首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gymnastics is a closed-skill sport, and the repeatability of a specific technique is accepted as a valuable indicator of a performer's level of expertise. The circle movement, defined as a gyrating movement in the horizontal plane, is a key component of all contemporary pommel horse exercises. The aims of this study were to determine the spatial consistency of the circle movement and to assess the influence of expertise on the repeatability of this skill performed on the pedagogic pommel horse. Six expert gymnasts and six nonexperts performed 10 circles on this apparatus. A 3-dimensional analysis system recorded the trajectories of 6 markers fixed on the right and left ankles, hips, and shoulders. The spatiotemporal consistency was assessed by the SD of the marker trajectories during the circle sequence. The results showed that the shoulder and trajectories were more consistent than the ankle trajectory (P < 0.05); the marker trajectories were less consistent in the sagittal plane (P < 0.05); and the expert gymnasts showed better repeatability of the ankle trajectory than the nonexpert gymnasts did (P < 0.05). In this context, the use of the SD of the ankle trajectory during the circle sequence could be an interesting tool for trainers to quantify objectively the positional errors of the legs during circular swings and to measure the improvement in movements after specific training.  相似文献   

2.
The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts (n=6) performed competition style landings (n=3) of drop jumps, front saltos, and back saltos from a platform (0.72 m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints.  相似文献   

3.
Fall-related wrist fractures are common at any age. We used a seven-link, sagittally symmetric, biomechanical model to test the hypothesis that systematically alterations in the configuration of the body during a forward fall from standing height can significantly influence the impact force on the wrists. Movement of each joint was accomplished by a pair of agonist and antagonist joint muscle torque actuators with assigned torque-angle, torque-velocity, and neuromuscular latency properties. Proportional-derivative joint controllers were used to achieve desired target body segment configurations in the pre- andor postground contact phases of the fall. Outcome measures included wrist impact forces and whole-body kinetic energy at impact in the best, and worst, case impact injury risk scenarios. The results showed that peak wrist impact force ranged from less than 1 kN to more than 2.5 kN, reflecting a fourfold difference in whole-body kinetic energy at impact (from less than 40 J to more than 160 J) over the range of precontact hip and knee joint angles used at impact. A reduction in the whole-body kinetic energy at impact was primarily associated with increasing negative work associated with hip flexion. Altering upper extremity configuration prior to impact significantly reduced the peak wrist impact force by up to 58% (from 919 N to 2212 N). Increased peak wrist impact forces associated greater shoulder flexion and less elbow flexion. Increasing postcontact arm retraction can reduce the peak wrist impact force by 28% (from 1491 N to 1078 N), but postcontact hip and knee rotations had a relatively small effect on the peak wrist impact force (8% reduction; from 1411 N to 1303 N). In summary, the choice of the joint control strategy during a forward fall can significantly affect the risk of wrist injury. The most effective strategy was to increase the negative work during hip flexion in order to dissipate kinetic energy thereby reducing the loss in potential energy prior to first impact. Extended hip or elbow configurations should be avoided in order to reduce forearm impact forces.  相似文献   

4.
Five elite gymnasts performed giant circles on the high bar under different conditions of loading (without and with 6-kg loads attached to the shoulders, waist or ankles). Comparing the gymnasts' kinematic pattern of movement with that of a triple-pendulum moving under the sole influence of nonmuscular forces revealed qualitative similarities, including the adoption of an arched position during the downswing and a piked position during the upswing. The structuring role of nonmuscular forces in the organization of movement was further reinforced by the results of an inverse dynamics analysis, assessing the contributions of gravitational, inertial and muscular components to the net joint torques. Adding loads at the level of the shoulders, waist or ankles systematically influenced movement kinematics and net joint torques. However, with the loads attached at the level of the shoulders or waist, the load-induced changes in gravitational and inertial torques provided the required increase in net joint torque, thereby allowing the muscular torques to remain unchanged. With the loads attached at the level of the ankles, this was no longer the case and the gymnasts increased the muscular torques at the shoulder and hip joints. Together, these results demonstrate that expert gymnasts skillfully exploit the operative nonmuscular forces, employing muscle force only in the capacity of complementary forces needed to perform the task.  相似文献   

