首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In the present study we investigated the functional properties of the three recombinant hyaluronan synthases (HAS proteins) HAS1, HAS2, and HAS3. HAS3-transfected CHO clones exhibited the highest hyaluronan polymerization rate followed by HAS2 transfectants which were more catalytically active than HAS1 transfectants. In living cells all three HAS proteins synthesized hyaluronan chains of high molecular weight (larger than 3.9 x 10(6)). In vitro, the HAS2 isoform produced hyaluronan chains of a molecular weight larger than 3.9 x 10(6), whereas HAS3 produced polydisperse hyaluronan (molecular weight 0.12-1 x 10(6)), and HAS1 synthesized much shorter chains of an average molecular weight of 0.12 x 10(6). Thus, each HAS protein may interact with different cytoplasmic proteins which may influence their catalytic activity. CHO transfectants with the ability to synthesize about 1 microgram hyaluronan/1 x 10 (5) cells/24 h were surrounded by hyaluronan-containing coats, whereas transfectants generating about 4-fold lower amounts of hyaluronan formed coats only in the presence of chondroitin sulfate proteoglycan. An inverse correlation between hyaluronan production on the one hand and cell migration and cell surface CD44 expression on the other was found; a 4-fold lower migration and a 2-fold decrease of cell surface CD44 receptors was seen when hyaluronan production increased 1000-fold over the level in the untransfected cells. The inverse relationships between hyaluronan production and migration and CD44 expression of cells are of importance for the regulation of cell-extracellular matrix interactions.  相似文献   

2.

Background

The modulation of inflammatory processes is a necessary step, mostly orchestrated by regulatory T (Treg) cells and suppressive Dendritic Cells (DCs), to prevent the development of deleterious responses and autoimmune diseases. Therapies that focused on adoptive transfer of Treg cells or their expansion in vivo achieved great success in controlling inflammation in several experimental models. Chloroquine (CQ), an anti-malarial drug, was shown to reduce inflammation, although the mechanisms are still obscure. In this context, we aimed to access whether chloroquine treatment alters the frequency of Treg cells and DCs in normal mice. In addition, the effects of the prophylactic and therapeutic treatment with CQ on Experimental Autoimmune Encephalomyelitis (EAE), an experimental model for human Multiple Sclerosis, was investigated as well.

Methodology/Principal Findings

EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG35–55) peptide. C57BL/6 mice were intraperitoneally treated with chloroquine. Results show that the CQ treatment provoked an increase in Treg cells frequency as well as a decrease in DCs. We next evaluated whether prophylactic CQ administration is capable of reducing the clinical and histopathological signs of EAE. Our results demonstrated that CQ-treated mice developed mild EAE compared to controls that was associated with lower infiltration of inflammatory cells in the central nervous system CNS) and increased frequency of Treg cells. Also, proliferation of MOG35–55-reactive T cells was significantly inhibited by chloroquine treatment. Similar results were observed when chloroquine was administrated after disease onset.

Conclusion

We show for the first time that CQ treatment promotes the expansion of Treg cells, corroborating previous reports indicating that chloroquine has immunomodulatory properties. Our results also show that CQ treatment suppress the inflammation in the CNS of EAE-inflicted mice, both in prophylactic and therapeutic approaches. We hypothesized that the increased number of regulatory T cells induced by the CQ treatment is involved in the reduction of the clinical signs of EAE.  相似文献   

3.
In our modern world, biotechnology products play important roles not only in our health and culture, but also various industries such as food, agriculture, sewage treatment, biofuels, nutraceuticals, and pharmaceuticals. Rapid technological advances in biotechnology over the last few decades have allowed industrial integration of mammalian cells (like the Chinese hamster ovary cells) and algae cells in pharmaceutical and biofuel industries to produce commercial products and valuable biomolecules. However, the cost of cell harvest and recovery can become expensive depending on the harvesting technique, degree of purification, and intended use of the end-products. This has led to numerous research in exploring and developing efficient harvesting techniques. Therefore, in this review, the popular harvesting techniques and their recent applications will be discussed.  相似文献   

4.
5.
Abstract—Novel treatments for various types of malignant diseases are warranted. In this study, we evaluated JAK2 inhibitors (Janus kinase 2) for suppressing the growth of malignant neuroblastoma and glioblastoma cells as well as breast and non-small cell lung cancers. Neuroblastoma and glioblastoma cells are the most sensitive to the JAK2 inhibitor AG490. A study of the relative expression of receptors that can activate JAK2 suggests that cell line sensitivity to AG490 may be mediated by IL6-R, IL11-R and/or CSF1-R. AG490 enhances the effect of doxorubicin on neuroblastoma cells. Our findings suggest the possible relevance of JAK2 inhibitors for neuroblastoma therapy, especially in combination with doxorubicin.  相似文献   

