首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Exhaled nitric oxide (NO) arises from both airway and alveolar regions of the lungs, which provides an opportunity to characterize region-specific inflammation. Current methodologies rely on vital capacity breathing maneuvers and controlled exhalation flow rates, which can be difficult to perform, especially for young children and individuals with compromised lung function. In addition, recent theoretical and experimental studies demonstrate that gas-phase axial diffusion of NO has a significant impact on the exhaled NO signal. We have developed a new technique to characterize airway NO, which requires a series of progressively increasing breath-hold times followed by exhalation of only the airway compartment. Using our new technique, we determined values (means +/- SE) in healthy adults (20-38 yr, n = 8) for the airway diffusing capacity [4.5 +/- 1.6 pl.s(-1).parts per billion (ppb)(-1)], the airway wall concentration (1,340 +/- 213 ppb), and the maximum airway wall flux (4,350 +/- 811 pl/s). The new technique is simple to perform, and application of this data to simpler models with cylindrical airways and no axial diffusion yields parameters consistent with previous methods. Inclusion of axial diffusion as well as an anatomically correct trumpet-shaped airway geometry results in significant loss of NO from the airways to the alveolar region, profoundly impacting airway NO characterization. In particular, the airway wall concentration is more than an order of magnitude larger than previous estimates in healthy adults and may approach concentrations (approximately 5 nM) that can influence physiological processes such as smooth muscle tone in disease states such as asthma.  相似文献   

2.
Nitric oxide (NO) appears in the exhaled breath and is a potentially important clinical marker. The accepted model of NO gas exchange includes two compartments, representing the airway and alveolar region of the lungs, but neglects axial diffusion. We incorporated axial diffusion into a one-dimensional trumpet model of the lungs to assess the impact on NO exchange dynamics, particularly the impact on the estimation of flow-independent NO exchange parameters such as the airway diffusing capacity and the maximum flux of NO in the airways. Axial diffusion reduces exhaled NO concentrations because of diffusion of NO from the airways to the alveolar region of the lungs. The magnitude is inversely related to exhalation flow rate. To simulate experimental data from two different breathing maneuvers, NO airway diffusing capacity and maximum flux of NO in the airways needed to be increased approximately fourfold. These results depend strongly on the assumption of a significant production of NO in the small airways. We conclude that axial diffusion may decrease exhaled NO levels; however, more advanced knowledge of the longitudinal distribution of NO production and diffusion is needed to develop a complete understanding of the impact of axial diffusion.  相似文献   

3.
While airway constriction has been shown to affect exhaled nitric oxide (NO), the mechanisms and location of constricted airways most likely to affect exhaled NO remain obscure. We studied the effects of histamine-induced airway constriction and ventilation heterogeneity on exhaled NO at 50 ml/s (Fe(NO,50)) and combined this with model simulations of Fe(NO,50) changes due to constriction of airways at various depths of the lung model. In 20 normal subjects, histamine induced a 26 +/- 15(SD)% Fe(NO,50) decrease, a 9 +/- 6% forced expiratory volume in 1 s (FEV(1)) decrease, a 19 +/- 9% mean forced midexpiratory flow between 25% and 75% forced vital capacity (FEF(25-75)) decrease, and a 94 +/- 119% increase in conductive ventilation heterogeneity. There was a significant correlation of Fe(NO,50) decrease with FEF(25-75) decrease (P = 0.006) but not with FEV(1) decrease or with increased ventilation heterogeneity. Simulations confirmed the negligible effect of ventilation heterogeneity on Fe(NO,50) and showed that the histamine-induced Fe(NO,50) decrease was due to constriction, with associated reduction in NO flux, of airways located proximal to generation 15. The model also indicated that the most marked effect of airways constriction on Fe(NO,50) is situated in generations 10-15 and that airway constriction beyond generation 15 markedly increases Fe(NO,50) due to interference with the NO backdiffusion effect. These mechanical factors should be considered when interpreting exhaled NO in lung disease.  相似文献   

