide derived from the BH3 region of Bim, and a simple predictive model constructed using these data explained much of the specificity observed in our Mcl-1 versus Bcl-xL binders.  相似文献   

6.
Differential interactions between Beclin 1 and Bcl-2 family members   总被引:1,自引:0,他引:1  
Autophagy, a cellular degradation system, promotes both cell death and survival. The interaction between Bcl-2 family proteins and Beclin 1, a Bcl-2 interacting protein that promotes autophagy, can mediate crosstalk between autophagy and apoptosis. We investigated the interaction between anti-and pro-apoptotic Bcl-2 proteins with Beclin 1. Our results show that Beclin 1 directly interacts with Bcl-2, Bcl-x(L), Bcl-w and to a lesser extent with Mcl-1. Beclin 1 does not bind the pro-apoptotic Bcl-2 proteins. The interaction between Beclin 1 and the anti-apoptotic protein Bcl-x(L) was inhibited by BH3-only proteins, but not by multi-domain proteins. Sequence alignment and structural modeling suggest that Beclin 1 contains a putative BH3-like domain which may interact with the hydrophobic grove of Bcl-x(L). Mutation of the Beclin 1 amino acids predicted to mediate this interaction inhibited the association of Beclin 1 with Bcl-x(L). Our results suggest that BH3 only proapoptotic Bcl-2 proteins may modulate the interactions between Bcl-x(L) and Beclin 1.  相似文献   

7.
The pro-apoptotic members of the Bcl-2 family include initiator proteins that contain only BH3 domains and downstream effector multi-BH domain-containing proteins, including Bax and Bak. In this report, we compared the ability of the six human anti-apoptotic Bcl-2 family members to suppress apoptosis induced by overexpression of Bax or Bak, correlating findings with protein interactions measured by three different methods: co-immunoprecipitation, glutathione S-transferase pulldown, and fluorescence polarization assays employing synthetic BH3 peptides from Bax and Bak. Bcl-B and Mcl-1 showed strong preferences for binding to and suppression of Bax and Bak, respectively. In contrast, the other anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-X(L), Bcl-W, and Bfl-1) suppressed apoptosis induced by overexpression of either Bax or Bak, and they displayed an ability to bind both Bax and Bak by at least one of the three protein interaction methods. Interestingly, however, full-length Bax and Bak proteins and synthetic Bax and Bak BH3 peptides exhibited discernible differences in their interactions with some anti-apoptotic members of the Bcl-2 family, cautioning against reliance on a single method for detecting protein interactions of functional significance. Altogether, the findings reveal striking distinctions in the behaviors of Bcl-B and Mcl-1 relative to the other anti-apoptotic Bcl-2 family members, where Bcl-B and Mcl-1 display reciprocal abilities to bind and neutralize Bax and Bak.  相似文献   

8.
Mcl-1 is a recently described homologue of Bcl-2 whose function and biochemical characteristics remain poorly defined. Gene transfer experiments in lnterleukin-3 (IL-3)-dependent myeloid progenitor 32D.3 cells and pro-B-lymphoid FL5.12 cells demonstrated that enforced production of high levels of Mcl-1 protein failed to prolong the survival of cells when cultured in the absence of IL-3, whereas Bcl-2 did delay cell death. Mcl-1 also did not prolong the survival in vitro of 32D.3 cells that had been induced to differentiate into mature neutrophils using Granulocyte-Colony Stimulating Factor (G-CSF), whereas Bcl-2 did. 32D.3 and FL5.12 cells co-transfected with Mcl-1 and Bcl-2 displayed survival kinetics essentially identical to cells transfected with Bcl-2 alone, when cultured in the absence of IL-3, indicating that Mcl-1 neither enhances nor impairs Bcl-2 function. In contrast to the lack of effects of Mcl-1 in 32D.3 and FL5.12 cells, Mcl-1 (like Bcl-2) was able to neutralise Bax-induced cytotoxicity in yeast (S. cerevisiae). Moreover, the recombinant GST-Mcl-1 protein bound specifically to in vitro translated Bax protein, as well as to Bax protein present in detergent lysates prepared from 32D.3 and FL5.12 cells, based on in vitro binding assays. However, Mcl-1 and Bax proteins could not be co-immunoprecipitated from control and transfected 32D.3 and FL5.12 cells, whereas Bcl-2 and Bax were easily co-immunoprecipitated under the same conditions. The findings suggest that while Mcl-1 has the capacity to bind to and neutralise the cell death promoting activity of Bax, other factors such as perhaps additional proteins or undefined post-translational modifications may influence its ability to bind to Bax in vivo and thus affect its function as a cell death blocker.  相似文献   