5.
The weakness of hip abductor muscles is related to lower-limb joint osteoarthritis, and joint overloading may increase the risk for disease progression. The relationship between muscle strength, structural joint deterioration and joint loading makes the latter an important parameter in the study of onset and follow-up of the disease. Since the relationship between hip abductor weakness and joint loading still remains an open question, the purpose of this study was to adopt a probabilistic modeling approach to give insights into how the weakness of hip abductor muscles, in the extent to which normal gait could be unaltered, affects ipsilateral joint contact forces. A generic musculoskeletal model was scaled to each healthy subject included in the study, and the maximum force-generating capacity of each hip abductor muscle in the model was perturbed to evaluate how all physiologically possible configurations of hip abductor weakness affected the joint contact forces during walking. In general, the muscular system was able to compensate for abductor weakness. The reduced force-generating capacity of the abductor muscles affected joint contact forces to a mild extent, with 50th percentile mean differences up to 0.5 BW (maximum 1.7 BW). There were greater increases in the peak knee joint loads than in loads at the hip or ankle. Gluteus medius, particularly the anterior compartment, was the abductor muscle with the most influence on hip and knee loads. Further studies should assess if these increases in joint loading may affect initiation and progression of osteoarthritis.  相似文献   

6.
Musculo-skeletal loading plays an important role in the primary stability of joint replacements and in the biological processes involved in fracture healing. However, current knowledge of musculo-skeletal loading is still limited. In the past, a number of musculo-skeletal models have been developed to estimate loading conditions at the hip. So far, a cycle-to-cycle validation of predicted musculo-skeletal loading by in vivo measurements has not been possible. The aim of this study was to determine the musculo-skeletal loading conditions during walking and climbing stairs for a number of patients and compare these findings to in vivo data.Following total hip arthroplasty, four patients underwent gait analysis during walking and stair climbing. An instrumented femoral prosthesis enabled simultaneous measurement of in vivo hip contact forces. On the basis of CT and X-ray data, individual musculo-skeletal models of the lower extremity were developed for each patient. Muscle and joint contact forces were calculated using an optimization algorithm. The calculated peak hip contact forces both over- and under-estimated the measured forces. They differed by a mean of 12% during walking and 14% during stair climbing.For the first time, a cycle-to-cycle validation of predicted musculo-skeletal loading was possible for walking and climbing stairs in several patients. In all cases, the comparison of in vivo measured and calculated hip contact forces showed good agreement.Thus, the authors consider the presented approach as a useful means to determine valid conditions for the analysis of prosthesis loading, bone modeling or remodeling processes around implants and fracture stability following internal fixation.  相似文献   

7.
Most hip fractures are thought to occur after falling during everyday activities. We speculated that hip fractures might also occur because of excessive loading of the hip joint during an unexpected misstep consequently leading to a fall. The aims of this study were to explore the kinematics and kinetics of the lower extremity joints during missteps as compared with regular stepping, as well as to compare the magnitude of forces acting upon the hip joint with the threshold forces expected to fracture the hip. Fourteen healthy adults performed two forward steps on a 17.8 cm high platform under the following four conditions: forward with and without vision, as well as a misstep (the box for the final step unexpectedly removed without participant awareness), and regular stepping down with eyes open. The results revealed no differences between stepping forward with and without vision. When compared with both stepping forward and regular stepping down, the misstep revealed altered joint positions accompanied by increased forces and moments acting upon the hip joint. For example, the peak vertical proximal thigh segment force was 3.05±0.55 BW vs. 1.23±0.14 BW and 0.91±0.09 BW (p<.001; misstep vs. regular stepping down and stepping forward, respectively), while the proximal thigh segment moment in frontal plane was 1.39±0.70 Nm/kg vs. 0.18±0.32 Nm/kg of adduction and 0.16±0.19 Nm/kg of abduction (p<.001). When compared with the literature data, the forces during misstep were within the range of those forces that could result in hip fractures in the elderly. Therefore, it may be possible for the elderly to experience hip/proximal femur fractures during missteps prior to falling.  相似文献   