4.
Exhaled nitric oxide (NO) is highly dependent on exhalation flow; thus exchange dynamics of NO have been described by multicompartment models and a series of flow-independent parameters that describe airway and alveolar exchange. Because the flow-independent NO airway parameters characterize features of the airway tissue (e.g., wall concentration), they should also be independent of the physical properties of the insufflating gas. We measured the total mass of NO exhaled (A(I,II)) from the airways after five different breath-hold times (5-30 s) in healthy adults (21-38 yr, n = 9) using air and heliox as the insufflating gas, and then modeled A(I,II) as a function of breath-hold time to determine airway NO exchange parameters. Increasing breath-hold time results in an increase in A(I,II) for both air and heliox, but A(I,II) is reduced by a mean (SD) of 31% (SD 6) (P < 0.04) in the presence of heliox, independent of breath-hold time. However, mean (SD) values (air, heliox) for the airway wall diffusing capacity [3.70 (SD 4.18), 3.56 pl.s(-1).ppb(-1) (SD 3.20)], the airway wall concentration [1,439 (SD 487), 1,503 ppb (SD 644>)], and the maximum airway wall flux [4,156 (SD 2,502), 4,412 pl/s (SD 2,906)] using a single-path trumpet-shaped airway model that considers axial diffusion were independent of the insufflating gas (P > 0.55). We conclude that a single-path trumpet model that considers axial diffusion captures the essential features of airway wall NO exchange and confirm earlier reports that the airway wall concentration in healthy adults exceeds 1 ppm and thus approaches physiological concentrations capable of modulating smooth muscle tone.  相似文献   

5.
Exhaled nitric oxide (NO) is elevated in asthma, but the underlying mechanisms remain poorly understood. Recent results in subjects with asthma have reported a decrease in exhaled breath pH and ammonia, as well as altered expression and activity of glutaminase in both alveolar and airway epithelial cells. This suggests that pH-dependent nitrite conversion to NO may be a source of exhaled NO in the asthmatic airway epithelium. However, the anatomic location (i.e., airway or alveolar region) of this pH-dependent NO release has not been investigated and could impact potential therapeutic strategies. We quantified airway (proximal) and alveolar (peripheral) contributions to exhaled NO at baseline and then after PBS inhalation in stable (mild-intermittent to severe) asthmatic subjects (20-44 yr old; n = 9) and healthy controls (22-41 yr old; n = 6). The mean (SD) maximum airway wall flux (pl/s) and alveolar concentration (ppb) at baseline in asthma subjects and healthy controls was 2,530 (2,572) and 5.42 (7.31) and 1,703 (1,567) and 1.88 (1.29), respectively. Compared with baseline, there is a significant decrease in the airway wall flux of NO in asthma as early as 15 min and continuing for up to 60 min (maximum -28% at 45 min) after PBS inhalation without alteration of alveolar concentration. Healthy control subjects did not display any changes in exhaled NO. We conclude that elevated airway NO at baseline in asthma is reduced by inhaled PBS. Thus airway NO may be, in part, due to nitrite conversion to NO and is consistent with airway pH dysregulation in asthma.  相似文献   