9.
Programmed cell death is regulated by interactions between pro-apoptotic and prosurvival members of the Bcl-2 family. Pro-apoptotic family members contain a weakly conserved BH3 motif that can adopt an alpha-helical structure and bind to a groove on prosurvival partners Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. Peptides corresponding to roughly 13 reported BH3 motifs have been verified to bind in this manner. Due to their short lengths and low sequence conservation, BH3 motifs are not detected using standard sequence-based bioinformatics approaches. Thus, it is possible that many additional proteins harbor BH3-like sequences that can mediate interactions with the Bcl-2 family. In this work, we used structure-based and data-based Bcl-2 interaction models to find new BH3-like peptides in the human proteome. We used peptide SPOT arrays to test candidate peptides for interaction with one or more of the prosurvival proteins Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. For the 36 most promising array candidates, we quantified binding to all five human receptors using direct and competition binding assays in solution. All 36 peptides showed evidence of interaction with at least one prosurvival protein, and 22 peptides bound at least one prosurvival protein with a dissociation constant between 1 and 500 nM; many peptides had specificity profiles not previously observed. We also screened the full-length parent proteins of a subset of array-tested peptides for binding to Bcl-xL and Mcl-1. Finally, we used the peptide binding data, in conjunction with previously reported interactions, to assess the affinity and specificity prediction performance of different models.  相似文献   

10.
Anti-apoptotic Bcl-2 family proteins have been reported to play an important role in apoptotic cell death of human malignancies. The aim of this study was to delineate the mechanism of anti-apoptotic Bcl-2 family proteins in pancreatic cancer (PaCa) cell survival. We first analyzed the endogenous expression and subcellular localization of anti-apoptotic Bcl-2 family proteins in six PaCa cell lines by Western blot. To delineate the functional role of Bcl-2 family proteins, siRNA-mediated knock-down of protein expression was used. Apoptosis was measured by Cell Death ELISA and Hoechst 33258 staining. In the results, the expression of anti-apoptotic Bcl-2 family proteins varied between PaCa cell lines. Mcl-1 knock-down resulted in marked cleavage of PARP and induction of apoptosis. Down-regulation of Bcl-2 or Bcl-xL had a much weaker effect. Simultaneous knock-down of Bcl-xL and Mcl-1 strongly induced apoptosis, but simultaneous knock-down of Bcl-xL/Bcl-2 or Mcl-1/Bcl-2 had no additive effect. The apoptosis-inducing effect of simultaneous knock-down of Bcl-xL and Mcl-1 was associated with translocation of Bax from the cytosol to the mitochondrial membrane, cytochrome c release, and caspase activation. These results demonstrated that Bcl-xL and Mcl-1 play an important role in pancreatic cancer cell survival. Targeting both Bcl-xL and Mcl-1 may be an intriguing therapeutic strategy in PaCa.  相似文献   

11.
The Bcl-2 family regulates induction of apoptosis at the mitochondria. Essential to this regulation are the interactions between Bcl-2 family members, which are mediated by Bcl-2 homology (BH) domains. Vaccinia virus F1L is a unique inhibitor of apoptosis that lacks significant sequence similarity with the Bcl-2 family and does not contain obvious BH domains. Despite this, F1L inhibits cytochrome c release from mitochondria by preventing Bak and Bax activation. Although F1L constitutively interacts with Bak to prevent Bak activation, the precise mechanism of this interaction remains elusive. We have identified highly divergent BH domains in F1L that were verified by the recent crystal structure of F1L (Kvansakul, M., Yang, H., Fairlie, W. D., Czabotar, P. E., Fischer, S. F., Perugini, M. A., Huang, D. C., and Colman, P. M. (2008) Cell Death Differ. 15, 1564–1571). Here we show that F1L required these BH domains to interact with ectopically expressed and endogenous Bak. The interaction between F1L and Bak was conserved across species, and both F1L and the cellular antiapoptotic protein Mcl-1 required the Bak BH3 domain for interaction. Moreover, F1L replaced Mcl-1 during infection, as the Bak·Mcl-1 complex was disrupted during vaccinia virus infection. In contrast to UV irradiation, vaccinia virus infection did not result in rapid degradation of Mcl-1, consistent with our observation that vaccinia virus did not initiate a DNA damage response. Additionally, Mcl-1 expression prevented Bak activation and apoptosis during infection with a proapoptotic vaccinia virus devoid of F1L. Our data suggest that F1L replaces the antiapoptotic activity of Mcl-1 during vaccinia virus infection by interacting with Bak using highly divergent BH domains.  相似文献   