8.
This study assessed the relative importance of introducing an increasing level of medical image-based subject-specific detail in bone and muscle geometry in the musculoskeletal model, on calculated hip contact forces during gait. These forces were compared to introducing minimization of hip contact forces in the optimization criterion. With an increasing level of subject-specific detail, specifically MRI-based geometry and wrapping surfaces representing the hip capsule, hip contact forces decreased and were more comparable to contact forces measured using instrumented prostheses (average difference of 0.69 BW at the first peak compared to 1.04 BW for the generic model). Inclusion of subject-specific wrapping surfaces in the model had a greater effect than altering the cost function definition.  相似文献   

9.
Decreased bone mineral density (BMD) in astronauts returning from long-duration spaceflight missions has been well documented, but the altered mechanical loading environment experienced by the musculoskeletal system, which may contribute to these changes, has not been well characterized. The current study describes the loading environment of the lower extremity (LE) during typical days on the International Space Station (ISS) compared to similar data for the same individuals living on Earth. Data from in-shoe force measurements are also used as input to the enhanced daily load stimulus (EDLS) model to determine the mechanical “dose” experienced by the musculoskeletal system and to associate this dose with changes in BMD.Four male astronauts on approximately 6-month missions to the ISS participated in this study. In-shoe forces were recorded using capacitance-based insoles during entire typical working days both on Earth and on-orbit. BMD estimates from the hip and spine regions were obtained from dual energy X-ray absorptiometry (DXA) pre- and post-flight.Measurable loading was recorded for only 30% of the time assigned for exercise. In-shoe forces during treadmill walking and running on the ISS were reduced by 25% and 46%, respectively, compared to similar activities on Earth. Mean on-orbit LE loads varied from 0.20 to 1.3 body weight (BW) during resistance exercise and were ~0.10 BW during bicycle ergometry. Application of the EDLS model showed a mean decrease of 25% in the daily load experienced by the LE. BMD decreased by 0.71% and 0.83% per month during their missions in the femoral neck and lumbar spine, respectively.Our findings support the conclusion that the measured ISS exercise durations and/or loading were insufficient to provide the loading stimulus required to prevent bone loss. Future trials with EDLS values closer to 100% of Earth values will offer a true test of exercise as a countermeasure to on-orbit bone loss.  相似文献   

10.
Hip contact forces and gait patterns from routine activities.   总被引:35,自引:0,他引:35  
In vivo loads acting at the hip joint have so far only been measured in few patients and without detailed documentation of gait data. Such information is required to test and improve wear, strength and fixation stability of hip implants. Measurements of hip contact forces with instrumented implants and synchronous analyses of gait patterns and ground reaction forces were performed in four patients during the most frequent activities of daily living. From the individual data sets an average was calculated. The paper focuses on the loading of the femoral implant component but complete data are additionally stored on an associated compact disc. It contains complete gait and hip contact force data as well as calculated muscle activities during walking and stair climbing and the frequencies of daily activities observed in hip patients. The mechanical loading and function of the hip joint and proximal femur is thereby completely documented. The average patient loaded his hip joint with 238% BW (percent of body weight) when walking at about 4 km/h and with slightly less when standing on one leg. This is below the levels previously reported for two other patients (Bergmann et al., Clinical Biomechanics 26 (1993) 969-990). When climbing upstairs the joint contact force is 251% BW which is less than 260% BW when going downstairs. Inwards torsion of the implant is probably critical for the stem fixation. On average it is 23% larger when going upstairs than during normal level walking. The inter- and intra-individual variations during stair climbing are large and the highest torque values are 83% larger than during normal walking. Because the hip joint loading during all other common activities of most hip patients are comparably small (except during stumbling), implants should mainly be tested with loading conditions that mimic walking and stair climbing.  相似文献   