6.
Exhaled nitric oxide (NO) is a potential noninvasive index of lung inflammation and is thought to arise from the alveolar and airway regions of the lungs. A two-compartment model has been used to describe NO exchange; however, the model neglects axial diffusion of NO in the gas phase, and recent theoretical studies suggest that this may introduce significant error. We used heliox (80% helium, 20% oxygen) as the insufflating gas to probe the impact of axial diffusion (molecular diffusivity of NO is increased 2.3-fold relative to air) in healthy adults (21-38 yr old, n = 9). Heliox decreased the plateau concentration of exhaled NO by 45% (exhalation flow rate of 50 ml/s). In addition, the total mass of NO exhaled in phase I and II after a 20-s breath hold was reduced by 36%. A single-path trumpet model that considers axial diffusion predicts a 50% increase in the maximum airway flux of NO and a near-zero alveolar concentration (Ca(NO)) and source. Furthermore, when NO elimination is plotted vs. constant exhalation flow rate (range 50-500 ml/s), the slope has been previously interpreted as a nonzero Ca(NO) (range 1-5 ppb); however, the trumpet model predicts a positive slope of 0.4-2.1 ppb despite a zero Ca(NO) because of a diminishing impact of axial diffusion as flow rate increases. We conclude that axial diffusion leads to a significant backdiffusion of NO from the airways to the alveolar region that significantly impacts the partitioning of airway and alveolar contributions to exhaled NO.  相似文献   

7.
Currently accepted techniques utilize the plateau concentration of nitric oxide (NO) at a constant exhalation flow rate to characterize NO exchange, which cannot sufficiently distinguish airway and alveolar sources. Using nonlinear least squares regression and a two-compartment model, we recently described a new technique (Tsoukias et al. J Appl Physiol 91: 477-487, 2001), which utilizes a preexpiratory breath hold followed by a decreasing flow rate maneuver, to estimate three flow-independent NO parameters: maximum flux of NO from the airways (J(NO,max), pl/s), diffusing capacity of NO in the airways (D(NO,air), pl x s(-1) x ppb(-1)), and steady-state alveolar concentration (C(alv,ss), ppb). In healthy adults (n = 10), the optimal breath-hold time was 20 s, and the mean (95% intramaneuver, intrasubject, and intrapopulation confidence interval) J(NO,max), D(NO,air), and C(alv,ss) are 640 (26, 20, and 15%) pl/s, 4.2 (168, 87, and 37%) pl x s(-1) x ppb(-1), and 2.5 (81, 59, and 21%) ppb, respectively. J(NO,max) can be estimated with the greatest certainty, and the variability of all the parameters within the population of healthy adults is significant. There is no correlation between the flow-independent NO parameters and forced vital capacity or the ratio of forced expiratory volume in 1 s to forced vital capacity. With the use of these parameters, the two-compartment model can accurately predict experimentally measured plateau NO concentrations at a constant flow rate. We conclude that this new technique is simple to perform and can simultaneously characterize airway and alveolar NO exchange in healthy adults with the use of a single breathing maneuver.  相似文献   

8.

Background

Asthma is a chronic airway inflammatory disease characterized by an imbalance in both Th1 and Th2 cytokines. Exhaled nitric oxide (NO) is elevated in asthma, and is a potentially useful non-invasive marker of airway inflammation. However, the origin and underlying mechanisms of intersubject variability of exhaled NO are not yet fully understood. We have previously described NO gas phase release from normal human bronchial epithelial cells (NHBEs, tracheal origin). However, smaller airways are the major site of morbidity in asthma. We hypothesized that IL-13 or cytomix (IL-1β, TNF-α, and IFN-γ) stimulation of differentiated small airway epithelial cells (SAECs, generation 10–12) and A549 cells (model cell line of alveolar type II cells) in culture would enhance NO gas phase release.

Methods

Confluent monolayers of SAECs and A549 cells were cultured in Transwell plates and SAECs were allowed to differentiate into ciliated and mucus producing cells at an air-liquid interface. The cells were then stimulated with IL-13 (10 ng/mL) or cytomix (10 ng/mL for each cytokine). Gas phase NO release in the headspace air over the cells was measured for 48 hours using a chemiluminescence analyzer.

Results

In contrast to our previous result in NHBE, baseline NO release from SAECs and A549 is negligible. However, NO release is significantly increased by cytomix (0.51 ± 0.18 and 0.29 ± 0.20 pl.s-1.cm-2, respectively) reaching a peak at approximately 10 hours. iNOS protein expression increases in a consistent pattern both temporally and in magnitude. In contrast, IL-13 only modestly increases NO release in SAECs reaching a peak (0.06 ± 0.03 pl.s-1.cm-2) more slowly (30 to 48 hours), and does not alter NO release in A549 cells.