12.
13.
Neutrophils enter the peripheral blood from the bone marrow and die after a short time. Molecular analysis of spontaneous neutrophil apoptosis is difficult as these cells die rapidly and cannot be easily manipulated. We use conditional Hoxb8 expression to generate mouse neutrophils and test the regulation of apoptosis by extensive manipulation of B-cell lymphoma protein 2 (Bcl-2)-family proteins. Spontaneous apoptosis was preceded by downregulation of anti-apoptotic Bcl-2 proteins. Loss of the pro-apoptotic Bcl-2 homology domain (BH3)-only protein Bcl-2-interacting mediator of cell death (Bim) gave some protection, but only neutrophils deficient in both BH3-only proteins, Bim and Noxa, were strongly protected against apoptosis. Function of Noxa was at least in part neutralization of induced myeloid leukemia cell differentiation protein (Mcl-1) in neutrophils and progenitors. Loss of Bim and Noxa preserved neutrophil function in culture, and apoptosis-resistant cells remained in circulation in mice. Apoptosis regulated by Bim- and Noxa-driven loss of Mcl-1 is thus the final step in neutrophil differentiation, required for the termination of neutrophil function and neutrophil-dependent inflammation.  相似文献   

14.
Pro-survival proteins in the B-cell lymphoma-2 (Bcl-2) family have a defined specificity profile for their cell death-inducing BH3-only antagonists. Solution structures of myeloid cell leukaemia-1 (Mcl-1) in complex with the BH3 domains from Noxa and Puma, two proteins regulated by the tumour suppressor p53, show that they bind as amphipathic α-helices in the same hydrophobic groove of Mcl-1, using conserved residues for binding. Thermodynamic parameters for the interaction of Noxa, Puma and the related BH3 domains of Bmf, Bim, Bid and Bak with Mcl-1 were determined by calorimetry. These unstructured BH3 domains bind Mcl-1 with affinities that span 3 orders of magnitude, and binding is an enthalpically driven and entropy-enthalpy-compensated process. Alanine scanning analysis of Noxa demonstrated that only a subset of residues is required for interaction with Mcl-1, and these residues are localised to a short highly conserved sequence motif that defines the BH3 domain. Chemical shift mapping of Mcl-1:BH3 complexes showed that Mcl-1 engages all BH3 ligands in a similar way and that, in addition to changes in the immediate vicinity of the binding site, small molecule-wide structural adjustments accommodate ligand binding. Our studies show that unstructured peptides, such as the BH3 domains, behave like their structured counterparts and can bind tightly and selectively in an enthalpically driven process.  相似文献   

15.
Previous studies have suggested that the BH3 domain of the proapoptotic Bcl-2 family member Noxa only interacts with the anti-apoptotic proteins Mcl-1 and A1 but not Bcl-2. In view of the similarity of the BH3 binding domains of these anti-apoptotic proteins as well as recent evidence that studies of isolated BH3 domains can potentially underestimate the binding between full-length Bcl-2 family members, we examined the interaction of full-length human Noxa with anti-apoptotic human Bcl-2 family members. Surface plasmon resonance using bacterially expressed proteins demonstrated that Noxa binds with mean dissociation constants (K(D)) of 3.4 nm for Mcl-1, 70 nm for Bcl-x(L), and 250 nm for wild type human Bcl-2, demonstrating selectivity but not absolute specificity of Noxa for Mcl-1. Further analysis showed that the Noxa/Bcl-2 interaction reflected binding between the Noxa BH3 domain and the Bcl-2 BH3 binding groove. Analysis of proteins expressed in vivo demonstrated that Noxa and Bcl-2 can be pulled down together from a variety of cells. Moreover, when compared with wild type Bcl-2, certain lymphoma-derived Bcl-2 mutants bound Noxa up to 20-fold more tightly in vitro, pulled down more Noxa from cells, and protected cells against killing by transfected Noxa to a greater extent. When killing by bortezomib (an agent whose cytotoxicity in Jurkat T-cell leukemia cells is dependent on Noxa) was examined, apoptosis was enhanced by the Bcl-2/Bcl-x(L) antagonist ABT-737 or by Bcl-2 down-regulation and diminished by Bcl-2 overexpression. Collectively, these observations not only establish the ability of Noxa and Bcl-2 to interact but also identify Bcl-2 overexpression as a potential mechanism of bortezomib resistance.  相似文献   