6.
近些年来,治疗性重组蛋白类药物是生物制药领域研究的热点。工业化生产中常用于重组蛋白表达的细胞系是中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞。传统CHO细胞系的表达大多数基于随机整合的方式,这可能会使目标基因整合到异染色质区域或者不稳定的染色质区域,导致CHO细胞表达不稳定,需要多轮筛选才能获得理想的表达细胞系。最新研究表明,外源基因在CHO细胞预测/特定的基因组位点中进行特异性整合,可以使重组CHO细胞的表达保持长期一致性和稳定性。CHO细胞基因组中高效稳定的转录整合位点被称为热点(hot spot)。阐述CHO细胞基因组稳定的hot spot位点近几年的研究进展,其中包括热门的hot spot位点,以及如何研究新的hot spot位点的方法。总结如何将外源基因高效定位于预测的CHO细胞hot spot位点,实现高水平稳定的表达重组蛋白,为发现新的有效的hot spot位点,构建稳定表达CHO细胞系提供参考。  相似文献   

7.
Oral squamous cell carcinoma has a striking tendency to migrate and metastasize. Cyclooxygenase (COX)-2, the inducible isoform of prostaglandin (PG) synthase, has been implicated in tumor metastasis. However, the effects of COX-2 on human oral cancer cells are largely unknown. We found that overexpression of COX-2 or exogenous PGE2 increased migration and intercellular adhesion molecule 1 (ICAM)-1 expression in human oral cancer cells. Using pharmacological inhibitors, activators, and genetic inhibition of EP receptors, we discovered that the EP1 receptor, but not other PGE receptors, is involved in PGE2-mediated cell migration and ICAM-1 expression. PGE2-mediated migration and ICAM-1 up-regulation were attenuated by inhibitors of protein kinase C (PKC)δ, and c-Src. Activation of the PKCδ, c-Src, and AP-1 signaling pathway occurred after PGE2 treatment. PGE2-induced expression of ICAM-1 and migration activity were inhibited by a specific inhibitor, siRNA, and mutants of PKCδ, c-Src, and AP-1. In addition, migration-prone sublines demonstrated that cells with increased migration ability had higher expression of COX-2 and ICAM-1. Taken together, these results indicate that the PGE2 and EP1 interaction enhanced migration of oral cancer cells through an increase in ICAM-1 production.  相似文献   

8.
Vascular endothelial cells (ECs) are continuously exposed to shear stress (SS) generated by blood flow. Such stress plays a key role in regulation of various aspects of EC function including cell proliferation and motility as well as changes in cell morphology. Vascular endothelial-protein-tyrosine phosphatase (VE-PTP) is an R3-subtype PTP that possesses multiple fibronectin type III-like domains in its extracellular region and is expressed specifically in ECs. The role of VE-PTP in EC responses to SS has remained unknown, however. Here we show that VE-PTP is diffusely localized in ECs maintained under static culture conditions, whereas it undergoes rapid accumulation at the downstream edge of the cells relative to the direction of flow in response to SS. This redistribution of VE-PTP triggered by SS was found to require its extracellular and transmembrane regions and was promoted by integrin engagement of extracellular matrix ligands. Inhibition of actin polymerization or of Cdc42, Rab5, or Arf6 activities attenuated the SS-induced redistribution of VE-PTP. VE-PTP also underwent endocytosis in the static and SS conditions. SS induced the polarized distribution of internalized VE-PTP. Such an effect was promoted by integrin engagement of fibronectin but prevented by inhibition of Cdc42 activity or of actin polymerization. In addition, depletion of VE-PTP by RNA interference in human umbilical vein ECs blocked cell elongation in the direction of flow induced by SS. Our results suggest that the polarized redistribution of VE-PTP in response to SS plays an important role in the regulation of EC function by blood flow.  相似文献   

9.
M. Butler 《Cytotechnology》2006,50(1-3):57-76
Many biopharmaceuticals are now produced as secreted glycoproteins from mammalian cell culture. The glycosylation profile of these proteins is essential to ensure structural stability and biological and clinical activity. However, the ability to control the glycosylation is limited by our understanding of the parameters that affect the heterogeneity of added glycan structures. It is clear that the glycosylation process is affected by a number of factors including the 3-dimensional structure of the protein, the enzyme repertoire of the host cell, the transit time in the Golgi and the availability of intracellular sugar-nucleotide donors. From a process development perspective there are many culture parameters that can be controlled to enable a consistent glycosylation profile to emerge from each batch culture. A further, but more difficult goal is to control the culture conditions to enable the enrichment of specific glycoforms identified with desirable biological activities. The purpose of this paper is to discuss the cellular metabolism associated with protein glycosylation and review the attempts to manipulate, control or engineer this metabolism to allow the expression of human glycosylation profiles in producer lines such as genetically engineered Chinese hamster ovary (CHO) cells.  相似文献   