Conclusion

We conclude that the airway epithelium is a probable source of NO in the exhaled breath, and intersubject variability may be due, in part, to variability in the type (Th1 vs Th2) and location (large vs small airway) of inflammation.  相似文献   

9.
S-Nitrosoglutathione (GSNO) is an endogenous bronchodilator levels of which are reduced in the airways of cystic fibrosis (CF) patients. GSNO has recently been shown to increase maturation of CFTR in CF cell lines at physiological concentrations. The ability of S-nitrosoglutathione to direct the DeltaF508-CFTR to the plasma membrane and restore the function of the cAMP-dependent chloride transport in cultured human airway epithelial cells has been studied. Immunocytochemistry showed a time- and dose-dependent increase of apically located CFTR after GSNO treatment. Chloride transport studies with the fluorescent dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) showed that GSNO was able to induce a fourfold increase of cAMP-dependent chloride transport. Our data and the fact that endogenous GSNO levels are lower in the airways of CF patients make GSNO an interesting candidate for pharmacological treatment of cystic fibrosis.  相似文献   

10.
Exhaled nitric oxide (NO) concentration is a noninvasive index for monitoring lung inflammation in diseases such as asthma. The plateau concentration at constant flow is highly dependent on the exhalation flow rate and the use of corticosteroids and cannot distinguish airway and alveolar sources. In subjects with steroid-naive asthma (n = 8) or steroid-treated asthma (n = 12) and in healthy controls (n = 24), we measured flow-independent NO exchange parameters that partition exhaled NO into airway and alveolar regions and correlated these with symptoms and lung function. The mean (+/-SD) maximum airway flux (pl/s) and airway tissue concentration [parts/billion (ppb)] of NO were lower in steroid-treated asthmatic subjects compared with steroid-naive asthmatic subjects (1,195 +/- 836 pl/s and 143 +/- 66 ppb compared with 2,693 +/- 1,687 pl/s and 438 +/- 312 ppb, respectively). In contrast, the airway diffusing capacity for NO (pl.s-1.ppb-1) was elevated in both asthmatic groups compared with healthy controls, independent of steroid therapy (11.8 +/- 11.7, 8.71 +/- 5.74, and 3.13 +/- 1.57 pl.s-1.ppb-1 for steroid treated, steroid naive, and healthy controls, respectively). In addition, the airway diffusing capacity was inversely correlated with both forced expired volume in 1 s and forced vital capacity (%predicted), whereas the airway tissue concentration was positively correlated with forced vital capacity. Consistent with previously reported results from Silkoff et al. (Silkoff PE, Sylvester JT, Zamel N, and Permutt S, Am J Respir Crit Med 161: 1218-1228, 2000) that used an alternate technique, we conclude that the airway diffusing capacity for NO is elevated in asthma independent of steroid therapy and may reflect clinically relevant changes in airways.  相似文献   

11.
We investigated the source(s) for exhaled nitric oxide (NO) in isolated, perfused rabbits lungs by using isozyme-specific nitric oxide synthase (NOS) inhibitors and antibodies. Each inhibitor was studied under normoxia and hypoxia. Only nitro-L-arginine methyl ester (L-NAME, a nonselective NOS inhibitor) reduced exhaled NO and increased hypoxic pulmonary vasoconstriction (HPV), in contrast to 1400W, an inhibitor of inducible NOS (iNOS), and 7-nitroindazole, an inhibitor of neuronal NOS (nNOS). Acetylcholine-mediated stimulation of vascular endothelial NOS (eNOS) increased exhaled NO and could only be inhibited by L-NAME. Selective inhibition of airway and alveolar epithelial NO production by nebulized L-NAME decreased exhaled NO and increased hypoxic pulmonary artery pressure. Immunohistochemistry demonstrated extensive staining for eNOS in the epithelia, vasculature, and lymphatic tissue. There was no staining for iNOS but moderate staining for nNOS in the ciliated cells of the epithelia, lymphoid tissue, and cartilage cells. Our findings show virtually all exhaled NO in the rabbit lung is produced by eNOS, which is present throughout the airways, alveoli, and vessels. Both vascular and epithelial-derived NO modulate HPV.  相似文献   