16.
Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery.  相似文献   

17.
Retinoic acid (RA) induces the differentiation of human promyelocytic leukemia HL60 cells into granulocytic cells and inhibits proliferation. Certain of actions of RA are mediated by RA nuclear receptors that regulate gene expression. However, it is also known that direct protein modification by RA (retinoylation) can occur. One such retinoylated protein in HL60 cells is a regulatory subunit of protein kinase A (PKA), which is increased in the nucleus following RA treatment and which then increases phosphorylation of other nuclear proteins. However, a complete understanding of which nuclear proteins are phosphorylated is lacking. In the current study, we employed mass spectrometry to identify one of the PKA-phosphorylated proteins as a serine/arginine-rich splicing factor 1 (SF2, SRSF1). We found that RA treatment increased the level of PKA-phosphorylated SF2 but decreased the level of SF2. While SF2 regulates myelogenous cell leukemia-1 (Mcl-1, anti-apoptotic factor), RA treatment reduced the level of Mcl-1L (full-length Mcl-1 long) and increased the level of Mcl-1S (Mcl-1 short; a short splicing variant of the Mcl-1). Furthermore, treatment with a PKA inhibitor reversed these effects on Mcl-1 and inhibited RA-induced cell differentiation. In contrast, treatment with a Mcl-1L inhibitor enhanced RA-induced cell differentiation. These results indicate that RA activates PKA in the nucleus, increases phosphorylation of SF2, raises levels of Mcl-1S and lowers levels of Mcl-1L, resulting in the induction of differentiation. RA-modified PKA may play an important role in inducing cell differentiation and suppressing cell proliferation.  相似文献   

18.
Zhong Q  Gao W  Du F  Wang X 《Cell》2005,121(7):1085-1095
The elimination of Mcl-1, an anti-apoptotic Bcl-2 family member, is an early and required step for DNA damage-induced apoptosis. The degradation of Mcl-1 can be blocked by proteasome inhibitors, suggesting a role for the ubiquitin proteasome pathway in apoptosis. Here, we demonstrate that Mcl-1 is ubiquinated at five lysines. Biochemical fractionation of cell extracts allowed us to identify a 482 kDa HECT-domain-containing ubiquitin ligase named Mule (Mcl-1 ubiquitin ligase E3) that is both required and sufficient for the polyubiquitination of Mcl-1. Mule also contains a region similar to the Bcl-2 homology region 3 (BH3) domain that allows Mule to specifically interact with Mcl-1. Elimination of Mule expression by RNA interference stabilizes Mcl-1 protein, resulting in an attenuation of the apoptosis induced by DNA-damage agents. Thus, Mule is a unique BH3-containing E3 ubiquitin ligase apical to Bcl-2 family proteins during DNA damage-induced apoptosis.  相似文献   

19.
Recent studies have suggested that in the absence of Bid, granzyme B (GrB) can utilize an unknown alternative pathway to mediate mitochondrial apoptotic events. The current study has elucidated just such a pathway for GrB-mediated mitochondrial apoptotic alterations. Two Bcl-2 family members have been identified as interactive players in this newly discovered mitochondrial response to GrB: the pro-survival protein Mcl-1L and the pro-apoptotic protein, Bim. Expression of Mcl-1L, which localizes mainly to the outer mitochondrial membrane, decreases significantly in cells subjected to CTL-free cytotoxicity mediated by a combination of GrB and replication-deficient adenovirus. The data suggest that Mcl-1L is a substrate for GrB and for caspase-3, but the two enzymes appear to target different cleavage sites. The cleavage pattern of endogenous Mcl-1L resembles that of in vitro translated Mcl-1L subjected to similar proteolytic activity. Co-immunoprecipitation experiments performed with endogenous as well as with in vitro translated proteins suggest that Mcl-1L is a high affinity binding partner of the three isoforms of Bim (extra-long, long, and short). Bim, a BH3-only protein, is capable of mediating the release of mitochondrial cytochrome c, and this activity is inhibited by the presence of exogenous Mcl-1L. The findings presented herein imply that Mcl-1L degradation by either GrB or caspase-3 interferes with Bim sequestration by Mcl-1L.  相似文献   

20.
Annona muricata Linn or usually identified as soursop is a potential anticancer plant that has been widely reported to contain valuable chemopreventive agents known as annonaceous acetogenins. The antiproliferative and anticancer activities of this tropical and subtropical plant have been demonstrated in cell culture and animal studies. A. muricata L. exerts inhibition against numerous types of cancer cells, involving multiple mechanism of actions such as apoptosis, a programmed cell death that are mainly regulated by Bcl-2 family of proteins. Nonetheless, the binding mode and the molecular interactions of the plant’s bioactive constituents have not yet been unveiled for most of these mechanisms. In the current study, we aim to elucidate the binding interaction of ten bioactive phytochemicals of A. muricata L. to three Bcl-2 family of antiapoptotic proteins viz. Bcl-2, Bcl-w and Mcl-1 using an in silico molecular docking analysis software, Autodock 4.2. The stability of the complex with highest affinity was evaluated using MD simulation. We compared the docking analysis of these substances with pre-clinical Bcl-2 inhibitor namely obatoclax. The study identified the potential chemopreventive agent among the bioactive compounds. We also characterized the important interacting residues of protein targets which involve in the binding interaction. Results displayed that anonaine, a benzylisoquinoline alkaloid, showed a high affinity towards the Bcl-2, thus indicating that this compound is a potent inhibitor of the Bcl-2 antiapoptotic family of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号