10.
The periodontopathogenic bacterium Eikenella corrodens has an N-acetyl-D-galactosamine (GalNAc)-specific lectin, that contributes significantly to the pathogenicity of the bacterium. Recently, we reported that plasmid-mediated genomic recombination enhances the activity of this lectin. In this study, we investigated the effects of genomic recombination on certain virulence factors. Introduction of the recombinase gene resulted in hemolysis and significantly increased bacterial adhesion to epithelial cells. It was suggested that the enhanced adhesion was attributable to increased lectin activity due to genomic recombination, because it was inhibited by the addition of GalNAc. In contrast, invasion of the epithelial cells was remarkably reduced by genomic recombination. Although we assumed that this decrease in invasion resulted from a loss of type-IV pili, the phase variant did not show any decrease in invasion activity. This suggests that type-IV pili do not contribute to the invasive ability of E. corrodens. Our results suggest that genomic recombination enhances the pathogenicity of E. corrodens.  相似文献   

11.
重组CHO细胞培养过程中氨对细胞代谢的影响   总被引:4,自引:2,他引:4  
研究了重组CHO细胞批培养过程中,氨浓度对细胞的葡萄糖、谷氨酰胺及其它氨基酸代谢的影响。表明,细胞对葡萄糖和谷氨酰胺的得率系数随着氨浓度的增加而降低,起始氨浓度为566mmol/L的批培养过程与起始氨浓度为021mmol/L的批培养过程相比,细胞对葡萄糖和谷氨酰胺的得率系数分别下降了78%和74%,细胞对其它氨基酸的得率系数也分别下降了50%~70%。氨浓度的增加明显地改变了细胞的代谢途径,葡萄糖代谢更倾向于厌氧的乳酸生成。在谷氨酰胺的代谢过程中,谷氨酸经谷氨酸脱氢酶进一步生成α酮戊二酸的过程受到了氨的抑制,而氨对谷氨酸经谷氨酸转氨酶反应生成α酮戊二酸的过程有促进作用,但总体上谷氨酸进一步脱氨生成α酮戊二酸的反应受到了氨的限制。  相似文献   

12.
Neural stem cells have been cultured as three-dimensional aggregates in a number of different types of bioreactors. The design and configuration of the bioreactor are shown to be crucial factors for the successful propagation of the cells. A novel bioreactor with liquid re-circulation and a working volume of 200 ml has been designed, tested and shown to be able to produce a higher cell vitality compared to those produced in multi-well plates, shake flasks and stirred flasks. The novel reactor was able to produce a total density of cells of 3.5 x 10(6) cells/ml consisting of a larger number of smaller and proliferative aggregates, compared to only 1.8 x 10(6) cells/ml produced in a multi-well plate. Shake flasks and stirred flasks commonly used for facilitating mass transfer in the culture of micro-organisms are shown to be unsuitable for the propagation of neural stem cells.  相似文献   

13.
14.
CAP (adenylyl cyclase-associated protein) was first identified in yeast as a protein that regulates both the actin cytoskeleton and the Ras/cAMP pathway. Although the role in Ras signaling does not extend beyond yeast, evidence supports that CAP regulates the actin cytoskeleton in all eukaryotes including mammals. In vitro actin polymerization assays show that both mammalian and yeast CAP homologues facilitate cofilin-driven actin filament turnover. We generated HeLa cells with stable CAP1 knockdown using RNA interference. Depletion of CAP1 led to larger cell size and remarkably developed lamellipodia as well as accumulation of filamentous actin (F-actin). Moreover, we found that CAP1 depletion also led to changes in cofilin phosphorylation and localization as well as activation of focal adhesion kinase (FAK) and enhanced cell spreading. CAP1 forms complexes with the adhesion molecules FAK and Talin, which likely underlie the cell adhesion phenotypes through inside-out activation of integrin signaling. CAP1-depleted HeLa cells also had substantially elevated cell motility as well as invasion through Matrigel. In summary, in addition to generating in vitro and in vivo evidence further establishing the role of mammalian CAP1 in actin dynamics, we identified a novel cellular function for CAP1 in regulating cell adhesion.  相似文献   