11.
When stepping down from a curb, individuals typically make initial ground contact with either their rearfoot or forefoot. The purpose of this study was to compare vertical ground reaction forces, lower extremity mechanics, and intra-limb work distribution when individuals adopt a rearfoot technique vs. a forefoot technique, during simulated curb descent. Sixteen subjects stepped down from a platform with both a rearfoot and a forefoot technique. Vertical ground reaction forces and sagittal plane joint kinematics and kinetics were examined for the lead limb during the step-down task. Paired t-tests were used for comparison. Subjects demonstrated greater ankle joint power and negative work, and less hip joint power and negative work, with the forefoot technique vs. the rearfoot technique. Total lower extremity negative work was greater for the forefoot technique vs. the rearfoot technique. The percent contribution to the total negative work was greater for the ankle joint, and less for the hip and knee joints, with the forefoot technique vs. the rearfoot technique. The results of this study may provide insight into how curb descent technique can be modified to alter lower extremity loading.  相似文献   

12.
Skeletal forces are fundamental information in predicting the risk of bone fracture. The neuromotor control system can drive muscle forces with various task- and health-dependent strategies but current modelling techniques provide a single optimal solution of the muscle load sharing problem. The aim of the present work was to study the variability of the hip load magnitude due to sub-optimal neuromotor control strategies using a subject-specific musculoskeletal model. The model was generated from computed tomography (CT) and dissection data from a single cadaver. Gait kinematics, ground forces and electromyographic (EMG) signals were recorded on a body-matched volunteer. Model results were validated by comparing the traditional optimisation solution with the published hip load measurements and the recorded EMG signals. The solution space of the instantaneous equilibrium problem during the first hip load peak resulted in 10(5) dynamically equivalent configurations of the neuromotor control. The hip load magnitude was computed and expressed in multiples of the body weight (BW). Sensitivity of the hip load boundaries to the uncertainty on the muscle tetanic stress (TMS) was also addressed. The optimal neuromotor control induced a hip load magnitude of 3.3 BW. Sub-optimal neuromotor controls induced a hip load magnitude up to 8.93 BW. Reducing TMS from the maximum to the minimum the lower boundary of the hip load magnitude varied moderately whereas the upper boundary varied considerably from 4.26 to 8.93 BW. Further studies are necessary to assess how far the neuromotor control can degrade from the optimal activation pattern and to understand which sub-optimal controls are clinically plausible. However we can consider the possibility that sub-optimal activations of the muscular system play a role in spontaneous fractures not associated with falls.  相似文献   

13.
Because the intensity of plyometric exercises usually is based simply upon anecdotal recommendations rather than empirical evidence, this study sought to quantify a variety of these exercises based on forces placed upon the knee. Six National Collegiate Athletic Association Division I athletes who routinely trained with plyometric exercises performed depth jumps from 46 and 61 cm, a pike jump, tuck jump, single-leg jump, countermovement jump, squat jump, and a squat jump holding dumbbells equal to 30% of 1 repetition maximum (RM). Ground reaction forces obtained via an AMTI force plate and video analysis of markers placed on the left hip, knee, lateral malleolus, and fifth metatarsal were used to estimate rate of eccentric force development (E-RFD), peak ground reaction forces (GRF), ground reaction forces relative to body weight (GRF/BW), knee joint reaction forces (K-JRF), and knee joint reaction forces relative to body weight (K-JRF/BW) for each plyometric exercise. One-way repeated measures analysis of variance indicated that E-RFD, K-JRF, and K-JRF/BW were different across the conditions (p < 0.05), but peak GRF and GRF/BW were not (p > 0.05). Results indicate that there are quantitative differences between plyometric exercises in the rate of force development during landing and the forces placed on the knee, though peak GRF forces associated with landing may not differ.  相似文献   

14.
The purpose of this study was to develop a subject-specific 3-D model of the lower extremity to predict neuromuscular control effects on 3-D knee joint loading during movements that can potentially cause injury to the anterior cruciate ligament (ACL) in the knee. The simulation consisted of a forward dynamic 3-D musculoskeletal model of the lower extremity, scaled to represent a specific subject. Inputs of the model were the initial position and velocity of the skeletal elements, and the muscle stimulation patterns. Outputs of the model were movement and ground reaction forces, as well as resultant 3-D forces and moments acting across the knee joint. An optimization method was established to find muscle stimulation patterns that best reproduced the subject's movement and ground reaction forces during a sidestepping task. The optimized model produced movements and forces that were generally within one standard deviation of the measured subject data. Resultant knee joint loading variables extracted from the optimized model were comparable to those reported in the literature. The ability of the model to successfully predict the subject's response to altered initial conditions was quantified and found acceptable for use of the model to investigate the effect of altered neuromuscular control on knee joint loading during sidestepping. Monte Carlo simulations (N = 100,000) using randomly perturbed initial kinematic conditions, based on the subject's variability, resulted in peak anterior force, valgus torque and internal torque values of 378 N, 94 Nm and 71 Nm, respectively, large enough to cause ACL rupture. We conclude that the procedures described in this paper were successful in creating valid simulations of normal movement, and in simulating injuries that are caused by perturbed neuromuscular control.  相似文献   