12.
Cystic fibrosis (CF) lung disease is characterized by persistent lung infection. Thickened (concentrated) mucus in the CF lung impairs airway mucus clearance, which initiates bacterial infection. However, airways have other mechanisms to prevent bacterial infection, including neutrophil-mediated killing. Therefore, we examined whether neutrophil motility and bacterial capture and killing functions are impaired in thickened mucus. Mucus of three concentrations, representative of the range of normal (1.5 and 2.5% dry weight) and CF-like thickened (6.5%) mucus, was obtained from well-differentiated human bronchial epithelial cultures and prepared for three-dimensional studies of neutrophil migration. Neutrophil chemotaxis in the direction of gravity was optimal in 1.5% mucus, whereas 2.5% mucus best supported neutrophil chemotaxis against gravity. Lateral chemokinetic movement was fastest on airway epithelial surfaces covered with 1.5% mucus. In contrast, neutrophils exhibited little motility in any direction in thickened (6.5%) mucus. In in vivo models of airway mucus plugs, neutrophil migration was inhibited by thickened mucus (CF model) but not by normal concentrations of mucus ("normal" model). Paralleling the decreased neutrophil motility in thickened mucus, bacterial capture and killing capacity were decreased in CF-like thickened mucus. Similar results with each mucus concentration were obtained with mucus from CF cultures, indicating that inhibition of neutrophil functions was mucus concentration dependent not CF source dependent. We conclude that concentrated ("thick") mucus inhibits neutrophil migration and killing and is a key component in the failure of defense against chronic airways infection in CF.  相似文献   

13.
Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways.  相似文献   

14.
Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways.  相似文献   

15.
Role of exhaled nitric oxide in asthma   总被引:4,自引:0,他引:4  
Nitric oxide (NO), an evanescent atmospheric gas, has recently been discovered to be an important biological mediator in animals and humans. Nitric oxide plays a key role within the lung in the modulation of a wide variety of functions including pulmonary vascular tone, nonadrenergic non-cholinergic (NANC) transmission and modification of the inflammatory response. Asthma is characterized by chronic airway inflammation and increased synthesis of NO and other highly reactive and toxic substances (reactive oxygen species). Pro- inflammatory cytokines such as TNFalpha and IL-1beta are secreted in asthma and result in inflammatory cell recruitment, but also induce calcium- and calmodulin-independent nitric oxide synthases (iNOS) and perpetuate the inflammatory response within the airways. Nitric oxide is released by several pulmonary cells including epithelial cells, eosinophils and macrophages, and NO has been shown to be increased in conditions associated with airway inflammation, such as asthma and viral infections. Nitric oxide can be measured in the expired air of several species, and exhaled NO can now be rapidly and easily measured by the use of chemiluminescence analysers in humans. Exhaled NO is increased in steroid-naive asthmatic subjects and during an asthma exacerbation, although it returns to baseline levels with appropriate anti-inflammatory treatment, and such measurements have been proposed as a simple non-invasive method of measuring airway inflammation in asthma. Here the chemical and biological properties of NO are briefly discussed, followed by a summary of the methodological considerations relevant to the measurement of exhaled NO and its role in lung diseases including asthma. The origin of exhaled NO is considered, and brief mention made of other potential markers of airway inflammation or oxidant stress in exhaled breath.  相似文献   