15.
16.
In this work, radio-frequency (RF) impedance is reviewed as a method for monitoring and controlling cell culture manufacturing processes. It is clear from the many publications cited that RF Impedance is regarded as an accurate and reliable method for measuring the live cell bio-volume both on-line and off-line and the technology is also sutable for animal cells in suspension, attached to micro-carriers or immobilized in fixed beds. In cGMP production, RF Impedance is being used in three main areas. Firstly, it is being used as a control instrument for maintaining consistent perfusion culture allowing the bioreactor to operate under optimum conditions for maximum production of recombinant proteins. In the second application it has not replaced traditional off-line live cell counting techniques but it is being used as an additional monitoring tool to check product conformance. Finally, RF Impedance is being used to monitor the concentration of live cells immobilized on micro-carriers or packed beds in cGMP processes where traditional off-line live cell counting methods are inaccurate or impossible to perform.  相似文献   

17.
Ninjurin1 is involved in the pathogenesis of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, by mediating leukocyte extravasation, a process that depends on homotypic binding. However, the precise regulatory mechanisms of Ninjurin1 during inflammation are largely undefined. We therefore examined the pro-migratory function of Ninjurin1 and its regulatory mechanisms in macrophages. Interestingly, Ninjurin1-deficient bone marrow-derived macrophages exhibited reduced membrane protrusion formation and dynamics, resulting in the impairment of cell motility. Furthermore, exogenous Ninjurin1 was distributed at the membrane of filopodial structures in Raw264.7 macrophage cells. In Raw264.7 cells, RNA interference of Ninjurin1 reduced the number of filopodial projections, whereas overexpression of Ninjurin1 facilitated their formation and thus promoted cell motility. Ninjurin1-induced filopodial protrusion formation required the activation of Rac1. In Raw264.7 cells penetrating an MBEC4 endothelial cell monolayer, Ninjurin1 was localized to the membrane of protrusions and promoted their formation, suggesting that Ninjurin1-induced protrusive activity contributed to transendothelial migration. Taking these data together, we conclude that Ninjurin1 enhances macrophage motility and consequent extravasation of immune cells through the regulation of protrusive membrane dynamics. We expect these findings to provide insight into the understanding of immune responses mediated by Ninjurin1.  相似文献   

18.
以PCR方法克隆了Trail cDNA全长,构建了其真核表达载体,通过脂质转染HeLa细胞,48小时后利用流式细胞仪分析Trail诱导细胞凋亡的比率,发现发生凋亡的细胞为总细胞数的19%。证实了Trail真核4表达系统的产物的生物学活性高,为从真核表达的途径获得Trail基因工程产品奠定了基础。  相似文献   

19.
As microbial secretory expression systems have become well developed for microbial yeast cells, such as Saccharomyces cerevisiae and Pichia pastoris, it is advantageous to develop high cell density continuous perfusion cultures of microbial yeast cells to retain the live and productive yeast cells inside the perfusion bioreactor while removing the dead cells and cell debris along with the secreted product protein in the harvest stream. While the previously demonstrated inclined or lamellar settlers can be used for such perfusion bioreactors for microbial cells, the size and footprint requirements of such inefficiently scaled up devices can be quite large in comparison to the bioreactor size. Faced with this constraint, we have now developed novel, patent‐pending compact cell settlers that can be used more efficiently with microbial perfusion bioreactors to achieve high cell densities and bioreactor productivities. Reproducible results from numerous month‐long perfusion culture experiments using these devices attached to the 5 L perfusion bioreactor demonstrate very high cell densities due to substantial sedimentation of the larger live yeast cells which are returned to the bioreactor, while the harvest stream from the top of these cell settlers is a significantly clarified liquid, containing less than 30% and more typically less than 10% of the bioreactor cell concentration. Size of cells in the harvest is smaller than that of the cells in the bioreactor. Accumulated protein collected from the harvest and rate of protein accumulation is significantly (> 6x) higher than the protein produced in repeated fed‐batch cultures over the same culture duration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:913–922, 2017  相似文献   

20.
目的:摸索搅拌式生物反应器培养小鼠胚胎干细胞(mESC)的最佳条件,建立一种批量制备拟胚体(EB)的方法。方法:研究mESC不同接种密度及生物反应器初始搅拌速度对EB形成的数量和质量的影响,以细菌培养皿中形成的EB为对照,用抗坏血酸诱导其向心肌细胞分化,比较两种培养体系对EB心肌细胞分化潜能的影响,通过免疫荧光染色及RT PCR对ESC来源的心肌细胞进行鉴定。结果:当mESC接种密度为1×105~3×105个/ml,搅拌速度设定为15~30r/min时,搅拌式生物反应器能高效制备出大量相对均一的EB,EB中几乎没有坏死细胞。与细菌培养皿制备的EB相比,生物反应器培养的EB向心肌细胞分化的效率更高,并表达心肌特异性基因。结论:搅拌式生物反应器培养促进EB的形成及其向心肌细胞分化,是一种更为理想的EB培养系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号