15.
Previous forward fall simulation methods have provided good kinematic and kinetic data, but are limited in that they have started the falls from a stationary position and have primarily simulated uni-directional motion. Therefore, a novel Propelled Upper Limb fall ARest Impact System (PULARIS) was designed to address these issues during assessments of a variety of fall scenarios. The purpose of this study was to present PULARIS and evaluate its ability to impact the upper extremities of participants with repeatable velocities, hand forces and hip angles in postures and with vertical and horizontal motion consistent with forward fall arrest. PULARIS consists of four steel tubing crossbars in a scissor-like arrangement that ride on metal trolleys within c-channel tracks in the ceiling. Participants are suspended beneath PULARIS by the legs and torso in a prone position and propelled horizontally via a motor and chain drive until they are quick released, and then impact floor-mounted force platforms with both hands. PULARIS velocity, hip angles and velocities and impact hand forces of ten participants (five male, five female) were collected during three fall types (straight-arm, self-selected and bent-arm) and two fall heights (0.05 m and 0.10 m) to assess the reliability of the impact conditions provided by the system. PULARIS and participant hip velocities were found to be quite repeatable (mean ICC?=?0.81) with small between trial errors (mean?=?0.03 m/s). The ratio of horizontal to vertical hip velocity components (~0.75) agreed well with previously reported data (0.70-0.80). Peak vertical hand impact forces were also found to be relatively consistent between trials with a mean ICC of 0.73 and mean between trial error of 13.4 N. Up to 83% of the horizontal hand impact forces displayed good to excellent reliability (ICC?>?0.6) with small between trial differences. Finally, the ICCs for between trial hip angles were all classified as good to excellent. Overall, PULARIS is a reliable method and is appropriate for studying the response of the distal upper extremity to impact loading during non-stationary, multi-directional movements indicative of a forward fall. This system performed well at different fall heights, and allows for a variety of upper and lower extremity, and hip postures to be tested successfully in different landing scenarios consistent with elderly and sport-related falls.  相似文献   

16.
Walking is a task that we seek to understand because it is the most relevant human locomotion. Walking causes complex loading patterns and high load magnitudes within the human body. This work summarizes partially published load data collected in earlier in vivo measurement studies on 9 patients with telemeterized knee endoprostheses, 10 with hip endoprostheses and 5 with vertebral body replacements. Moreover, for the 19 endoprosthesis patients, additional simultaneously measured and previously unreported ground reaction forces are presented.The ground reaction force and the implant forces in the knee and hip exhibited a double peak during each step. The maxima of the ground reaction forces ranged from 100% to 126% bodyweight. In comparison, the greatest implant forces in the hip (249% bodyweight) and knee (271% bodyweight) were much greater. The mean peak force measured in the vertebral body replacement was 39% bodyweight and occurred at different time points of the stance phase.We concluded that walking leads to high load magnitudes in the knee and hip, whereas the forces in the vertebral body replacement remained relatively low. This indicates that the first peak force was greater in the hip than in the knee joint while this was reversed for the second peak force. The forces in the spinal implant were considerably lower than in the knee and hip joints.  相似文献   