16.
Nitric oxide (NO) plays an important role in a number of physiological processes in the airways, including host defense. Although the exact cellular and molecular source of the NO formation in airways is unknown, there is recent evidence that neuronal NO synthase (NOS1) contributes significantly to NO in the lower airways of cystic fibrosis (CF) patients. NOS1 protein has been shown to be expressed in nasal epithelium, suggesting an involvement of NOS1-derived NO in upper airway biology. We here hypothesized that nasal NO concentrations in CF patients are related to genotype variants in the NOS1 gene. Measurements of nasal NO concentration and pulmonary function were performed in 40 clinically stable CF patients. Genomic DNA from all patients was screened for an intronic AAT-repeat polymorphism in the NOS1 gene using polymerase chain reaction and simple sequence length polymorphism (SSLP) analysis. The allele size at that locus was significantly (P = 0.001) associated with upper airway NO. Mean (+/- SD) nasal NO concentrations were 40.5 +/- 5.2 ppb in CF patients (n = 12) with high repeat numbers (i.e., both alleles > or =12 repeats) and 72.6 +/- 7.4 ppb in patients (n = 28) with low repeat numbers (i.e., at least one allele <12 repeats). Furthermore, in the group of CF patients harboring NOS1 genotypes associated with low nasal NO, colonization of airways with P. aeruginosa was significantly more frequent than in patients with NOS1 genotypes associated high nasal NO concentrations (P = 0.0022). We conclude that (1) the variability in CF nasal NO levels are related to naturally occurring variants in the NOS1 gene, and (2) that nasal NOS1-derived NO affects the susceptibility of CF airways to infection with P. aeruginosa.  相似文献   

17.
Plasma nitrite (NO2-) and nitrate (NO3-) are the stable end-products of endogenous nitric oxide (NO) metabolism. NO is present in the exhaled air of humans, but it is not clear if exhaled NO may be an indicator of the systemic endogenous NO production. The aims of the study were to determine the levels of exhaled NO and plasma NO2-/NO3- in healthy term and preterm newborns, and to assess if exhaled NO correlates with plasma NO2-/NO3- at birth. After the stabilization of the newborn, we measured by chemiluminescence the concentration of NO in the mixed expired breath of 133 healthy newborns. Measurement of exhaled NO was repeated after 24 and 48 hours. Plasma NO2-/NO3- levels at birth were measured by the Griess reaction. NO concentrations were 8.9 (CI 8.1-9.8) parts per billion (ppb), 7.7 (CI 7.2-8.3) ppb and 9.0 (CI 8.4-9.6) ppb at birth, 24 and 48 hours, respectively. At birth, exhaled NO was inversely correlated with gestational age (p=0.008) and birth weight (p<0.001). Plasma NO2-/NO3- level was 27.30 (CI 24.26-30.34) micromol/L. There was no correlation between exhaled NO and plasma NO2-/NO3- levels at birth (p=0.88). We speculate that the inverse correlation between exhaled NO and gestational age and birth weight may reflect a role of NO in the postnatal adaptation of pulmonary circulation. At birth, exhaled NO does not correlate with plasma NO2-/NO3- and does not seem to be an index of the systemic endogenous NO production.  相似文献   