17.
Detailed knowledge about loading of the knee joint is essential for preclinical testing of implants, validation of musculoskeletal models and biomechanical understanding of the knee joint. The contact forces and moments acting on the tibial component were therefore measured in 5 subjects in vivo by an instrumented knee implant during various activities of daily living.Average peak resultant forces, in percent of body weight, were highest during stair descending (346% BW), followed by stair ascending (316% BW), level walking (261% BW), one legged stance (259% BW), knee bending (253% BW), standing up (246% BW), sitting down (225% BW) and two legged stance (107% BW). Peak shear forces were about 10–20 times smaller than the axial force. Resultant forces acted almost vertically on the tibial plateau even during high flexion. Highest moments acted in the frontal plane with a typical peak to peak range ?2.91% BWm (adduction moment) to 1.61% BWm (abduction moment) throughout all activities. Peak flexion/extension moments ranged between ?0.44% BWm (extension moment) and 3.16% BWm (flexion moment). Peak external/internal torques lay between ?1.1% BWm (internal torque) and 0.53% BWm (external torque).The knee joint is highly loaded during daily life. In general, resultant contact forces during dynamic activities were lower than the ones predicted by many mathematical models, but lay in a similar range as measured in vivo by others. Some of the observed load components were much higher than those currently applied when testing knee implants.  相似文献   

18.
The purpose of the present study was to determine the effects of orthoses designed to support the forefoot and rearfoot on the kinematics and kinetics of the lower extremity joints during walking. Fifteen participants volunteered for this study. Kinematic and kinetic variables during overground walking were compared with the participants wearing sandals without orthoses or sandals with orthoses. Orthoses increased knee internal abduction moment during late stance and knee abduction angular impulse, and reduced the medial ground reaction force during late stance, adduction free moment, forefoot eversion angle, ankle inversion moment and angular impulse, hip adduction angle, hip abduction moment, and hip external rotation moment and angular impulse (p<0.05). Orthoses decreased the torsional forces on the lower extremity and reduced the loading at the hip during walking. These findings combined with our previous studies and those of others suggest that forefoot abnormalities are critically important in influencing lower extremity kinematics and kinetics, and may underlie some non-traumatic lower extremity injuries.  相似文献   

19.
Backpack load carriage increases ground reaction forces and increases the stiffness in the upper extremity that can cause transmission of higher amount of forces from the lower extremity to the head. This study investigated the effect of load carriage and placement of load on the back on the shock transmission mechanisms amongst children. Fifteen primary school boys with mean age 10.01 (±1.31) years, mean height 136.40 (±10.08) cm and mean mass 31.83 (±7.13) kg completed the study. Subjects carried 10%, 15% and 20% bodyweight (BW) loads on two locations on the back, namely upper and lower. Results showed a significant reduction in pelvic and trunk rotation in the transverse plane and an increase in the upper body stiffness for loads exceeding 15% of BW. The lower limb results showed a reduction in the first peak force and cadence and a significant change in the walking velocity and time to the first peak force for 20% load. No significant differences were found for the load configuration but the upper configuration showed slightly higher shock transmission. The changes in the lower limb dynamics indicated that there are locomotion mechanisms in place amongst children to modulate shock transmission to the head.  相似文献   

20.
In using musculoskeletal models, researchers can calculate muscle forces, and subsequently joint contact forces, providing insight into joint loading and the progression of such diseases as osteoarthritis (OA). The purpose of this study was to estimate the knee contact force (KCF) in patients with varying degrees of OA severity using muscle forces and joint reaction forces derived from OpenSim. Walking data was obtained from healthy individuals (n=14) and those with moderate (n=10) and severe knee OA (n=2). For each subject, we generated 3D, muscle-actuated, forward dynamic simulations of the walking trials. Muscle forces that reproduced each subject’s gait were calculated. KCFs were then calculated using the vector sum of the muscle forces and joint reaction forces along the longitudinal axis of the femur. Moderate OA subjects exhibited a similar KCF pattern to healthy subjects, with lower second peaks (p=0.021). Although subjects with severe OA had similar initial peak KCF to healthy and moderate OA subjects (more than 4 times BW), the pattern of the KCF was very different between groups. After an initial peak, subjects with severe OA continually unloaded the joint, whereas healthy and moderate OA subjects reloaded the knee during late stance. In subjects with symmetric OA grades, there appears to be differences in loading between OA severities. Similar initial peaks of KCF imply that reduction of peak KCF may not be a compensatory strategy for OA patients; however, reducing duration of high magnitude loads may be employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号