18.
Mucus hypersecretion is a prominent manifestation in patients with chronic inflammatory airway diseases and contributes to their morbidity and mortality by plugging airways and causing recurrent infections. Human neutrophil elastase (HNE) exists in high concentrations (1-20 microM) in airway secretions of these patients and induces overproduction of MUC5AC mucin, a major component of airway mucus. Previous studies showed that HNE induces MUC5AC mucin production involving reactive oxygen species (ROS) generation and TGF-alpha-dependent epidermal growth factor receptor (EGFR) activation in human airway epithelial cells. However, the molecular mechanisms involved in these responses are not defined. TNF-alpha-converting enzyme (TACE) cleaves pro-TGF-alpha into soluble TGF-alpha and can be activated by ROS. We hypothesize that HNE activates TACE via ROS generation, resulting in cleavage of pro-TGF-alpha, EGFR activation, and MUC5AC mucin expression in airway epithelial cells. Here we show that in human airway epithelial cells HNE increases TGF-alpha release, EGFR phosphorylation, and MUC5AC mucin expression, effects that were attenuated by TACE inhibitor TAPI-1 and by specific knockdown of TACE expression with small interfering RNA, implicating TACE in HNE-induced responses. These responses to HNE were also reduced by pretreatment with ROS scavengers, implicating ROS. Furthermore, we show that HNE causes protein kinase C (PKC) activation and translocation from cytosol to plasma membrane; blockade of this effect by PKC inhibitors reduced HNE-induced ROS generation and other responses, implicating PKC. We conclude that HNE induces MUC5AC mucin expression via a cascade involving PKC-ROS-TACE in human airway epithelial cells.  相似文献   

19.
Human rhinovirus infection is a common trigger for asthma exacerbations. Asthma exacerbations and rhinovirus infections are both associated with markedly decreased pH and ammonium levels in exhaled breath condensates. This observation is thought to be related, in part, to decreased activity of airway epithelial glutaminase. We studied whether direct rhinovirus infection and/or the host immune response to the infection decreased airway epithelial cell surface pH in vitro. Interferon-gamma and tumor necrosis factor-alpha, but not direct rhinovirus infection, decreased pH, an effect partly associated with decreased ammonium concentrations. This effect was 1) prevented by nitric oxide synthase inhibition; 2) independent of cyclic GMP; 3) associated with an increase in endogenous airway epithelial cell S-nitrosothiol concentration; 4) mimicked by the exogenous S-nitrosothiol, S-nitroso-N-acetyl cysteine; and 5) independent of glutaminase expression and activity. We then confirmed that decreased epithelial pH inhibits human rhinovirus replication in airway epithelial cells. These data suggest that a nitric oxide synthase-dependent host response to viral infection mediated by S-nitrosothiols, rather than direct infection itself, plays a role in decreased airway surface pH during human rhinovirus infection. This host immune response may serve to protect the lower airways from direct infection in the normal host. In patients with asthma, however, this fall in pH could be associated with the increased mucus production, augmented inflammatory cell degranulation, bronchoconstriction, and cough characteristic of an asthma exacerbation.  相似文献   

20.
Neutrophil elastase is a serine protease that is abundant in the airways of individuals with cystic fibrosis (CF), a genetic disease manifested by excessive airway Na(+) absorption and consequent depletion of the airway surface liquid layer. Although endogenous epithelium-derived serine proteases regulate epithelial Na(+) transport, the effects of neutrophil elastase on epithelial Na(+) transport and epithelial Na(+) channel (ENaC) activity are unknown. Low micromolar concentrations of human neutrophil elastase (hNE) applied to the apical surface of a human bronchial cell line (16HBE14o-/beta gamma) increased Na(+) transport about twofold. Similar effects were observed with trypsin, also a serine protease. Proteolytic inhibitors of hNE or trypsin selectively abolished the enzyme-induced increase of epithelial Na(+) transport. At the level of the single channel, submicromolar concentrations of hNE increased activity of near-silent ENaC approximately 108-fold in patches from NIH-3T3 cells expressing rat alpha-, beta-, and gamma-ENaC subunits. However, no enzyme effects were observed on basally active ENaCs. Trypsin exposure following hNE revealed no additional increase in amiloride-sensitive short-circuit current or in ENaC activity, suggesting these enzymes share a common mode of action for increasing Na(+) transport, likely through proteolytic activation of ENaC. The hNE-induced increase of near-silent ENaC activity in CF airways could contribute to Na(+) hyperabsorption, reduced airway surface liquid height, and dehydrated mucus culminating in inefficient mucociliary clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号